
Incremental Graph Clustering for Efficient

Retrieval from Streaming Egocentric Video Data

Vijay Chandrasekhar

Institute for Infocomm Research

vijay@i2r.a-star.edu.sg

Cheston Tan

Institute for Infocomm Research

cheston-tan@i2r.a-star.edu.sg

Wu Min

Institute for Infocomm Research

minwu@i2r.a-star.edu.sg

Li Liyuan

Institute for Infocomm Research

lyli@i2r.a-star.edu.sg

Li Xiaoli

Institute for Infocomm Research

xlli@i2r.a-star.edu.sg

Lim Joo Hwee

Institute for Infocomm Research

joohwee@i2r.a-star.edu.sg

Abstract—With wearable devices like Google Glass, it will soon
become possible to record everything we see. We envision a system
where one’s entire visual memory is captured, stored and indexed.
One of the biggest challenges is the scale of the retrieval problem.
In this work, we focus on how to organize streaming egocentric
video data. Egocentric video data is highly redundant, in that,
we see several objects and scenes repeatedly as we go about our
lives. To exploit this redundancy, we propose an evolving sparse-
graph representation for egocentric video data. We propose an
incremental local density clustering scheme, which learns salient
objects and scenes for streaming egocentric video data. We
use the density clustering scheme to prune redundant data in
the database. For image-retrieval applications, by retaining only
representative nodes from dense sub graphs in the streaming data
source, we show we can achieve 90% of peak recall by retaining
only 1% of data, with a significant 18% improvement in absolute
recall over naive uniform subsampling of the egocentric video
data.

I. INTRODUCTION

First-person-view systems will become popular with de-
vices like Google Glass. These systems will open up new
challenges and applications for visual search and augmented
reality, exploiting what a person has seen in the past. Analysis
of egocentric data has received increasing attention recently,
with applications like summarization [1], [2], scene under-
standing [3], object detection and recognition [4], [5], novelty
detection [6] and segmentation [7].

We envision a system where one’s entire visual memory
is captured, stored and indexed. We believe that such systems
will have a wide range of applications in search, understanding
and navigation [8]. With visual search, such a system could
be used for answering interesting questions like: Have I seen
this object before ? When and where did I last see this person
or object ? How often do I visit a place (e.g., a restaurant) ?
Where am I right now ? or when was I here last ?

But before such a system can provide relevant and mean-
ingful assistance to our queries, there is a genuine and pressing
need to develop efficient ways to organize such voluminous
visual data. In this work, we propose an architecture for
efficient retrieval from egocentric video data. We consider
the most general (and typical) case where egocentric visual
data is not labelled, and no GPS information is available. We
summarize our contributions as follows:

We envision a system, where a wearable device streams
egocentric video data to a server, where all processing is done.
The client then performs visual search queries, for different
applications. For such a system, we make the following
contributions:

• We propose an evolving sparse-graph representation of
streaming egocentric video data, where nodes in the graph
correspond to individual frames, and edges get added
incrementally as matching database frames are found. A
standard SIFT-based Bag-of-Words pipeline is used to es-
tablish matching frames. The constructed graph is massive,
and grows to hundreds of thousands of nodes, and millions
of edges.

• We propose an incremental local density clustering scheme
for finding dense sub-graphs in streaming data, i.e., when
data arrives incrementally. The incremental clustering
scheme captures redundancy in the streaming data source,
by finding dense subgraphs, which correspond to salient
objects and scenes. We show the effectiveness of our
scheme, compared to approaches like spectral clustering,
graph partitioning and connected component analysis.

• We demonstrate object and scene retrieval from visual
memory using our proposed graph-based representation
and clustering, which are used to exploit redundancy in the
data. By retaining only representative nodes from dense
sub-graphs computed on streaming data, we show how
we can aggressively prune data by an order of magnitude
with only a small loss in recall. We show that there
is only a small drop in performance when dense sub-
graphs are computed incrementally on streaming data,
compared to processing the entire data set at once. We
achieve 90% of peak recall by retaining only 1% of data:
a 18% improvement over a naive scheme like uniformly
subsampling of egocentric video data.

II. RELATED WORK

Graph-based representations of image collections have
been used for detecting images of landmarks, label propaga-
tion, and 3-D reconstruction [10], [11], [12]. A graph over
the entire image collection can be constructed efficiently using
state-of-the-art content based image retrieval techniques [10].
In [12], Philbin and Zisserman find connected components in a

Fig. 1. The top row shows snapshots of a streaming autobiographical egocentric video collected over a week. In the second row, we show the evolving sparse
graph representations of egocentric data, visualized using Graphviz [9]. Nodes correspond to individual frames, while edges correspond to frames that match.
Such graphs contain large connected components, with hundreds of thousands of nodes. In the final row, we show an example of a dense sub-graph, which
corresponds to a frequently occurring scene.

large graph to identify similar images of individual landmarks.
The authors also apply spectral clustering techniques on small
connected components (tens of nodes) to seperate image-
clusters that might have merged.

Graph clustering has been studied extensively in the
literature (see [13] for a survey). Regardless of whether all
nodes are assigned to a cluster or not, clustering algorithms can
be broadly categorized into two categories: global and local.
Popular global methods are based on spectral clustering [14],
which are “cut-based” methods which partition data using
eigenvectors of the adjacency matrix. Other examples of pop-
ular global clustering methods include multi-level partitioning
approaches like Metis [15] and Graclus [16]. Local clustering
algorithms, on the other hand, typically start from individual
nodes and build dense clusters bottom-up by examining adja-
cency lists. Examples of such algorithms can be found in [17].

Graph clustering for egocentric data In previous
work [18], we study graph-representations of egocentric video
data, and compare different graph clustering algorithms for
such data. In [18], we show why standard clustering methods,
specifically, spectral clustering [14] and multi-level graph par-
titioning (Graclus) [16], perform poorly and are not suited to
the problem. To overcome some of the problems with spectral
clustering and Graclus, we proposed a local density clustering
scheme. Detailed comparisons between the different clustering
schemes is presented in [18], and not the focus of this work.

The previous work primarily focused on static databases.
Here, we consider the scenario where the database is constantly
growing, as more data is streamed to a server. To this end, we
propose an Incremental Local Density Clustering (ILDC) algo-
rithm, which learns salient objects and scenes, in a completely
unsupervised manner, as more data is added to the database.
The proposed scheme scales to very large databases, while
other popular graph clustering schemes like spectral clustering
and Graclus are either not feasible for large data, or cannot be
applied to streaming data.

Note that the proposed incremental clustering scheme in
this work is an extension of the LDC scheme proposed
in [19]. We choose [19] as the starting point, as it was one

of the top-performing clustering algorithms used for detecting
dense sub-graphs in networks, as summarized in the recent
survey [20], outperforming several other schemes based on
Markov clustering, spectral clustering, partition-based clus-
tering and density-based clustering. The focus of this paper
is not to demonstrate that the proposed clustering scheme
is best-suited for the task, as much as demonstrating how
the proposed architecture allows elegantly adding data to a
growing database. We wish to demonstrate that for image-
retrieval applications, the performance of the ILDC system
comes close to that of a system, which has all the data available
at once. Other incremental clustering schemes can also be used
to prune the database for the retrieval task in hand.

The outline of this paper is as follows. In Section III, we
first discuss the data sets used in this work. Next, in Section IV,
we briefly discuss how the graph is constructed, and present
the proposed graph clustering algorithm for streaming data.
Finally, in Section V, we present retrieval results.

III. DATA SET

To capture the “visual memory” of a user, we wish to have
a series of autobiographical videos captured by a user. We use
a BH-906 spy-camera for collecting data, which is worn over
the ear like a blue-tooth ear piece. The BH-906 has a short
battery life: as a result, each video segment is typically less
than half an hour. The camera has limited field of view, and
captures data at VGA resolution (640 × 480) at 30 frames per
second. The data set consists of over 10 hours of video data
captured over a week. To avoid long segments of video with no
activity (as would be typical of a work-day spent in a cubicle),
we select 1-2 hours of interesting activity per day, capturing a
wide variety of content. Typical activities include commuting
from home to work (bus or train), walking around the office,
eating food at the pantry, manipulating objects of interest,
shopping and meeting colleagues. The data consists of plenty
of rapid motion, and captures a typical week in a person’s
life. The data is highly redundant, as would be typical of such
autobiographical data. To the best of our knowledge, this is
one of the largest autobiographical video data sets currently
available, with over 1M frames per user, and captured over

one week. Different users are made to wear cameras to show
that the proposed algorithms generalize across user data. The
dataset will be made available on our website [21].

IV. GRAPH REPRESENTATION AND CLUSTERING

A. Graph Representation

We use Content Based Image Retrieval (CBIR) tech-
niques [10] for building a graph based representation. Each
node in the graph denotes a video frame, and two nodes
are connected if they have a geometric transform between
them. We sub-sample the video data by 10× (resulting in 3
frames per second), as it suffices to capture rapid motion in
the data. Other frame-rates can also be used to build the graph,
but this parameter provides a good trade-off between search
complexity and memory. The data set consists of ∼100K
frames after subsampling.

The technique used for graph construction is similar
to [10]. For local features, we extract Difference-of-Gaussian
(DoG) interest points, and SIFT feature descriptors. Finding
the best feature descriptor for this task is outside the scope of
this work - we use SIFT feature descriptors as it serves the
task well [?] We use a Bag-of-Words (BoW) retrieval pipeline
for discovering matching frames. For the BoW querying step,
features are quantized using the TSVQ, and an Inverted File
System (IFS) is used to obtain a ranked list of relevant images.
Following IFS ranking, Geometric Consistency Checks (GCC)
are performed on a set of top candidates using RANSAC with
a homography model. Up to 500 images are considered in the
GCC step. The post GCC threshold is set to 12, which results
in very low false positives.

For constructing the graph, each of the frames is queried
into the BoW framework, incrementally. Edges are added to
the graph as matches are found. We set edge weight to 1 or
0, based on whether or not frames match. Such a graph is
typically very sparse, compared to the total number of possible
edges O(N2), where N is the number of nodes. For the
collected data set, we have 100K nodes, and 6M edges.

To motivate the need for dense subgraph detection, we per-
form connected component analysis on the constructed graph
data. A typical image collection would have small groups
of connected components that correspond to an individual
object [12]. In Figure 2, we plot the percentage of data covered,
against the number of connected components, for the collected
data set. The largest connected component in the data has more
than 90K nodes, and covers close to 90% of the data.

Typical subgraphs and substructures in the underlying data
are shown in the evolving graph representations in Figure 1.
Intuitively, a chain in the data corresponds to rapid motion
along a path, where only adjacent frames are linked to each
other. Paths taken repeatedly would result in multiple chains
merging. Cliques or dense sub-graphs correspond to individual
objects or scenes, that repeat in the data. For more details about
typical graph structures in egocentric data, we refer readers
to [18]. Since connected component analysis yields little
insight into the data, we need more sophisticated algorithms
to detect dense subgraphs from the data, which we then use
for exploiting data redundancy.

0 500 1000 1500 2000
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Connected Components

C
u
m

u
la

ti
v
e
 C

o
v
e
ra

g
e
 (

%
)

Coverage of data vs. number of connected components

Fig. 2. We note that close to 90% of the data is covered by a single connected
component in the graph representation for egocentric video data. This is not
only because of the contiguous nature of video data, but also because of the
high level of redundancy in scenes and objects seen by the user.

B. Graph Local Density Clustering

Given a graph G = (V,E), the degree of a node v ∈ V
is the number of edges connecting to v in G (i.e., the number
of v’s neighbors), written as deg(v,G). The density of G is

defined as den(G) = 2×|E|
|V |×(|V |−1) . In addition, given two node

set VA and VB , Sim(VA, VB) is defined as follows to measure
the similarity or redundancy between them [19],

Sim(VA, VB) =
|VA ∩ VB |

2

|VA| × |VB |
. (1)

In this section, we introduce our framework for Incremental
Local Density Clustering (ILDC). Assume that GC is the
egocentric data we already received and GN is the data newly
coming. We first review a local density clustering (LDC)
algorithm proposed in prior work [19], [18], for generating
clusters from GC and GN , denoted as C and N , respectively.
In order to generate the clusters on the whole data (i.e., GC

plus GN), we do not directly cluster the whole graph using
LDC. Instead, we update the clusters in C and N by exploring
the connections between the clusters in C and N as new data
arrives: this is key to scaling gracefully as the size of the
database grows.

1) Local Density Clustering on Data Blocks: In [18],
we proposed a Local Density Clustering algorithm (LDC) to
generate clusters on each data block, based on the clustering
algorithm called COACH proposed in [19]. [19] was one of
the top-performing clustering algorithms used for detecting
dense sub-graphs in networks, as summarized in the recent
survey [20], outperforming several other schemes based on
Markov clustering, spectral clustering, partition-based cluster-
ing and density-based clustering.

We briefly discuss the three main steps of the LDC al-
gorithm in Algorithm 1. First, we form a set of preliminary
clusters, PC, from the neighborhood graphs of all the nodes
in an egocentric data block in Line 1 (preliminary clustering
step). Preliminary clusters are chosen in a greedy fashion using
a fast algorithm, based on local neighborhood density, and are
likely cluster candidates. Readers are referred to [19] for a
precise definition of preliminary clusters.

Second, since preliminary clusters in PC may overlap
with each other, we filter redundancy among these preliminary

clusters in Lines 2-8. In particular, we construct a redundancy
graph, denoted as RG = (VRG, ERG,W), where the super
node set VRG = {Ci|Ci ∈ PC} consists of the preliminary
clusters. The super edge set ERG = {(Ci, Cj)|Ci, Cj ∈
VRG, Sim(Ci, Cj) ≥ ω} links two super vertices if two pre-
liminary clusters are deemed to be overlapping or redundant.
In addition, the weighting function W demonstrates the density
for each preliminary cluster, i.e., W (Ci) = den(Ci). In this
redundancy graph RG, we iteratively select the cluster with
highest density (in Line 5), and remove this cluster and its
neighbors (in Line 6) until RG is empty. At this point, we
have a set of clusters FC where there is no overlap among
clusters.

Third, LDC also incorporates a step to expand clusters by
including more nodes (in Lines 9-11). Given a cluster Ci ∈
FC, we include nodes v into Ci if |D(v, Ci)|/|Ci| ≥ t. Here,
|D(v, Ci)| is the number of nodes in Ci that connect to v and
|D(v, Ci)|/|Ci| is the fraction of nodes in Ci connecting to v.

Algorithm 1 A Local Density based Clustering LDC

Input: Data block Gk of the egocentric data.
Output: FC, the final set of clusters.

// preliminary clustering step
1: generate preliminary cluster PC from Gk;

// redundancy filtering step
2: construct RG = (VRG, ERG,W) from PC;
3: FC = φ, i = 0, Ti = RG ;
4: while V (Ti) 6= φ do

// select a vertex vi with the highest density
5: vi = arg max

u∈V (Ti)
W (u);

// update Ti: remove vi and its neighbors
6: Ti+1 = Ti − (NTi

(vi) ∪ {vi}), i = i+ 1;
7: FC = FC ∪ {vi};
8: end while

// expanding step
9: for each Ci ∈ FC do
10: ∀v, if |D(v, Ci)|/|Ci| ≥ t, do Ci = Ci ∪ {v};
11: end for

2) Incremental Local Density Clustering: In this work,
we propose an incremental clustering algorithm for growing
databases, as is the case for streaming egocentric data. Assume
C is the set of current clusters detected from past egocentric
data (e.g., data blocks G1, · · · , Gt) and N is the set of
clusters detected from newly received egocentric data (e.g.,
data block Gt+1), we incrementally update the set of clusters
C as follows.

First, we expand clusters in C by including appropriate
nodes from N . Given a cluster Ci ∈ C, we include a node v ∈
V (N) into Ci if |D(v, Ci)|/|Ci| ≥ t. This expanding operation
is important as clusters in C may overlap with those in N , and
the expansion step captures some of these correlations.

Second, given a cluster Ni ∈ N , we define
MaxSim(Ni) = maxCj∈C Sim(Ni, Cj) as the maximum
Sim score between Ni and clusters in C. If MaxSim(Ni) <
Tsim, we update C by adding Ni as a new cluster. Otherwise,
we either merge Ni with some cluster in C or discard Ni based
on the heuristic in Algorithm 2.

Algorithm 2 Updating Clusters in C

Input: C, the set of current clusters;
N , the set of newly detected clusters;

1: rank the clusters in C and N based on their density;
2: for Cj ∈ C do
3: for Ni ∈ N do
4: if Sim(Cj , Ni) ≥ Tsim do
5: if Sim(Cj , Ni) ≥ Tmerge do
6: Cj = Cj ∪Ni //merge
7: end if
8: N = N −Ni //discard Ni

9: end if
10: end for
11: end for

For cluster Ni, we merge it with cluster Ci if their
similarity Sim(Cj , Ni) ≥ Tmerge (in Lines 5-6)and we
discard Ni when Tsim ≤ Sim(Cj , Ni) ≤ Tmerge. Here, we
set Tsim to 0.2 while Tmerge is set to 0.3: parameters that
work well. Thus, ILDC Algorithm 2 proposed here, clusters
graph data incrementally by performing greedy operations like
cluster expansion, cluster addition and cluster merging.

3) Representative nodes: The images in the same clusters
detected by ILDC and LDC tend to be the same scene or
object. The egocentric data are thus highly redundant and we
are motivated to prune such redundancy in the database for
further applications (e.g., image retrieval). Here, we identify
representative nodes for each cluster to prune data. For a
cluster, we define its representative nodes as the minimum node
cover [25]. The minimum node cover is a well-known NP-
complete problem and we use a greedy heuristic to compute
the minimum node cover for representative nodes[25], [18].

There are two parameters for the LDC and ILDC algo-
rithms: ω and t. ω represents the extent to which clusters are
allowed to overlap: ω is set to 0 to obtain non-overlapping
clusters. t represents how dense each cluster is: higher the
t, higher the average cluster density, and smaller the average
cluster size. With LDC and ILDC, not all nodes in the graph
are labelled as belonging to a cluster. On running LDC over the
entire data set, we obtain ∼6K clusters, with a high percentage
(0.7 to 0.9) coverage of the nodes, as t is varied from 0.1 to
0.9. t = 0.5 results in good performance, where individual
clusters correspond to a single scene or object typically. Next,
we show that ILDC clustering works comparably to clustering
the entire data set at once (batch clustering).

C. Comparison between batch clusters and incremental clus-
ters

In this section, we measure the overlap between incre-
mental clusters and batch clusters based on metrics such as
Precision, Recall defined in Equation 2.

P =
|{c|c ∈ IC, ∃b ∈ BC,Sim(c, b) ≥ Tsim}|

|IC|
,

R =
|{b|b ∈ BC, ∃c ∈ IC, Sim(c, b) ≥ Tsim}|

|BC|
, (2)

(3)

(LDC)

(GC)

Fig. 3. Examples of images from Graclus (GC) and LDC clusters containing
the same scene (store-front). LDC clusters belong to the same scene seen at
eye-level, while the corresponding Graclus clusters (GC) contains a wide range
of scenes (connected through chains).

In Equation 2, Precision, P , shows the fraction of in-
cremental clusters that are matched by at least one batch
cluster and Recall, R, is the fraction of batch clusters that
are matched by at least one incremental cluster. In particular,
the neighborhood affinity score, Sim(c, b) in Equation 2, is
defined in Equation 1 to determine how well two clusters b
and c match each other, i.e., we consider that b and c match
if Sim(c, b) is larger than or equal to a pre-defined threshold
Tsim.

For the ILDC scheme, egocentric data is divided into 10
blocks, with ∼10K nodes in each block. The ILDC algorithm
is robust to the choice of block size - we choose 10K nodes
per block as it provides good trade-off in speed and accuracy.

When Tsim = 0.2, as discussed earlier, we find that Pre-
cision and Recall are 0.934 and 0.881. This means, 88.1% of
batch clusters match incremental clusters, where two clusters
are considered to match each other when their Sim score
>= Tsim. This implies that our proposed incremental graph
clustering scheme comes close to the performance of the batch
local density clustering scheme.

D. Qualitative Comparisons

Finally, we also show some qualitative results comparing
ILDC and Graclus [16], another popular graph clustering al-
gorithm. Graclus is a multi-level graph partitioning algorithm,
and is based on repeated coarsening and refinement with
emphasis on balanced cuts. Graclus is a replacement to the
popular spectral clustering [14] as it is faster and avoids the
expensive eigenvector computation step: spectral clustering is
infeasible for the size of the graph in our data set [18] due
to the eigen value decomposition step. We choose a similar
number of clusters for the Graclus algorithm.

In Figure 3, we highlight a typical failure scenario for
Graclus (and hence other graph-partitioning based) clustering
schemes. Ideally, we would like each cluster to belong to a
single object or scene. ILDC clusters typically correspond to
a single scene or object, as the clusters are built bottom-up
using a cluster density measure. Graclus, being a top-down
clustering algorithm, finds plenty of clusters which lack any
coherence. Objects connected through long chains often end up
in the same cluster, and chains are highly common in the data,
as shown in Figure 1, due to the nature of the egocentric video
data. This problem can be attributed to the cut-based metric
used for partitioning, which often forces incorrect partitions
of the data. Finally, note that even Graclus does not work on

Fig. 4. The top row consists of queries. The bottom row shows matching
frames retrieved from the egocentric video collection. Note that motion blur,
partial object coverage due to limited field of view, large variation in view
point and widely varying lighting conditions, make the retrieval problem
challenging.

streaming data, and would not scale well, even if we were to
increase the data size by another order of magnitude.

V. RETRIEVAL EXPERIMENTS

Since egocentric data is highly redundant, we would like to
aggressively prune the database while maintaining high recall.
By retaining information in dense sub-graphs, we can prune
the database and exploit redundancy in the data. We query
100 objects or scenes, with the collected egocentric videos as
the database, using the same pipeline described in Section IV.
Example query images and matching database frames are
shown in Figure 4. In Figure 5, we plot recall (precision = 1,
the threshold on the number of matches post RANSAC results
in negligible false positives) against the percentage of data
retained for different pruning schemes:

• Uniform. The points 10−1, 1, 10, 100 in Figure 5 corre-
spond to picking every 1000th, 100th, 10th and every
frame (entire database) respectively.

• LDC-Batch (P1). We use LDC with parameters discussed
in Section IV. The entire data set is processed as one block.
The number of clusters in the data is ∼6000. We only retain
the representative nodes in each cluster. Starting from LDC,
we prune clusters based on the cluster density measure. We
retain representative nodes in the highest ranked clusters by
cluster density, in increments of 1000 till all representative
nodes are chosen.

• LDC-Batch (P2). In addition to PLDC-P1 pruning, we
prune (1) clusters that are small (threshold=5) (2) clusters
where all frames are closely spaced in time, by consid-
ering a threshold on the standard deviation of timestamps
normalized by cluster size (threshold=0.6 works well).

• Graclus-P1. We apply Graclus clustering with 10K parti-
tions. Similar to LDC-P1, we retain representative nodes in
the highest ranked clusters by cluster density in increments
of 1000, till all representative nodes in the 10000 clusters
are chosen.

• Graclus-P2. In addition to Graclus-P1, we prune clusters
based on criteria used in PLDC-P2.

• ILDC (P1). We use the same pruning as LDC (P1). The
difference between ILDC (P1) and LDC-Batch (P1) is that
data are processed incrementally using the proposed ILDC
algorithm in Section IV. The data are divided into 10
blocks.

• ILDC (P2) We use the same pruning as LDC (P2). The
difference between ILDC (P2) and LDC-Batch (P2) is that

data are processed incrementally as discussed previously.

10
−1

10
0

10
1

10
2

20

30

40

50

60

70

80

90

Percentage of data retained

R
e

c
a

ll
(%

)

Uniform

LDC−Batch (P1)

ILDC (P1)

LDC−Batch (P2)

ILDC (P2)

Graclus (P1)

Graclus (P2)

Fig. 5. Comparing different pruning schemes. Pruning based on the proposed
ILDC scheme comes close to performance of the LDC scheme. For ILDC

(P1), we achieve 90% of peak recall by retaining only 1% of the data, with
a significant 18% improvement over naive uniform sampling.

First, we note that the maximum performance is achieved
for the right-most point on the Uniform curve, corresponding
to the entire database. There is a small drop in performance
(2-5%) when we consider every 10th frame, but performance
drops drastically when we sub-sample by a factor of 10× and
100×. Second, we note that the LDC based pruning schemes
outperform their Graclus counterparts consistently, while also
performing significantly better than Uniform. Compared to
Graclus, the LDC schemes provide up to a 15% improvement
in performance. Third, the ILDC schemes come close to the
performance of their LDC counterparts. This shows that the
incremental clustering scheme works as well as the case when
all the data is available. As a result, the proposed ILDC scheme
can be used to scale to massively large databases. Fourth, the
P2 pruning scheme gives an improvement over the P1 pruning,
suggesting that clusters that have diverse time-stamps contain
more salient data. Also, the same clustering parameters are
used across data sets, which shows that the chosen clustering
parameters generalize, and are not sensitive to any one users’
life-logging pattern.

Finally, consider peak performance on the ILDC curves: we
can achieve 90% of peak recall of Uniform, while retaining
only 1% of data: an increase of 18% in recall compared
to Uniform. In conclusion, the ILDC scheme is effective in
finding salient data in the database, as streaming data arrives
at the server. The proposed ILDC pruning schemes can be used
for maintaining an online cache of the most important database
data, and can be used to significantly speed up retrieval time,
compared to querying the entire database.

VI. CONCLUSION

In this work, we propose representing streaming egocentric
video data as a continuously evolving sparse-graph represen-
tation. In such a graph representation, nodes are individual
frames of the video, and there is an edge between frames that
have a valid geometric transform. We propose an incremental
local density clustering algorithm, which learns salient objects
and scenes as data is incrementally added to the server. The
proposed representation is used to exploit redundancy in the

egocentric video data. For image-retrieval applications, by
retaining only representative nodes from dense sub graphs from
the streaming data source, we show we can achieve 90% of
peak recall by retaining only 1% of data.

REFERENCES

[1] A. P. N. Jojic and V. Murino, “Structural Epitome: A Way to Summarize
One’s Visual Experience,” in Proceedings of NIPS, Vancouver, Canada,
December 2010.

[2] J. G. Y.J.Lee and K. Grauman, “Discovering Important People and
Objects for Egocentric Video Summarization,” in Proceedings of CVPR,
June 2012.

[3] X. R. A. Fathi and J. M. Rehg, “Understanding Egocentric Activities,”
in Proceedings of International Conference on Computer Vision (ICCV),
2011.

[4] A. Fathi, X. Ren, and J. M. Rehg, “Learning to Recognize Objects in
Egocentric Activities,” in Proceedings of CVPR, Providence, RI, June
2011.

[5] X. Ren and M. Philipose, “Egocentric Recognition of Handled Objects:
Benchmark and Analysis,” in Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) Workshops, Miami,
FL, June 2009.

[6] J. S. O. Aghazadeh and S. Carlsson, “Novelty Detection from an
Egocentric Perspective,” in Proceedings of CVPR, Colorado, June 2011.

[7] X. Ren and C. Gu, “Figure-Ground Segmentation Improves Handled
Object Recognition in Egocentric Video,” in Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), SFO,
CA, June 2010.

[8] J.-H. Lim and S. Liu, “Extended Visual Memory for Computer Aided
Vision,” in CogSci Proceedings, Boston, Massachusetts, June 2011.

[9] J. Ellson, E. Gansner, L. Koutsofios, S. North, G. Woodhull, S. De-
scription, and L. Technologies, “Graphviz open source graph drawing
tools,” in Lecture Notes in Computer Science. Springer-Verlag, 2001,
pp. 483–484.

[10] K. Heath, N. Gelfand, M. Ovsjanikov, M. Aanjaneya, and L. J. Guibas,
“Image Webs: Computing and Exploiting Connectivity in Image Col-
lections.” in Proceedings of CVPR, SFO, California, June 2010.

[11] N. S. I. Simon and S. Seitz, “Scene Summarization for Online Image
Collections,” in Proceedings of ICCV, Rio de Janeiro, Brazil, October
2007.

[12] J. Philbin and A. Zisserman, “Object Mining using a Matching Graph
on Very Large Image Collections,” in Proceedings of ICVGIP, 2008.

[13] S. E. Schaeffer, “Survey: Graph clustering,” Comput. Sci. Rev., vol. 1,
no. 1, pp. 27–64, Aug. 2007.

[14] U. von Luxburg, “A Tutorial on Spectral Clustering,” Statistics and

Computing, vol. 17, no. 4, pp. 395–416, 2007.

[15] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359–392, 1998.

[16] Y. G. I. Dhillon and B. Kullis, “Weighted Graph Cuts without EigenVec-
tors,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 29, no. 11, pp. 1944–1957, November 2007.

[17] V. Lee, N. Ruan, R. Jin, and C. Aggarwal, “A Survey of Algorithms
for Dense Subgraph Discovery,” in Managing and Mining Graph Data,
ser. Advances in Database Systems, C. C. Aggarwal and H. Wang, Eds.
Springer US, 2010, vol. 40, pp. 303–336.

[18] V. Chandrasekhar, W. Min, L. Xiaoli, C. Tan, B. Mandal, L. Liyuan,
and L. J. Hwee, “Efficient Retrieval from Large-Scale Egocentric Visual
Data Using a Sparse Graph Representation,” in Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), Workshop on Egocentric Vision, 2014.

[19] M. Wu, X. Li, C.-K. Kwoh, and S.-K. Ng, “A core-attachment based
method to detect protein complexes in ppi networks,” BMC bioinfor-

matics, vol. 10, no. 1, p. 169, 2009.

[20] J. Ji, A. Zhang, C. Liu, X. Quan, and Z. Liu, “Survey: Functional
Module Detection from Protein-Protein Interaction Networks,” IEEE

Transactions on Knowledge and Data Engineering, vol. PP, no. 99, pp.
1–, November 2012.

[21] Egocentric Video Dataset, http://www1.i2r.a-star.edu.sg/ vijay.

[22] D. B. West, Introduction to Graph Theory. Prentice Hall, Upper Saddle
River, NJ, USA, 2nd edition, 2001.

