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Abstract

The essentiality of a gene or protein is important for un-
derstanding the minimal requirements for cellular survival
and development. Numerous computational methodologies
have been proposed to detect essential proteins from large
protein-protein interactions (PPI) datasets. However, only
a handful of overlapping essential proteins exists between
them. This suggests that the methods may be complemen-
tary and an integration scheme which exploits the differ-
ences should better detect essential proteins. We introduce
a novel algorithm, UniScore, which combines predictions
produced by existing methods. Experimental results on four
Saccharomyces cerevisiae PPI datasets showed that UniS-
core consistently produced significantly better predictions
and substantially outperforming SVM which is one of the
most popular and advanced classification technique. In ad-
dition, previously hard-to-detect low-connectivity essential
proteins have also been identified by UniScore.

1. Introduction

An essential protein (also known as lethal protein) is one
that renders the cell unviable upon its removal or lose of
functionality. Such proteins provide invaluable insights into
the minimal requirements for cellular survival and develop-
ment. Research experiments [11, 19, 20, 29, 31] have been
conducted with respect to the suggestion that essential pro-
teins evolve much slower than other proteins [16, 27], sug-
gesting that they play key roles in the basic functioning of
living organisms. Essential proteins are therefore an impor-
tant class of proteins to study for the defense against human
pathogens. In addition, essential proteins (or genes) have
also been found to be associated with human disease genes.
In a study on human gene morbidity [18], it was found that
there is striking similarity between human morbid genes
and the essential proteins of Drosophila melanogaster. In

another study [23], yeast deletion mutants were used to
identify 256 new human mitochondrial proteins with a five-
fold greater selection than gene expression analysis, show-
ing that it is possible to screen for human disease genes in
Saccharomyces cerevisiae. A recent study on the dominant
and recessive mutants of disease genes [7] also showed that
essential proteins tend to have higher correlation with dom-
inant genes.

Identification of essential proteins have significant impli-
cations in both basic and translational biological research.
However, high-throughput identification of essential pro-
teins has been difficult. Experimental methods for iden-
tifying putative essential proteins, such as creating condi-
tional knockouts, are not feasible for large-scale evaluation.
As a result, the essentiality profiles for a substantial num-
ber of genes are still unknown [13]. A recent cross species
study [9] on the protein-protein interaction (PPI) networks
of Saccharomyces cerevisiae, Caenorhabditis elegans, and
Drosophila melanogaster revealed significant associations
between protein evolution, centrality, and its gene essential-
ity. This suggests the usefulness of PPI networks as a data
source for in silico detection of essential proteins. In fact,
an earlier work [12] had already shown that it is possible
to use a connectivity (degree) measure for detecting essen-
tial proteins in PPI networks. Subsequently, other computa-
tional approaches such as Clustering Coefficient (CC) [30]
and Neighborhood Functional Centrality (NFC) [24] have
been devised to take advantage of the increasing availability
of PPI network data generated by large-scale experiments
(such as Yeast Two-Hybrid [6]) to detect essential proteins.

However, we have found that there was only a low over-
lap between the top ranked essential proteins detected by
different methods (Figure 1). On average, there were only
34 overlapping proteins in the top 100 essential proteins
predicted by any two methods for the four benchmark PPI
datasets.

In fact, the categories of biological functions performed
by the essential proteins predicted by different methods
were also quite distinct. For instance, the connectivity



Figure 1. Decreasing number of overlapping
proteins in the Top 100 essential proteins pre-
dicted by multiple computational methodolo-
gies.

measure [12] favored the discovery of lethal proteins with
“mitotic cell cycle and cell cycle control” and “fungal and
other eukaryotic cell type differentiation” functions. On the
other hand, NFC [24] has a preference for lethal proteins
with functions that can be broadly grouped as “translation”,
“replication”, and “transcription” categories. Furthermore,
existing methods (other than NFC) tend to identify essen-
tial proteins with high connectivity in PPI networks. In our
core reference list of essential proteins, 46.8% of the essen-
tial proteins actually have low connectivity (degree ≤ 5).
We will discuss on how our UniScore scoring scheme im-
proves the detection of low connectivity essential proteins
in Section 4.4.

Given that the current methods detect essential proteins
differently, better performance could be obtained by inte-
grating the results from different algorithms [5, 17]. This
involves producing a “better” ranking on the combined set
of candidates by merging the different rank orderings gen-
erated by the different methods. Typically, one assumes that
correctly ranked instances will be assigned similar positions
in multiple ranking methods. A higher weight is then as-
signed to rankers that tend to agree with the expert pool,
so that the influence of rankers that are less consistent with
the rest is reduced [17]. However, this approach will not
work in our case as the level of agreement between essen-
tial protein ranking methods is low as illustrated in Fig-
ure 1. Furthermore, the existing algorithms assign scores
with very low granularity, resulting in many proteins with
similar scores. The connectivity method, for instance, sim-
ply scores proteins with the number of interaction partners.
Ranking of such similarly scored proteins is inherently am-
biguous. This problem is aggravated by the fact that most
proteins have low connectivity (around 60% of the yeast
proteins in our datasets are of degrees ≤ 5).

To achieve a higher accuracy with the fusion of the re-
sults from the multiple detection methods for essential pro-
teins in PPI networks, we need to address the following two
difficulties: 1) Each method represents predictions made us-
ing information of rather different nature; 2) The scores as-
signed by each method can differ in both scale and range.
In this paper, we propose a novel algorithm UniScore to
combine predictions made by different methods for essen-
tial protein prediction. Our algorithm takes into account
that essential proteins of different functions may be better
detected by different methods. By using a common bench-
mark to reweigh the predictions made by each method as a
probability, we devise a probabilistic approach to integrate
the predictions made by each individual method. Our exper-
imental results show that UniScore is able to achieve signifi-
cantly better performance in essential protein detection than
any methods being integrated across different datasets.

2. Method

The primary task of the UniScore algorithm is to aggre-
gate the scores of multiple methods for essential protein de-
tection. The input to the UniScore algorithm consists of a
set of proteins P, biological functions F and ranking meth-
ods R. The UniScore algorithm comprises of three phases.
In the first phase, we populate each protein with their Gene
Ontology [1] functional annotations such that a protein an-
notated with a term f ∈ F will also be annotated with all the
ancestor terms of f in the ontology. In the second phase,
for each function f ∈ F and each method r ∈ R, we com-
pute the probability that a protein is essential given that it
has a function f and is assigned a certain score by method
r. In the third and last phase, we compute a unified score
for each protein based on the probabilities computed in the
second phase.

2.1. Function Annotation

Functional annotations are usually organized in hierar-
chical structures such as a Direct Acyclic Graph (GO) or
a Tree (MIPS). Annotations in hierarchical structures fol-
low the “true path” rule [4] – a protein annotated with a
functional term is also annotated with all its ancestor terms.
While this is implied implicitly, annotations from databases
usually only provide the most specific annotations. In the
first phase of the UniScore algorithm, we make sure that all
functional annotations are appropriately propagated.

Definition 1 For each protein p ∈ P , let Fp represents the
set of functions annotated to p where Fp ⊆ F .

Definition 2 For each Fp, we compute its superset F ′p by
including the ancestors of each function F ∈ Fp into Fp.



F ′p = Fp ∪
⋃

f∈Fp

Af

where Af is the set of ancestors of function f.

2.2. Unified Weighting Scheme

Each input method assigns a score to each protein during
prediction. However, as mentioned previously, the reliabil-
ity of each method, as well as the range and scale of the
scores they assign to proteins can differ. Furthermore, as
each method uses a different kind of information for pre-
dicting the essentiality of a protein, they may work better
for proteins with certain biological functions.

In this phase, we estimate the likelihood that protein p
is essential given the observation that a method r assigns a
score s to p with function f. To do this, we can examine all
proteins that are assigned scores s by method r, and have
function f in the training data and compute the fraction of
these proteins that are essential. However, the scores as-
signed by each prediction method may not be discrete, and
there may not be many proteins that are assigned the same
score. Thus, it is necessary that we first group proteins with
similar scores together.

2.2.1 Grouping proteins with similar scores

Proteins with function f that are assigned similar scores by
a ranking method r are grouped into groups of at least size
µ in the following way:

1. Sort the set of proteins Pf with function f, based on the
ranking score

2. From the list of sorted proteins, p0, ..., pn, we create a
new group Grf

0 , and insert p0, ..., pu−1 into Gr
0 (first

insert µ members into a initial group). Continue to in-
sert the proteins Pµ+k, 0 ≤ k < n− µ− k, into Grf

0

as long as Sk(pµ+k) = Sk(pµ−1) (then add new mem-
bers if their scores are equal to the last member in the
initial group).

3. Starting from Pµ+k, create a new group Grf
1 and repeat

step 2.

4. If the last group Grf
m has a size smaller than µ, it is

merged with Grf
m−1.

The target here is to provide the same value for each en-
tity found within the same group as the difference between
their scores are small. This will fulfill our initial intention
of discretizing the scores.

2.2.2 Computing the confidence of each protein group

The likelihood that a protein p is essential given that it is
annotated with function f and is assigned score Sr(p) by
ranking method r, is then computed by:

Pp(essential|f, Sr(p)) =

∑

p∈Grf
k

Essential(p)

|Grf
k |+ 1

(1)

where Essential(p) returns 1 if p is an essential protein,
0 otherwise; Grk

k is the group of proteins with function f
in which Sr(p) belongs to. It computes the fraction of the
proteins in each group that are essential.

We estimate the likelihood that a protein p is essential
given that it is assigned score Sr(p) by ranking method r,
as:

Pp(essential|Sr(p)) = max
f∈F ′p

(Pp(essential|f, Sr(p)))

(2)
This is the maximum value from equation (1) among all

functions of p.

2.3. Integrating the confidences of multiple methods

Finally, we compute the likelihood that a protein p is
essential given that it is assigned score Sn(p) by multiple
methods ri(i = 1, ..., n) using a Bayesian based approach:

Pp(essential) = 1−
∏

r∈R

(1− Pp(essential|Sr(p))) (3)

A higher support value will indicate a higher probability
that protein p is essential.

3. Experimental Data

To evaluate the performance of our proposed UniScore
algorithm, we perform predictions on the essentiality of
proteins from Saccharomyces cerevisiae (Bakers’ Yeast),
as it has been well characterized by knockout experiments
(from which our core reference list of essential proteins was
derived). S. cerevisiae has also been widely used in existing
works on computational inference and evaluations of essen-
tial proteins [9, 12, 13, 23, 30].

3.1. Datasets

Protein-protein interactions: We used four publicly
available Saccharomyces cerevisiae PPI datasets for eval-
uation and name them according to the method/source that



they were obtained from: Filtered Yeast Interactions — FYI
[10], Nature [12], Bu [3], and BioGRID [22]. Details on
each dataset are presented in Table 1.

The first dataset FYI is a high-quality (reliable) but
sparse yeast interaction dataset with minimal false positive
interactions [10]. The Nature dataset is also spare; we have
included it in our experiments as it was used by the pre-
vious work on validating the connectivity measure [12] for
essential protein prediction. The third dataset Bu, originally
compiled for function prediction [3], is a relatively larger
network with 3 times as many interactions as the previous
two datasets. The fourth dataset BioGRID (version 2.0.33)
was downloaded from BioGRID [22], giving a more recent
PPI dataset derived from various biological experiments.
We pre-processed the datasets by removing self-interacting
interactions and isolated protein pairs. For the functional
annotation of the proteins, we used functions classified as
biological process by GO (submitted 29/03/2008) [1].

Table 1. Details of the four protein interaction
datasets used in our evaluation experiments.

# Proteins # Essential # Interactions
FYI 1210 (958) 464 (333) 2400
Nature 1638 (1490) 369 (312) 2201
Bu 2224 (1531) 670 (349) 6609
BioGRID 4914 (2108) 992 (174) 37826

Note: Italicized numbers in brackets represents proteins
with connectivity ≤ 5.

Essential Proteins: For evaluation, we used a bench-
mark list of 1, 106 known essential proteins for Saccha-
romyces cerevisiae [8]. This set of essential proteins
was derived experimentally using PCR-based gene deletion
strategy [2, 26]. We will refer to this list as the core refer-
ence list of essential proteins.

3.2. Existing Ranking Methods

To show the power of integrating multiple prediction
methods, we used four previously published essential pro-
tein detection method, and one unpublished method to train
our model. The methods are Degree [12], Clustering Coeffi-
cient (CC) [30], Neighborhood Functional Centrality (NFC)
[24], and Functional Diversity (FD).

The Degree method was based on the fact that the essen-
tiality of a protein is positively correlated to its connectiv-
ity (or degree) in the protein interaction network [12]. The
Clustering Coefficient method quantifies the probability of
two interacting proteins that are also interacting with a sim-
ilar third protein [30]. The Neighborhood Functional Cen-
trality is a measure which takes into consideration the func-
tional role a protein plays in terms of its surrounding neigh-

borhood [24]. The Functional Diversity method is based
on the assumption of essential proteins performing the role
of multi-functional components within a protein interaction
network:

Definition 3 For each protein p, FD is computed as fol-
lows:

FD(p) =
1∑

i=1 |Fp|
∑

j=i+1

|Fp|RSS(fi, fj) (4)

where RSS(fi, fj) returns the relative relative speci-
ficity similarity score between two functions fi and fj [28].

The FD method was not published due to poorer per-
formance when compared to NFC. However, we observed
that the FD method can detect different essential proteins.
We therefore include it in this experiment to show that our
UniScore algorithm can take advantage of multiple predic-
tion methods even if some of the individual methods are not
amongst the best.

4. Results

For evaluation, we first compare our UniScore algorithm
against the individual ranking methods. We employ the fol-
lowing standard statistical measures: Receiver Operating
Characteristic (ROC) curves and the corresponding Areas
under the ROC Curve (AUC) values, and Recall vs. Pre-
cision curves, to evaluate the performance of each method
(Section 4.1). Next, we investigate the effect of group size
on the performance of UniScore (Section 4.3). Lastly, we
investigate the sensitivity of each method in detecting low-
connectivity essential proteins, and how UniScore can sig-
nificantly improve the performance (Section 4.4).

For our experiments, we used a ten-fold cross-validation
to train and determine the weight for each ranking method.
The results presented are obtained with the size of each
group µ set to be 0.5% of the entire protein population in
each dataset. Implications with regard to the change in per-
formance due to group size are covered in Section 4.3.

As UniScore is an integrative method, we choose to
compare its performance against Support Vector Machines
(SVM) [25] where the score of each method is treated as a
feature. We use the default parameters of SVMperf [15] and
the results shows that UniScore is much better than SVM in
essential proteins detection (Section 4.2).

4.1. Prediction Performance

UniScore is used to combine the predictions from four
ranking methods, namely, Connectivity, Clustering Coeffi-
cient (CC), Neighborhood Functional Centrality (NFC), and
Functional Diversity (FD). The prediction performances of



UniScore, as well as the individual ranking methods are
then evaluated against the core reference list of essential
proteins.

Table 2. AUC for predictions made using UniS-
core, Connectivity, SC, CC, NFC, and FD

FYI Nature Bu BioGRID
Connectivity 60.6% 61.0% 66.0% 72.8%
CC 55.8% 58.6% 58.7% 67.0%
NFC 70.4% 74.7% 77.4% 74.8%
FD 55.8% 59.7% 61.3% 60.9%
SVM 71.0% 74.8% 78.2% 76.4%
UniScore 81.5% 82.8% 82.5% 82.8%

As shown in Table 2, UniScore is on average 8.1%
higher than NFC in terms of AUC value, the best of the
individual methods. The results clearly demonstrate that in-
tegrating the multiple ranking strategies with UniScore can
improve the predictions significantly.

Figure 2 presents the ROC curve for each computa-
tional method on all four experimental datasets. Through
the graph, we can see a clear gap in terms of performance
between UniScore and all other methods. A similar per-
formance is also illustrated in Figure 3 where UniScore
once again demonstrated its proficiency at detecting essen-
tial proteins. We can clearly see that UniScore has consis-
tently excelled in lethal protein predictions across datasets
of varying size and quality.

4.2. Comparison with SVM

Each computational method produces a value which de-
scribes a specific characteristic of the interaction neighbor-
hood of the protein. As such, each computational value
can be regarded as a feature associated with the protein.
This features can be used as input to various classifiers such
as Support Vector Machines (SVM) [25], Decision Trees,
Neural Networks, etc. In this paper, we compare UniScore
against SVM which has proven to be one of the best classi-
fiers in many application domains.

Each of the four computational values (Connectivity,
CC, NFC, FD) are assembled into a feature vector for each
protein and used as an input to SVM. For our experiments,
we used SVMperf [15] (version 2.10), which is the high
performance version of the popular SVMlight [14] imple-
mentation. Through empirical experimentations, we found
the best performance by setting the parameters c = 20.0
(trade-off between training error and margin), and l = 10
(optimize the results for ROC measure which is our basis
for comparison). The corresponding results are included
in Table 2. SVM is able to achieve a higher prediction as

compared to each individual method (mixed results when
compared against NFC), UniScore is still able to achieve a
higher accuracy of 10.5%, 8.0%, 4.3%, and 6.4% for FYI,
Nature, Bu, and BioGRID respectively. Which indicates
our technique can be effectively used to predict the essen-
tial proteins.

4.3. Group Size

Recall that UniScore uses a parameter µ to determine
the size of each individual group (Section 2.2.1). Generally,
a smaller µ provides higher granularity during the weight
estimation, but runs a risk of getting a less accurate esti-
mate for the confidence of each group, and vice versa. To
study the effect of µ on the performance of UniScore, we
evaluate the performance of UniScore on the four protein-
protein interaction datasets with different µ values ranging
from 0.25% to 5% of the total number of proteins. The cor-
responding AUC scores are presented in Table 3. Among
the µ values that we have experimented on, µ = 0.5 and
µ = 0.25 results in the best prediction performance across
all four datasets. The mean deviation of the resulting AUC
values is between 1.29% to 1.84%. We can thus see that
while the size chosen for µ has some effect on the AUC
scores of the predictions made by UniScore, it is not crucial
to the performance of UniScore.

Table 3. AUC for predictions made using UniS-
core with a different µ (as a percentage of the
number of proteins) values on four datasets

FYI Nature Bu BioGRID
µ=5 76.0% 78.7% 78.7% 78.4%
µ=4 78.9% 79.3% 78.8% 78.4%
µ=3 78.5% 80.3% 78.7% 78.9%
µ=2 79.1% 80.8% 79.5% 80.6%
µ=1 81.8% 82.1% 81.8% 79.8%
µ=0.5 81.5% 82.8% 82.5% 82.8%
µ=0.25 81.5% 82.3% 83.2% 84.5%
Mean
Deviation 1.70% 1.29% 1.75% 1.84%

4.4. Low connectivity proteins

As we can see from Table 1, a significantly large pro-
portion (61.0% on average) of proteins in the PPI datasets
are of low-connectivity (i.e. number of interaction partners
≤ 5). An average of 46.8% of the essential proteins in our
core reference list also has low connectivity in the underly-
ing PPI networks, even in denser PPI networks such as Bu
and BioGRID. Essential proteins with low-connectivity are
special in that although their involvement in the network is



Figure 2. ROC curves for predictions made using UniScore, Connectivity, CC, NFC, and FD on the
four different datasets.

low, their presence and functionality is vital to cellular sur-
vival and development. This also implies their potential as
drug targets as they have bigger impact with less disruption
to the underlying PPI network. Low-connectivity proteins
are largely missed out by current connectivity-based detec-
tion method except the NFC which was shown to better de-
tect the low-connectivity essential proteins than the existing
methods [24].

Table 4. Number of low-connectivity essential
proteins (degree ≤ 5) detected by UniScore
and NFC (italicized numbers in brackets) for
each dataset in the top N ranked proteins

FYI Nature Bu BioGRID
50 32 (4) 29 (11) 22 (2 1 (0)
100 61 (16) 59 (33) 37 (3) 1 (0)
150 89 (31) 87 (50) 52 (10) 2 (2)
200 105 (45) 107 (67) 67 (19) 4 (2)

Table 4 shows that a further improvement in the predic-
tion of low-connectivity essential proteins can be achieved
with UniScore. In fact, UniScore was able to detect some
of those essential proteins with connectivity of 1 which

had been near impossible to be detected by all the exist-
ing methods. Through the fusion of various scores with
UniScore, we now have the following numbers of puta-
tive connectivity-1 essential proteins detected: FYI (9), Na-
ture (12), Bu (5) in the top 100 predicted essential proteins.
There were no connectivity-1 essential proteins detected in
BioGRID – this could be due to the relatively small number
(174 of low connectivity essential proteins in that particular
dataset as shown in Table 1).

5. Discussion & Conclusions

We introduced UniScore, a probabilistic method that in-
tegrates the predictions from multiple essential protein pre-
diction methods to achieve better predictions. Results from
the extensive experiments showed that UniScore performs
much better than the individual methods, confirming that
integrating different ranking strategies can indeed provide
better results. In addition, we also showed that UniScore
was able to predict low-connectivity essential proteins much
better than existing methods. Low-connectivity essential
proteins may be of special interest as drug targets as they
can potentially bring about bigger impact with minimal
side-effects.



Figure 3. Precision vs Recall curves for predictions made using UniScore, Connectivity, CC, NFC,
and FD on the four different datasets.

Although we have successfully integrated the scores of
each prediction method, we did not completely resolve lim-
itations of each method. The characteristics of proteins that
are highly ranked with UniScore is dependent on the set of
prediction methods chosen. A good selection on the set of
methods to be used in UniScore will help ensure proteins
are scored based on relevant characteristics.

Given that the essentiality profiles of yeast genes are not
complete [13], many of the false positives in the high rank-
ing essential proteins predicted by UniScore may be novel
essential proteins. Some of these proteins could also be part
of a larger essential component (e.g. a complex) that re-
quires multiple deletion/mutation to result in lethality. To
test this hypothesis, we performed a preliminary investiga-
tion on the relation between the UniScore value of a pro-
tein and its likelihood to be associated with synthetic lethal-
ity. We obtained the list of synthetic lethality interactions
from BioGRID (version 2.0.33). We then grouped proteins
based on discretized UniScore values from 0 to 0.9 in steps
of 0.1 and computed the fraction of proteins in each group
that were associated with synthetic lethality. The results are
displayed in Figure 4. We observed that the highly scored
proteins are more likely to be involved in synthetic lethal-
ity, which provided some affirmation on our earlier suspi-

cion. This suggests that our predictions can also identify to
a certain extend proteins that are part of an essential pair of
proteins.

Figure 4. Distribution of the number of pro-
teins identified by known synthetic lethality
screens against discretized ranges of UniS-
core scores.

In this work, we have focused on essential protein pre-
diction methods using the PPI data. It is possible that



other types of biological data can also be exploited to de-
tect essential proteins. For instance, comparative genomics
studies have revealed conservation of essential proteins
across species such as Saccharomyces cerevisiae and Sac-
charomyces mikatae [21], suggesting evolution information
can be useful in the detection of essential proteins.

As future work, it would be interesting to see how this
information, as well as other prediction methodologies from
heterogenous data sources, can be integrated with UniScore
for the prediction of essential proteins.
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