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Abstract—The deployment of a sensor node to manage a group
of sensors and collate their readings for system health monitoring
is gaining popularity within the manufacturing industry. Such a
sensor node is able to perform real-time configurations of the in-
dividual sensors that are attached to it. Sensors are capable of ac-
quiring data at different sampling frequencies based on the sensing
requirements. The different sampling rates affect power consump-
tion, sensor lifespan, and the resultant network bandwidth usage
due to the data transfer incurred. These settings also have an im-
mediate impact on the accuracy of the diagnostics and prognos-
tics models that are employed for system health monitoring. In this
paper, we propose a novel adaptive classification system architec-
ture for system health monitoring that is well suited to accommo-
date and take advantage of the variable sampling rate of sensors.
As such, our proposed system is able to yield amore effective health
monitoring system by reducing the power consumption of the sen-
sors, extending the sensors’ lifespan, as well as reducing the resul-
tant network traffic and data logging requirements. We also pro-
pose an ensemble based learning method to integrate multiple ex-
isting classifiers with different feature representations, which can
achieve significantly better, stable results compared with the indi-
vidual state-of-the-art techniques, especially in the scenario when
we have very limited training data. This result is extremely impor-
tant in many real-world applications because it is often imprac-
tical, if not impossible, to hand-label large amounts of training
data.

Index Terms—Adaptive classifiers, classifiers, data driven diag-
nostics and prognostics, ensemble learning, sensor data classifica-
tion.

ACRONYMS AND ABBREVIATIONS

ACS adaptive classification system

CV cross-validations

FFT fast Fourier transform

KNN k-nearest neighbors

KNN for frequency domain

KNN for time domain
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LIBSVM library for support vector machines

MFS Machinery Fault Simulator

MLP multilayer perceptron

MLP for frequency domain

MLP for time domain

RMS root mean squared

SVM support vector machine

SVM for frequency domain

SVM for time domain

WSN wireless sensor network

NOTATION

number of models

binary value: 1 if model outputs machine state
, and 0 otherwise

F-measure, or the harmonic mean of precision
and recall

kurtosis value

estimated accuracy of model performed on
machine state

peak value

root-mean-squared value

number of machine states

final machine state prediction

standard deviation

confidence score of model performed on
machine state

I. INTRODUCTION

A DVANCEMENTS in wireless sensor network (WSN)
technology have allowed a wider adoption and appli-

cation of sensory networks. Currently, we are harnessing the
capability of such WSN configurations to collect invaluable
monitoring data both in the indoor as well as outdoor environ-
ments.
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The indoor environment in this case refers to locations such
as a manufacturing shop floor [1]–[3], a home for the elderly [4],
[5], and healthcare environments [6], [7]. In such environments,
sensors are deployed, and the readings collected by the sensors
serve as the basis for studying and analyzing the current health
of the system or subject. One good example of such amonitoring
scenario would be the large-scale deployment of sensors in the
manufacturing shop floor. The data collected in this case con-
tain signals and important information about the machine health
status and operating conditions. On the contrary, outdoor moni-
toring systems frequently involve the collection of outdoor envi-
ronment variables like atmospheric readings. Two examples are
the detection of rainfall-induced landslides [8], and avalanche
forecasting via the continuous monitoring of the snow coverage
[9].
The data collected from the sensors provide an entry point

for the prognostics and health management community and data
mining community to perform study and in-depth analysis to ob-
tain insights into a particular process. The readings produced by
the sensors provide a wealth of information for knowledge ex-
traction, modeling, analysis, and intelligent prediction as well
as decision making. There has been a substantial amount of re-
search conducted in diagnostics and prognostics based on sensor
data [1]–[7], [10]–[14]. In most of these studies, sensors are usu-
ally set to sample their readings at a predefined sampling rate.
It is important to note that having a constant sampling rate is
a prerequisite for most data modeling and analysis methods as
it ensures time consistency and similar data distributions in the
collected samples.
Our previous research into machine fault diagnostics for the

manufacturing shop floor has led us to the conclusion that a
higher sampling rate would usually yield better diagnostics per-
formance [1]. However, in practice, when the machines are run-
ning under a healthy state, it is not necessary to collect the
sensor readings at such a high sampling rate. More often than
not, higher sampling rates are required only when anomalies or
faults occur during the machine’s operation, to provide the di-
agnostics system with enough information for fault isolation,
analysis, and identification.
Moreover, a higher sampling rate would consequently result

in higher energy consumption by the sensors. Direct correla-
tion between the sampling rate and the energy consumption of
sensors has been well established [15]–[18]. In any WSN ar-
chitecture (whether indoors or outdoors), sensors are typically
powered through batteries. This approach in turn constrains the
sensor lifespan and capability. It has actually been reported that
the energy constraint is the main factor preventing the full ex-
ploitation of WSN technology [19].
One of the directions of WSN research is thus to improve

the power efficiency of the sensors. One common approach is
to allow the sampling frequencies to be adaptive as different
levels of granularity of information are required in different sit-
uations [8], [9], [16], [20]. Exploring the use of such an adap-
tive sampling rate is a logical approach as it reduces the power
consumption of the sensors, and thereby extends the lifespan
and usability period of the sensors. On top of this, it also means
that only the necessary amount of data are collected, stored, and
transmitted, thus freeing up network bandwidth.

On the other hand, such an adaptive sampling rate generates
a new set of challenges for existing data modeling and anal-
ysis methods. Existing models largely work on a consistent data
sampling rate.With an adaptive sampling rate, the models might
work under certain scenarios and assumptions, but their perfor-
mance will be unpredictable. In this paper, we introduce a novel
Adaptive Classification System (ACS) architecture that is de-
signed to cater for as well as actively adapt the sampling fre-
quencies of the sensors, while maintaining the fault identifica-
tion performance of the health monitoring system.
In summary, our ACS is constructed as follows. First, a set of

pre-determined sampling rates, low and high, is identified, and
models are trained on data collected based on these predefined
sensor sampling frequencies. Next, a set of controls is set-up to
screen the monitoring results of the models based on the cur-
rent sampling rate. Lastly, the monitoring results could trigger
change in the sampling rate of the sensor as necessary, and in
turn, each change in the sampling rate could also trigger change
in the model employed to monitor the data. This ensures that a
high sampling rate of sensor data is only collected and utilized
when necessary.
The adoption of our ACS model provides a more logical, so-

phisticated mechanism to adapt the sampling frequencies of the
sensors. It allows for more advanced condition monitoring para-
digm, and for suitable architecture to be configured to adapt the
sensors’ sampling frequencies based on the perceived system
status. In addition, it fulfills the need and requirements of re-
ducing the power consumption and network bandwidth utiliza-
tion.
Note that previous research on machine fault diagnostics em-

ployed traditional supervised learning techniques for classifica-
tion that typically rely on large amounts of labeled examples
from predefined classes for their learning process.. In practice,
this approach is not practical because collecting and labeling
large sets of data for training are often very expensive if not im-
possible [23]. Sometimes, the data from a certain class of prob-
lems could be rare because most of the time machines operate
under normal conditions (denoting the normal class), and only
a few examples (representing machines breaking down, or the
defective class) are available to train a model to recognize an
abnormal status [24]. As such, we also propose an ensemble
based learning method to find an optimal solution for the real
situations where we have only a small set of training data.
We observe that the proposed ensemble based classifier

offers our ACS system much better performance measures
compared to the individual traditional state-of-the-art clas-
sifiers such as multilayer perceptron (MLP), support vector
machine (SVM), or k-nearest neighbors (KNN). This result
occurs because, through combining the outputs of several clas-
sifiers, we are able to minimize the potential bias and risk of
individual predictions, and the expected errors by our ensemble
approach can be expected to be reduced. One similar example
in a real life medical diagnosis domain is that people consult
many doctors before undergoing major surgery, and then based
on their diagnosis they can get a fairly accurate diagnosis.
The rest of the paper is organized as follows. Section II

describes some of the state-of-the-art sensor-based monitoring
methodologies. We investigate their performance measures in
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utilizing sensor readings of different sampling rates. We also
discuss the pros and cons of real-time sampling rate adjustment
of the sensors. Section III presents a detailed description of the
architectural design of our proposed ACS model that aims to
address the issues and harness the power of adaptive sensor
sampling rate. We also describe our ensemble learning method
in details. In Section IV, a use case scenario is presented to
demonstrate the applications of our ACS model as well as
illustrate the effectiveness of our proposed techniques through
comprehensive experiments. Finally, Section V concludes this
paper.

II. EXISTING APPROACH

Themain procedure for sensor-based data modeling and anal-
ysis is summarized as follows. 1) Suitable sensors (vibration,
temperature, humidity, etc.) are selected and strategically posi-
tioned on the subject of study. 2) The sensors are then configured
to operate at a suitable sampling rate along with other sensing
parameters. 3) The layout of the sensor network is then drawn
up to decide on locations, which might contain the critical in-
formation for monitoring purposes. 4) Data are then accumu-
lated over a period of time, and stored for study and analysis.
5) Preprocessing (e.g. fill in missing values, smooth noisy data,
identify or remove outliers, and resolve inconsistencies) [22]
and signal transformation are performed via algorithms such as
Fast Fourier Transform (FFT) for frequency domain analysis, or
other time and time-frequency based analysis to obtain features
that can be used to construct the data models and classifiers.
6) Training of the selected models and classifiers would then
take place. 7) Results and performance measures of the models
are then analysed and studied, together with the subject matter
experts, to derive insights into the process, to understand the
underlying fault behavior of the system, or to even exploit the
knowledge discovered to optimize the manufacturing process.
Some common scenarios of applications that are based on the

above-mentioned approaches are in manufacturing, healthcare
systems, home for the elderly, aerospace, disaster prediction and
prevention, and intelligent transportation systems. To date, most
of such applications employ a constant setting of sensor param-
eters, including the sensor’s sampling rate. While this approach
is acceptable for short monitoring duration, it is not desirable
when monitoring is to be performed over an extended contin-
uous period of time.
The lack of sensor’s sampling rate adaptation would signify

1) an increase in the power consumption, 2) a reduction in the
sensor lifespan, and 3) an increase in the network traffic incurred
to transfer the collected data. There has been consistent effort to
address these three problems by the WSN research community.
Such works are important as some sensors are due to be placed
in environments where it is impossible to connect them to a
power source.
To address the issues mentioned above, we propose a novel

ACS architecture for system health monitoring. We will intro-
duce our proposed ACS architecture in details in the next sec-
tion. An example of the useful applications of ACS would be
the sensor-based monitoring of the machines in a manufacturing

Fig. 1. Setup of Adaptive Classification System. Classifier #1 differentiates
between 0—Normal and 1—Faulty states. Classifier #2 differentiates among
0—Normal, Status 1—Inner fault, Status 2—Outer fault, Status 3—Ball fault,
and Status 4—Combination fault.

process. In such cases, if the machine is not in operation (pow-
ered off, idle, or under maintenance) or in a functional condi-
tion, it would be desirable to either switch off the sensors, or to
sample sensor readings at a significantly lower sampling rate.
Sensors powered by alternative power sources (e.g. batteries)

would have a limited life span. To assure the functionality of
sensors, periodic checks and maintenance are needed. For the
scale of the sensor deployment environments such as hi-tech
manufacturing, the sheer effort required to maintain the sensors
is tremendous. Thus, if a sensor works at a relatively low sam-
pling rate under a normal status, and only increases the sampling
rate when necessary, extending its lifetime and lowering its cost
can be achieved. Due to these needs and requirements, we be-
lieve that there will be an increase in the adoption of WSN with
adaptive sampling rates. It is therefore imperative that a suit-
able modeling and monitoring system is developed which will
not only react to the changes in the sensor’s sampling rate but
also to take advantage of it.

III. PROPOSED SOLUTION

This section presents our proposed solution: the ACS archi-
tecture. ACS reacts to different sampling rates, and reaps the
benefits of the adaptive sensor sampling rate as applied in aman-
ufacturing environment.
In the existing studies on the adaptive sensor sampling rate

strategy [9], [15]–[20], the changes in the sampling rate of the
sensors are mostly governed by a predefined rule based system.
Such an arrangement is not suitable for complexmonitoring sce-
narios or sensor setup, as the decision to change the sensors’
sampling rate is logically dependent of the predefined rules, and
not representative of the actual machine conditions.
Rather than designing the whole system as a reactive system,

which switches the models to be used according to the sensors’
sampling rate, our ACS model adopts a proactive approach. In
our model, the required sampling rate of the sensors is decided
by the monitoring output of the model. This design is signifi-
cantly different from the existing approach. Each of the models
and classifiers embedded within the ACS will provide a mon-
itoring and classification result based on the sensor readings.
One scenario is illustrated in Fig. 1. In this setup, we employ
two models, namely classifier #1 and classifier #2, where clas-
sifier #1 is trained with a low sampling rate data, but classifier
#2 is trained with a high sampling rate data.
While the machine is in a normal state, the sensors would

be sampling at a lower rate. The first classifier #1 is to be used
at times when the sampling rate is low, and its task is to mon-
itor and classify machine conditions among two states, namely,
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0—Normal, and 1—Faulty. When this classifier #1 outputs a
monitoring result of 1, which corresponds to a faulty state, it
prompts the sensor node to switch to the higher sampling rate to
trigger the in-depth investigations. This approach not only al-
lows more detailed information to be collected, it also allows
detailed fault identification to be performed by the second clas-
sifier.
This second classifier #2 differentiates among Normal, fault

status 1: Inner Race fault, fault status 2: Outer Race fault,
fault status 3: Ball fault, and fault status 4: Combination fault.
Here the combination fault has combined three different faults,
namely, inner race fault, outer race fault and ball fault. This de-
tailed analysis and identification of fault is only possible when
the model has been trained with data with higher granularity.
When the fault has been rectified and the machine returned to
normal state, the ACS will inform the sensor node switch back
to a lower sampling rate.
By assigning the control of changing the sampling frequen-

cies to our ACS model, we allow a more sophisticated, precise
diagnostic process on when to intelligently change the sampling
frequencies. In addition, whenever necessary, the models and
classifiers can be trained to provide in-depth monitoring and
analysis of machine health status like in the case of the second
model. With this functionality, the proposed ACS model can
lower the network traffic and power consumption. Thus, the
model can extend the usability lifespan of battery-powered sen-
sors when applied to real-world applications, such as contin-
uous health-monitoring of aerospace equipment (engines, bear-
ings, gear boxes etc), to enable the assessment of system status
and prevent catastrophic failures. In addition, manufacturing
also needs to equip sensors to collect data for monitoring the
system health to prevent machines from breakdown. Other ap-
plications include disaster monitoring systems (e.g. fire alarm),
patient health monitoring, and environmental monitoring (for
chemical plant accidents, air and water quality), etc.
Another useful feature that can be incorporated within our

system would be a feature to allow for asynchronous alert sys-
tems for the end users based on the monitoring results. As the
monitoring results are captured and sent to the sensor node for
sampling rate adjustment, messages can also be sent to web ser-
vices or other devices to notify the end users of the machine
status accordingly. This ability also enables other more fac-
tory-specific alert actions such as messaging, lighting control,
and alarms to be activated based on machine health status.
In ASC, one challenge is how to build the accurate models

and classifiers. Typically, supervised learning methods are
applied to learn these models from labeled training data.
As discussed in the Introduction section, current supervised
learning methods for fault diagnostics have to rely on the suffi-
cient training examples to build accurate classifiers. However,
obtaining large amounts of training data can be a labor-inten-
sive, time-consuming process, and it also highly depends on the
expertise of domain experts. Thus, in many real-world applica-
tions, we have to face the challenge of learning with the limited
training examples. In this paper, we build our ensemble-based
classifier which integrates multiple state-of-the-art classifiers
such as MLP, SVM, KNN, etc., where each of them can be
trained using the features extracted from the raw sensor signals.

To minimize the bias and risk of individual classifiers, we in-
troduce an ensemble based learning method to our ACS model.
The strategy of the ensemble systems is to create many classi-
fiers, and combine their outputs such that the combination im-
proves upon the performance measures of single classifiers. The
intuition is that if each classifier makes different errors, then a
strategic combination of these classifiers can reduce the total
error. The overall principal in ensemble systems is therefore
to make each classifier as unique as possible, particularly with
respect to misclassified instances [25]. In this paper, our en-
semble-based ASC model is built by integrating multiple, di-
verse classifiers, i.e. MLP, SVM, KNNmodels for time domain,
and MLP, SVM, KNN models for frequency domain, and con-
sists of two steps, i.e., compute confidence scores, and integrate
for prediction.
For each machine state , the confidence score of a model

is computed as

(1)

This estimated accuracy can be computed using the training
data with -fold cross-validations (CV). In particular, in an
-fold CV, we can randomly divide the training data into
equal partitions; and each time, one partition is reserved

for testing, and the remaining partitions are used for
computing accuracy for that particular round. This process
can be repeated times until each partition has been used as
a test partition once. By averaging the accuracies, a good
estimation of can be computed. Note that the higher the
confidence score , the more confident the classifier can be
used to classify the state .
The confidence scores computed in the first step indicate that

some classifiers are more qualified than others in classifying a
particular data set. In the following step, we integrate the clas-
sifiers by accumulating the voting. During the voting, we will
take the confidence scores into consideration. In particular, the
final machine state prediction of our ensemble system
is the state that satisfies

(2)

We will show in our experiments that the proposed ensemble
based classifier indeed achieves much better performance mea-
sures compared to the individual traditional state-of-the-art clas-
sifiers.
The next section will discuss and evaluate the performance of

our ACS model, as well as ensemble learning method based on
data collected from sensors operating under varying sampling
rates.

IV. USE CASE SCENARIO

In this section, we present use-case scenarios employed
to validate the effectiveness of our proposed system. In
Section IV-A, we explain our experimental setup, data col-
lection process, various feature extraction methodologies,
and learning models and classifiers, as well as the evaluation
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Fig. 2. Main components of the MFS-Lite Fault Simulator.

metric. In Section IV-B, we perform comprehensive experi-
mental studies to investigate the classification performance
measures for binary classification, multi-class classifica-
tion, ACS without ensemble-based and with ensemble-based
learning for intelligent sensing machine fault diagnostics.

A. Experimental Setup, Data Collection, Feature Extraction,
Classification Model, and Evaluation Metric

1) Machinery Fault Simulator: Due to the lack of real ma-
chinery data to validate our proposed system, an industrial Ma-
chinery Fault Simulator (MFS) is employed in our study to gen-
erate the different sets of normal, idle, and faulty machine data.
The MFS that we employed is the MFS Lite from SpectraQuest,
which provides an innovative tool for studying signatures of
common machinery faults without having to compromise fac-
tory production or profits. MFS allows us to introduce various
faults, either individually or jointly in a controlled environment,
and is ideal as a test bed for our system.
The MFS setup is shown in Fig. 2. The hardware components

of the MFS consist of a motor, two balance rotors, speed con-
troller, tachometer display, and two bearing housings. To simu-
late the effect of different bearing faults, the good bearing of the
MFS is subsequently replaced with a known defective bearing.
Based on the bearing geometry, MFS provides the following
four types of faulty bearings: outer race defects (outer), inner
race defects (inner), ball spin defects (ball), and combined de-
fects (combination) faults.
Data Collection: In our data collection process, the sensors

are placed near the bearing housing of the defective bearing
to obtain the most pronounced fault signatures in the vibration
signal ( Fig. 3). Two channels of accelerometer readings,
which capture the horizontal and vertical vibration signals, are
acquired for each simulation. The fault simulations are done
in three different machine operating speeds: 800 rotations per
minute (rpm), 1780, rpm and 3600 rpm. For each machine
speed, 100 of 1 second window samples are collected under
three sampling frequencies: 256 Hz (low), 1024 Hz (medium),
and 5120 Hz (High). A one-second snapshot of the vibration
signals collected via the front right sensor is shown in Fig. 4.

Fig. 3. Experimental setup. The sensors are placed in the red circles respec-
tively.

Fig. 4. Snapshot of vibration signals collected via the right front channel.

In this study, we investigate the performance of the ACS,
which reacts to different sampling rates, and reaps the bene-
fits of the adaptive sensor sampling rate as applied to diagnose
faulty bearing conditions based on vibration data collected via
accelerometers. Five datasets, each representing different ma-
chine states (normal, ball fault, inner fault, outer fault, and com-
bination fault), are collected with different sampling rates for
each machine operating speed. This summed up into a total of
1500 seconds worth of sensor data; and among them, 50% of the
data are used for training the models and classifiers, and 50% of
the data are used for testing purposes. The data are subsequently
windowed for analysis. A one-second snapshot of the vibration
signals collected via the right front channel is shown in Fig. 4.
Feature Extraction: Vibration monitoring and analysis is a

commonly used technique for bearing fault detection. There
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Fig. 5. Frequency domain features for bearing detection.

are two main approaches to the analysis of bearing vibration
signatures: time-domain, and frequency-domain analyses
[21]. In time-domain analysis, four time-domain features
are extracted from the raw vibration signal to characterize
each of the bearing faults. They are peak value, kurtosis,
Root-Mean-Squared (RMS) value, and standard deviation.
They are computed as in (3) –(6).
1 Peak Value

(3)

2 Root-Mean-Square (RMS) Value

(4)

3 Standard Deviation

(5)

4 Kurtosis Value

(6)

These four features are chosen as they have been widely used
to characterize bearing faults in industrial machines [1].
The frequency-domain analysis approach, on the other hand,

involves examining the vibration spectrum to discover the pres-
ence of defect frequencies in the vibration signal [21]. In this
study, we calculate the band magnitude spectrum for each seg-
ment of the vibration signal, and use this as the set of features
for learning different machine states, as shown in Fig. 5. Specif-
ically, the raw vibration signal is first normalized to the [ 1, 1]
range using the formula

(7)

Fast Fourier Transform (FFT) is then used to transform the nor-
malized data from the time domain to the frequency domain.
Finally, the input signal in the frequency domain is transformed
into discrete band-magnitude features with the bandwidths of
32 Hz, 50 Hz, and 100 Hz.
ClassificationModels: For the data modeling andmonitoring

(classification) process, three classifiers are employed: MLP,
SVM, and KNN. Each classifier is applied to both the time-
domain and frequency-domain to build different classification

models for bearing fault detection. This results into six bearing
detection models, namely, MLP for the time domain ,
MLP for the frequency domain , SVM for the time do-
main , SVM for the frequency domain , KNN
for the time domain , and KNN for the frequency do-
main .
2) Evaluation Metric: In this study, we use the F-measure

to evaluate the performance measures of different classification
models. The F-measure is the harmonic mean of precision (de-
noted as ) and recall (denoted as ), and it is defined as

(8)

In other words, the F-measure reflects an average effect of both
precision and recall . The F-measure is large only when
both precision and recall are good. This is suitable for our pur-
pose to accurately classify each particular machine state. Having
either too small a precision or too small a recall is unacceptable,
and would be reflected by a low F-measure.
Note that in this paper we will compute the F-measure for

each class or machine state. We will report both the F-measure
for each class, as well as the average F-measure of all the classes
and states, which represents the overall performance measure.

B. Comprehensive Studies of Bearing Fault Detection

In this subsection, we perform comprehensive experiments
to evaluate the performance measures of four different types
of classification models: binary classification, multi-class clas-
sification, ACS system without ensemble-based learning, and
ensemble based ACS system for intelligent sensing machine
fault diagnostics. To provide a holistic picture of these tech-
niques, we build these models using different sampling rates
(low frequency 256 Hz, medium frequency 1024 Hz, and high
frequency 5120 Hz), with different machine operating speeds
(800 RPM, 1780 RPM, and 3600 RPM), and with different
feature representation methods (for both time domain and fre-
quency domain feature extractions). In each of the following
testing cases, the classification models are trained and evaluated
with data collected on their respective sampling frequencies.
1) Binary Classification: We investigate the performance

measures of the six trained models ( , , ,
, and ) when they are employed to detect

a machine-bearing’s binary conditions, i.e. whether the machine
is currently operating under a healthy condition, or whether a
fault or a combination of faults has happened. Therefore, for
the purpose of this study, all the faulty bearing states mentioned
above (i.e. outer, inner, ball, and combination faults) are com-
bined as a single label of “Defective” or “Fault” class, while the
normal state corresponds to the “Normal” class.
The three models’ detection and classification performance

measures of time domain models ( , , and
) for three machine operating speeds (800 RPM, 1780

RPM, and 3600 RPM), and three sampling rates (low, medium,
and high) are shown in Table I. We observe that both
and are able to achieve 100% of the F-measure for all
operation speeds with all sampling rates. This result indicates
that the healthy bearing condition is well differentiated with
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TABLE I
BINARY CLASSIFICATION PERFORMANCE MEASURES OF TIME DOMAIN MODE

TABLE II
BINARY CLASSIFICATION PERFORMANCE MEASURES OF FREQUENCY DOMAIN MODE

general defective conditions using time domain features. The
KNN based model , as expected, performed worse than
the other two strong classifiers and .
The other three models’ detection and classification per-

formance measures for frequency domain models ( ,
, and ) for three machine operating speeds (800,

1780, and 3600), and three sampling rates (low, medium, and
high) are shown in Table II. The three frequency domain models
obtain good results using high sampling rates, but present quite
poor results when we apply low sampling rates. Such results
are not surprising as some of the bearing faults can only be
discovered in the signals with high sampling rates.
2) Multi-Class Classification: Binary classification can only

distinguish between the machine’s normal and faulty states.
More often than not, in practice, we may need to identify
the specific types of the faults. As such, we investigate the
performance measures of the six models and classifiers in
recognizing the types of bearing faults. In particular, we have
five classes in our classification: normal, outer fault, inner fault,
ball fault, and combination fault. In this paper, we build the
multi-class classifiers for all three machine operating speeds
and all the three sampling rates. Note that the multi-class SVM
is implemented using the library for support vector machines
(LIBSVM) [26].
The evaluation results are shown in Tables III and IV for

time domain, and frequency domain modes respectively. Com-

pared to the classification models of time domain, the models of
the frequency domain with high sampling rates produce consis-
tently better classification results across three machine speeds.
In particular, SVM for the frequency domain model
with high sampling rates (5120 Hz) archives average F-mea-
sures of 99%, 99%, and 100% for the three machine speeds 800
rpm, 1780 rpm, and 3600 rpm, respectively, which are signifi-
cantly better than the results with low sampling rates, indicating
that a high sampling rate would yield better diagnostics perfor-
mance. We also observe that both and (MLP
and KNN with frequency domains) are able to achieve satisfac-
tory results using a high sampling rate (5120 Hz), while they are
slightly worse than the model.
3) ACS System Without Ensemble-Based Learning: In this

case study, we evaluate the performance of our ACS system
without ensemble-based learning, where the classification
system will adapt the sampling frequencies of the sensors
according to the observed machine condition. When the sam-
pling rate changes, the ACS will consequently employ the
corresponding classifier that is best suited for the sampling
frequencies to perform the next classification.
In our test case, when the machine is in the normal state,

the sampling rate of the sensors is set to be 256 Hz. The low
sampling rate time domain is trained to differentiate be-
tween the normal and faulty machine states. This classifier is
the one that has been trained in the binary classification study,
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TABLE III
MULTI-CLASS CLASSIFICATION RESULTS OF TIME DOMAIN MODE

TABLE IV
MULTI-CLASS CLASSIFICATION RESULTS OF FREQUENCY DOMAIN MODE

where it has an average of 100% in terms of the F-measure (see
Table I). When the machine condition has been identified to be
in a faulty state, the ACS will inform the sensor node to switch
to a higher sampling rate of 5120 Hz. Subsequently, the next
monitoring task will be executed by the appropriate model, in
this case the model, which is trained under a 5120 Hz
data sampling rate using frequency domain features.

From Table V, we can see that our ACS achieves very good
results with 100% F-measures for all machine states with a ma-
chine speed of 3600 rpms. In fact, only four numbers in Table V
are not 100%: for the outer faults, we have 97.4% for both ma-
chine speeds 800 rpm and 1780 rpm; for ball, and combination
faults we have 97.6% formachine speed 800 rpm, and 1780 rpm,
respectively. The overall average results are 99% for machine
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TABLE V
ADAPTIVE CLASSIFICATION RESULTS WITHOUT ENSEMBLE-BASED LEARNING

TABLE VI
CLASSIFICATION RESULTS OF THE PROPOSED ENSEMBLE BASED CLASSIFIER

speed 800 rpm, and 1780 rpm; and 100% for machine speed
3600 rpm.
Moreover, by applying the ACS system, we are able to ad-

dress the issues of 1) extending usability of battery powered
sensors via better power efficiency, 2) reducing network traffic
load, 3) allowing classifiers to maintain performance while sam-
pling frequency varies, and 4) allow for a better, higher level of
control system over the change in sampling rate via classifiers.
4) Ensemble Based ACS System: Finally, we study whether

our proposed Ensemble based ACS system can enhance the
classification results, especially when we have relatively less
training examples available. For this purpose, we changed the

percentages for training and testing in the first two columns in
Table VI. We listed the results of six individual classifiers and
our proposed ensemble basedmethod (represented by Ensemble
in Table VI) with different machine speeds (here we fixed the
medium sampling rate at 1024 Hz in our experiments). We ob-
serve that our proposed ensemble based method produces con-
sistently better classification results across threemachine speeds
compared to those of individual classifiers, regardless of the per-
centages of training and test data. When we have relatively less
training data, our proposed method can achieve bigger improve-
ments, indicating that we can effectively minimize the potential
bias and risk of individual classifiers, and thus reduce the ex-
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pected errors. For example, for the challenging situation with
5% training data and 95% test data, we can achieve 6.70%,
9.06%, and 10.89% better results than the second best models
for machine speeds 800 rpm, 1780 rpm, and 3600 rpm, respec-
tively.
In summary, the proposed ensemble based ACS model out-

performs individual methods in various training and test data
percentages in term of prediction accuracy, robustness, and sta-
bility. As pointed out in [25], the performance measure of an
ensemble system is not always better than that of the best indi-
vidual classifier. It mainly depends on two key components of
that ensemble system. They are the diversity of the individual
classifiers, and the strategy to combine the output of these clas-
sifiers. In this paper, the superiority of our proposed ensemble
based ACS model comes from its six diversity classifiers, as
well as our effective integration mechanism, which can reduce
the classification errors by eliminating the potential bias and risk
of individual classifiers.
Recall that we have employed -fold cross validation for es-

timating the confidence scores for each individual classifiers for
different states. Given that we could have very limited training
samples when the training percentage is small (e.g. 5%), we
choose a small to avoid tiny partitions in our implemen-
tation.

V. CONCLUSION

The deployment and usage of sensors for system health mon-
itoring are common and widespread in modern manufacturing.
Their main objective is to provide a non-intrusive method for re-
mote monitoring of machine performance. Hence, the reduction
in power consumption in sensor-based machine health moni-
toring is undoubtedly of exceptional benefit to the manufac-
turing domain.
With the decline in the cost, and technical barrier to the in-

stallation and setup of WSN, more sensors are being added and
deployed onto manufacturing floors. As the number of sensors
deployed increases, there is the need to maximize the usability
lifespan of battery powered sensors, and reduce the amount of
network traffic bandwidth consumed by the transmission of
sensor data.
The recent developments in the sensor community to address

the above-mentioned issues have generally moved in two main
directions. The first direction is to identify and create new al-
gorithms that allow for a reduction in sensors’ sampling rate
while maintaining the resolution and monitoring capability of
the system. The second approach attempts to establish the capa-
bilities of the sensor nodes to adapt the sampling frequencies of
its attached sensors according to the requirements.
In light of such recent developments, we have developed the

ensemble based ACS approach to take advantage of these latest
sensor capabilities. We have developed a system that integrates
various models and classifiers trained under different scenarios,
and adapt the sampling frequencies of the sensors according to
the observed machine status. We have also demonstrated the use
of such an ACS configuration in monitoring the health status
of a machine. The results produced have shown that such an
ACS configuration is able tomaintain the accuracies of its health

monitoring effort while at the same time reduce the sensors’
data rate, as compared to when a constant high sampling rate
is employed for the monitoring task.
As part of our future work, we will investigate the optimal set

of sensor’s sampling frequencies range for which models and
classifiers have to be trained on. It will be highly impractical
to require models to be trained at all possible sampling frequen-
cies. This effort is such that we will be able to avoid overloading
the ACS with too many models and classifiers.
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