
Learning to Identify Unexpected Instances in the Test Set

Xiao-Li Li
Institute for Infocomm

Research,
21 Heng Mui Keng Terrace,

Singapore, 119613
xlli@i2r.a-star.edu.sg

Bing Liu
Department of Computer

Science, University of Illinois at
Chicago, 851 South Morgan Street,

Chicago, IL 60607-7053
liub@cs.uic.edu

See-Kiong Ng
Institute for Infocomm

Rsearch,
21 Heng Mui Keng Terrace,

Singapore, 119613
skng@i2r.a-star.edu.sg

Abstract
Traditional classification involves building a clas-
sifier using labeled training examples from a set of
predefined classes and then applying the classifier
to classify test instances into the same set of classes.
In practice, this paradigm can be problematic be-
cause the test data may contain instances that do not
belong to any of the previously defined classes.
Detecting such unexpected instances in the test set
is an important issue in practice. The problem can
be formulated as learning from positive and unla-
beled examples (PU learning). However, current PU
learning algorithms require a large proportion of
negative instances in the unlabeled set to be effec-
tive. This paper proposes a novel technique to solve
this problem in the text classification domain. The
technique first generates a single artificial negative
document AN. The sets P and {AN} are then used to
build a naïve Bayesian classifier. Our experiment
results show that this method is significantly better
than existing techniques.

1 Introduction
Classification is a well-studied problem in machine learning.
Traditionally, to build a classifier, a user first collects a set of
training examples that are labeled with predefined or known
classes. A classification algorithm is then applied to the
training data to build a classifier that is subsequently em-
ployed to assign the predefined classes to instances in a test
set (for evaluation) or future instances (in practice).

This paradigm can be problematic in practice because
some of the test or future instances may not belong to any of
the predefined classes of the original training set. The test set
may contain additional unknown subclasses, or new sub-
classes may arise as the underlying domain evolves over
time. For example, in cancer classification, the training set
consists of data from currently known cancer subtypes.
However, since cancer is a complex and heterogeneous dis-
ease, and still a perplexing one to-date, it is likely that the test
data contain cancer subtypes that are not yet medically clas-
sified (they are therefore not covered in the training data).
Even if the training data do contain all the current cancer

subtypes, new subtypes may be formed at a later stage as the
disease evolves due to mutations or other cancer-causing
agents. This phenomenon is not uncommon even in the
seemingly simpler application domains. For example, in
document classification, topics are often heterogeneous and
new topics evolve over time. A document classifier built for
classifying say, computer science papers, would face the
similar problems as the cancer classifier described above.
This is because computer science is a heterogeneous and
increasingly cross-disciplinary domain; it is also a rapidly
evolving one with new topics being created over time.

Thus, a classifier created based on the notion of a fixed set
of predefined classes is bound to be inadequate in the com-
plex and dynamic real-world in the long run, requiring the
user to manually go through the classification results to re-
move the unexpected instances. In practice, a competent
classifier should learn to identify unexpected instances in the
test set so as to automatically set these unclassifiable in-
stances apart. In some applications, this can be important in
itself. For example, in the cancer example above, detection of
the unexpected instances can alert the scientists that some
new medical discovery (a new cancer subtype) may have
occurred.

In recent years, researchers have studied the problem of
learning from positive and unlabeled examples (or PU learn-
ing). Given a positive set P and an unlabelled set U, a PU
learning algorithm learns a classifier that can identify hidden
positive documents in the unlabeled set U. Our problem of
identifying unexpected instances in the test set can be mod-
eled as a PU learning problem by treating all the training data
as the positive set P and the test set as the unlabeled set U. A
classifier can then be learned using PU learning algorithms to
classify the test set to identify those unexpected (or negative)
instances before applying a traditional classifier to classify
the remaining instances into the original predefined classes.

However, as the current PU techniques operate by trying to
identify an adequate set of reliable negative data from the
unlabeled set U to learn from, they require a large proportion
of unexpected instances in the unlabeled set U to be effective.
In practice, the number of unexpected instances in the test
data can be very small since they are most likely to be arising
from an emerging class. This means that the classifiers built
with existing PU learning techniques will perform poorly due

to the small number of unexpected (negative) instances in U.
In this paper, we propose a novel technique called LGN

(PU Learning by Generating Negative examples), and we
study the problem using text classification. LGN uses an
entropy-based method to generate a single artificial negative
document AN based on the information in P and U, in which
the features’ frequency distributions correspond to the de-
grees of “negativeness” in terms of their respective entropy
values. A more accurate classifier (we use the naïve Bayesian
method) can be built to identify unexpected instances with
the help of the artificial negative document AN,. Experimental
results on the benchmark 20 Newsgroup data showed that
LGN outperforms existing methods dramatically.

2 Related Work
PU learning was investigated by several researchers in recent
years. A study of PAC learning from positive and unlabeled
examples under the statistical query model was given in
[Denis, 1998]. [Liu et al., 2002] reported sample complexity
results and showed how the problem may be solved.

Subsequently, a number of practical algorithms [Liu et al.,
2002; Yu et al., 2002; Li and Liu, 2003] were proposed. They
all conformed to the theoretical results in [Liu et al., 2002]
following a two-step strategy: (1) identifying a set of reliable
negative documents from the unlabeled set; and (2) building
a classifier using EM or SVM iteratively. Their specific
differences in the two steps are as follows. S-EM proposed in
[Liu et al., 2002] is based on naïve Bayesian classification
and the EM algorithm [Dempster, 1977]. The main idea was
to first use a spying technique to identify some reliable
negative documents from the unlabeled set, and then to run
EM to build the final classifier. PEBL [Yu et al., 2002] uses a
different method (1-DNF) to identify reliable negative ex-
amples and then runs SVM iteratively to build a classifier.

More recently, [Li and Liu, 2003] reported a technique
called Roc-SVM. In this technique, reliable negative docu-
ments are extracted by using the information retrieval tech-
nique Rocchio [Rocchio, 1971], and SVM is used in the
second step. In [Fung et al., 2005], a method called PN-SVM
is proposed to deal with the situation when the positive set is
small. All these existing methods require that the unlabeled
set have a large number of hidden negative instances. In this
paper, we deal with the opposite problem, i.e. the number of
hidden negative instances is very small.

Another line of related work is learning from only positive
data. In [Scholkopf, 1999], a one-class SVM is proposed. It
was also studied in [Manevitz and Yousef, 2002] and
[Crammer, 2004]. One-class SVM builds a classifier by
treating the training data as the positive set P. Those in-
stances in test set that are classified as negative by the clas-
sifier can be regarded as unexpected instances. However, our
experiments show that its results are poorer than PU learning,
which indicates that unlabeled data helps classification.

3 The Proposed Algorithm
Given a training set {ci} (i = 1, 2, …, n) of multiple classes,
our target is to automatically identify those unexpected in-

stances in test set T that do not belong to any of the training
classes ci. In the next subsection (Section 3.1), we describe a
baseline algorithm that directly applies PU learning tech-
niques to identify unexpected instances. Then, in Section 3.2,
we present our proposed LGN algorithm.

3.1 Baseline Algorithms: PU Learning
To recapitulate, our problem of identifying unexpected in-
stances in the test set can be formulated as a PU learning
problem as follows. The training instances of all classes are
first combined to form the positive set P. The test set T then
forms the unlabeled set U, which contains both positive in-
stances (i.e., those belonging to training classes ci) and
negative/unexpected instances in T (i.e., those not belonging
to any training class ci). Then, PU learning techniques can be
employed to build a classifier to classify the unlabeled set U
(test set T) to identify negative instances in U (the unexpected
instances). Figure 1 gives the detailed framework for gener-
ating baseline algorithms based on PU learning techniques.

1. UE = Φ;
2. P = training examples from all classes (treated as positive);
3. U = T (test set, ignore the class labels in T if present);
4. Run an existing PU learning algorithm with P and U to build a

classifier Q;
5. For each instance di ∈ U (which is the same as T)
6. Use a classifier Q to classify di
7. If di is classified as negative then
8. UE = UE ∪ {di};
9. output UE

Figure 1. Directly applying existing PU learning techniques

 In the baseline algorithm, we use a set UE to store the
negative (unexpected) instances identified. Step 1 initializes
UE to the empty set, while Steps 2-3 initialize the positive set
P and unlabeled set U as described above. In Step 4, we run
an existing PU learning algorithm (various PU learning
techniques can be applied to build different classifiers) to
construct a classifier Q. We then employ the classifier Q to
classify the test instances in U in Steps 5 to 8. Those in-
stances that are classified by Q as negative class are added to
UE as unexpected instances. After we have iterated through
all the test instances, Step 9 outputs the unexpected set UE.

3.2 The Proposed Technique: LGN
In traditional classification, the training and test instances are
drawn independently according to some fixed distribution D
over X × Y, where X denotes the set of possible documents in
our text classification application, and Y = {c1, c2, ..., cn}
denotes the known classes. Theoretically, for each class ci, if
its training and test instances follow the same distribution, a
classifier learned from the training instances can be used to
classify the test instances into the n known classes.

In our problem, the training set Tr with instances from
classes c1, c2, ..., cn are still drawn from the distribution D.
However, the test set T consists of two subsets, T.P (called
positive instances in T) and T.N (called unexpected / negative
instances in T). The instances in T.P are independently drawn

from D, but the instances in T.N are drawn from an unknown
and different distribution Du. Our objective is to identify all
the instances drawn from this unknown distribution Du, or in
other words to identify all the hidden instances in T.N.

Let us now formally reformulate this problem as a
two-class classification problem without labeled negative
training examples. We first rename the training set Tr as the
positive set P by changing every class label ci ∈ Y to “+” (the
positive class). We then rename the test set T as the unlabeled
set U, which comprises both hidden positive instances and
hidden unexpected instances. The unexpected instances in U
(or T) are now called negative instances with the class label
“−” (bear in mind that there are many hidden positive in-
stances in U). A learning algorithm will select a function f
from a class of functions F: X → {+, −} to be used as a
classifier that can identify the unexpected (negative) in-
stances from U. The problem here is that there are no labeled
negative examples for learning. Thus, it becomes a problem
of learning from positive and unlabeled examples (PU
learning). As discussed in the previous section, this problem
has been studied by researchers in recent years, but existing
PU techniques performed poorly when the number of nega-
tive (unexpected) instances in U is very small. To address
this, we will propose a technique to generate artificial nega-
tive documents based on the given data.

Let us analyze the problem from a probabilistic point of
view. In our text classification problem, documents are
commonly represented by frequencies of words w1, w2, ..., w|v|
that appear in the document collection, where V is called the
vocabulary. Let w+ represent a positive word feature that
characterizes the instances in P and let w- represent a nega-
tive feature that characterizes negative (unexpected) in-
stances in U. If U contains a large proportion of positive
instances, then the feature w+ will have similar distribution in
both P and U. However, for the negative feature w- , its
probability distributions in the set P and U are very different.
Our strategy is to exploit this difference to generate an ef-
fective set of artificial negative documents N so that it can be
used together with the positive set P for a classifier training
to identify negative (unexpected) documents in U accurately.

Given that we use the naïve Bayesian framework in this
work, before going further, we now introduce naïve Bayesian
classifier for text classification.

NAÏVE BAYESIAN CLASSIFICATION
Naïve Bayesian (NB) classification has been shown to be an
effective technique for text classification [Lewis, 1994;
McCallum and Nigam, 1998]. Given a set of training docu-
ments D, each document is considered an ordered list of
words. We use wdi,k to denote the word in position k of
document di, where each word is from the vocabulary V =
{w1, w2, ..., w|V |}. The vocabulary is the set of all words we
consider for classification. We also have a set of predefined
classes, C = {c1, c2, ..., c|C|}. In order to perform classifica-
tion, we need to compute the posterior probability, Pr(cj|di),
where cj is a class and di is a document. Based on the
Bayesian probability and the multinomial model, we have

 (1)

and with Laplacian smoothing,
 (2)

 ∑ ∑
where N(wt,di) is the count of the number of times that the
word wt occurs in document di and Pr(cj|di)∈{0,1} depend-
ing on the class label of the document.

Finally, assuming that the probabilities of the words are
independent given the class, we obtain the NB classifier:

 (3)

In the naive Bayesian classifier, the class with the highest

Pr(cj|di) is assigned as the class of the document.

GENERATING NEGATIVE DATA
In this subsection, we present our algorithm to generate the
negative data. Given that in a naïve Bayesian framework, the
conditional probabilities Pr(wt|-) (Equation (2)) are computed
based on the accumulative frequencies of all the documents
in the negative class, a single artificial negative instance AN
would work equally well for Bayesian learning. In other
words, we need to generate the negative document AN in such
a way to ensure Pr(w+|+) − Pr(w+|-) > 0 for a positive feature
w+ and Pr(w-|+) − Pr(w-|-) < 0 for a negative feature w-. We
use an entropy-based method to estimate if a feature wi in U
has significantly different conditional probabilities in P and
in U (i.e, (Pr(wi|+) and Pr(wi|-))). The entropy equation is:

 (4)
The entropy values show the relative discriminatory

power of the word features: the bigger a feature’s entropy is,
the more likely it has similar distributions in both P and U (i.e.
less discriminatory). This means that for a negative feature w-,
its entropy entropy(w-) is small as Pr(w-|-) (w- mainly occur-
ring in U) is significantly larger than Pr(w-|+), while en-
tropy(w+) is large as Pr(w+|+) and Pr(w+|-) are similar. The
entropy (and its conditional probabilities) can therefore in-
dicate whether a feature belongs to the positive or the nega-
tive class. We generate features for AN based on the entropy
information, weighted as follows:

(5)

If q(wi)= 0, it means that wi uniformly occurs in both P and
U and we therefore do not generate wi in AN. If q(wi) = 1, we
can be almost certain that wi is a negative feature and we
generate it for AN, based on its distribution in U. In this way,
those features that are deemed more discriminatory will be
generated more frequently in AN. For those features with q(wi)
between the two extremes, their frequencies in AN are gen-
erated proportionally.

We generate the artificial negative document AN as follows.
Given the positive set P and the unlabeled set U, we compute
each word feature’s entropy value. The feature’s frequency in
the negative document AN is then randomly generated fol-
lowing a Gaussian distribution according to q(wi) =
1-entropy(wi)/max(entropy(wj), wj∈V). The detailed algo-
rithm is shown in Figure 2.

∑ ∏
∏

= =

=

Ρ
|

,

)|(
jkd i

cw

∑+
=Ρ

||

1
)|(r),(1

)|(i ijit ddN
cw

= =

=

Ρ+

Ρ
||

1

||

1
)|(r),(||

r V

s

D

i ijis

D

jt
dcdwNV

cw

Ρ

ΡΡ
=Ρ ||

1

|

1 ,

||

1

r)(r

)|(r)(r
)|(r C

r

d

k rkdr

d

kj
ij i

i

i

c

cwc
dc

|*|)
}

log(Pr()Pr((
,{
∑

−+∈

www −=
c

iii ccentropy))

))((max
)(

1)(
||...,2,1 jVj

i
i wentropy

wentropy
wq

=

−=

||
)|(r

)(r
||

1

D
dc

c
D

i ij
j

∑ =
Ρ

=Ρ

1. AN =Φ;
2. P = training documents from all classes (treated as positive);
3. U = T (test set, ignore the class labels in T if present);
4. For each feature wi ∈ U
5. Compute the frequency of wi in each document dk freq(wi,

dk), dk ∈ U;
6. Let mean

,
||

),(

i

iwk

i
w

Dd
ki

w D

dwfreq∑
∈

=µ
where Dwi is the set of

documents in containing wi
7. Let variance ∑

∈

−
−

=
iwk

i

i

i
Dd

wki
w

w dwfreq
D

22)),((
)1|(|

1 µσ ;

8. For each feature wi ∈ V
9. Compute Pr(wi|+), Pr(wi |-) using Equation (2) assuming

that all the documents in U are negative;
10. Let ; ∑

−+∈

−=
},{

))|log(Pr(*)|Pr()(
c

iii cwcwwentropy

11. Let m = max(entropy(wj)), j =1, ..., |V|;
12. For each feature wi ∈ V
13.

m
wentropywq i

i
)(1)(−= ;

14. For j = 1 to ⎡|Dwi
15. Generate a frequency fnew(w

| * q(wi)⎤
i), using the Gaussian

distribution 2

2

2

)(

2
1

iw

iw

i

x

w

e σ

µ

πµ

−
−

16. AN = AN ∪{(wi, fnew(wi))}
17. Output AN

Figure 2. Generating the negative document AN

In the algorithm, Step 1 initializes the negative document
AN (which consists of a set of feature-frequency pairs) to the
empty set while Steps 2 and Step 3 initialize the positive set P
and the unlabeled set U. From Step 4 to Step 7, for each
feature wi that appeared in U, we compute its frequency in
each document, and then calculate the frequency mean and
variance in those documents Dwi that contain wi. These in-
formation are used to generate AN later. From Step 8 to Step
10, we compute the entropy of wi using Pr(wi|+) and Pr(wi|-)
(which are computed using Equation (2) by assuming that all
the documents in U are negative). After obtaining the
maximal entropy value in Step 11, we generate the negative
document AN in Steps 12 to 16. In particular, Step 13 com-
putes q(wi), which shows how “negative” a feature wi is in
terms of how different the wi’s distributions in U and in P are
⎯ the bigger the difference, the higher the frequency with
which we generate the feature. Steps 14 to 16 is an inner loop
and ⎡|Dwi| * q(wi)⎤ decides the number of times we generate a
frequency for word wi. Thus, if q(wi) is small, it means that wi
has occurred in both P and U with similar probabilities, and
we generate fewer wi. Otherwise, wi is quite likely to be a
negative feature and we generate it with a distribution similar
to the one in U. In each iteration, Step 15 uses a Gaussian
distribution with corresponding µwi and σwi to generate a
frequency fnew(wi) for wi. Step 16 places the pair (wi,
fnew(wi)) into the negative document AN. Finally, Step 17
outputs our generated negative set AN. Note that the frequency
for each feature wi in AN may not of an integer value as it is
generated by a Gaussian distribution. AN is essentially a
randomly generated aggregated document that summarizes

the unlabelled data set, but with the features indicative of
positive class dramatically reduced.

BUILDING THE FINAL NB CLASSIFIER
Finally, we describe how to build an NB classifier with the
positive set P and the generated single negative document AN
to identify unexpected document instances. The detailed
algorithm is shown in Figure 3.

1. UE =Φ;
2. Build a naïve Bayesian classifier Q with P and {AN} using

Equations (1) and (2);
3. For each document di ∈ U
4. Using Q to classify di using Equation (3);
5. If (Pr(-|di) > Pr(+|di))
6. UE = UE∪{di};
7. output UE;

Figure 3. Building the final NB classifier
UE stores the set of unexpected documents identified in U

(or test set T), initialized to empty set in Step 1. In Step 2, we
use Equations (1) and (2) to build a NB classifier by com-
puting the prior probabilities Pr(+) and Pr(-), and the condi-
tional probabilities of Pr(wi|+) and Pr(wi|-). Clearly, Pr(wi|+)
and Pr(wi|-) can be computed based on the positive set P and
the single negative document AN respectively (AN can be
regarded as the average document of a set of virtual negative
documents). However, the problem is how to compute the
prior probabilities of Pr(+) and Pr(-). It turns out that this is
not a major issue ─ we can simply assume that we have
generated a negative document set that has the same number
of documents as the number of documents in the positive set
P. We will report experimental results that support this in the
next section. After building the NB classifier Q, we use it to
classify each test document in U (Steps 3-6). The final output
is the UE set that stored all the identified unexpected docu-
ments in U.

4 Empirical Evaluation
In this section, we evaluate our proposed technique LGN. We
compare it with both one-class SVM (OSVM, we use
LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/) and
existing PU learning methods: S-EM [Liu et al., 2002],
PEBL [Yu et al., 2002] and Roc-SVM [Li and Liu, 2003].
S-EM and Roc-SVM are publicly available1 . We imple-
mented PEBL as it is not available from its authors.

4.1 Datasets
For evaluation, we used the benchmark 20 Newsgroup col-
lection, which consists of 11997 documents from 20 different
UseNet discussion groups. The 20 groups were also catego-
rized into 4 main categories, “computer”, “recreation”,
“science”, and “talk”. We first perform the following two sets
of experiments:
2-classes: This set of experiments simulates the case in
which the training data has two classes, i.e. our positive set P
contains two classes. The two classes of data were chosen

1 http://www.cs.uic.edu/~liub/LPU/LPU-download.html

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

from two main categories, “computer” and “science”, in
which the “computer” group has five subgroups, and the
“science” group has four subgroups. Every subgroup consists
of 1,000 documents.

Each data set for training and testing is then constructed as
follows: The positive documents for both training and testing
consist of documents from one subgroup (or class) in
“computer” and one subgroup (or class) in “science”. This
gives us 20 data sets. For each class (or subgroup), we parti-
tioned its documents into two standard subsets: 70% for
training and 30% for testing. That is, each positive set P for
training contains 1400 documents of two classes, and each
test set U contains 600 positive documents of the same two
classes. We then add negative (unexpected) documents to U,
which are randomly selected from the remaining 18 groups.

In order to create different experimental settings, we vary
the number of unexpected documents, which is controlled by
a parameterα, a percentage of |U|, i.e., the number of unex-
pected documents added to U is α × |U|.
3-classes: This set of experiments simulates the case in
which the training data has three different classes, i.e. our
positive set P contains three classes of data. We used the
same 20 data sets formed above and added another class to
each for both P and U. The added third class was randomly
selected from the remaining 18 groups. For each data set, the
unexpected documents in U were then randomly selected
from the remaining 17 newsgroups. All other settings were
the same as for the 2-classes case.

4.2 Experimental Results
2-classes: We performed experiments using all possible c1
and c2 combinations (i.e., 20 data sets). For each technique,
namely, OSVM, S-EM, Roc-SVM, PEBL and LGN, we
performed 5 random runs to obtain the average results. In
each run, the training and test document sets from c1 and c2 as
well as the unexpected document instances from the other 18
classes were selected randomly. We varied α from 5% to
100%. Table 1 shows the classification results of various
techniques in terms of F-score (for negative class) when α =
5%. The first column of Table 1 lists the 20 different com-
binations of c1 and c2. Columns 2 to 5 show the results of four
techniques OSVM, S-EM, Roc-SVM and PEBL respec-
tively. Column 6 gives the corresponding results of our
technique LGN.

We observe from Table 1 that LGN produces the best re-
sults consistently for all data sets, achieving an F-score of
77.0% on average, which is 54.8%, 32.8%, 60.2% and 76.5%
higher than the F-scores of existing four techniques (OSVM,
S-EM, Roc-SVM and PEBL) respectively in absolute terms.
We also see that LGN is highly consistent across different
data sets. In fact, we have checked the first step of the three
existing PU learning techniques and found that most of the
extracted negative documents were wrong. As a result, in
their respective second steps, SVM and EM were unable to
build accurate classifiers due to very noisy negative data.
Since the S-EM algorithm has a parameter, we tried different
values, but the results were similar.

Table 1. Experimental results for α = 5%.
Data Set OSVM S-EM Roc-SVM PEBL LGN
graphic-crypt 22.5 46.3 17.2 0.0 82.1
graphic-electro 17.9 54.1 15.8 3.5 78.0
graphic-med 17.2 39.0 15.3 0.0 64.9
graphic-space 22.2 49.5 15.7 0.0 71.7
os-crypt 23.6 43.1 18.3 0.0 82.8
os-electronics 15.9 39.6 16.3 0.0 80.2
os-med 18.6 36.4 16.5 0.0 75.2
os-space 20.8 40.5 17.9 0.0 78.2
mac.hardware-crypt 23.1 46.0 17.5 1.2 84.8
mac.hardware-electro 18.8 42.4 17.5 0.0 84.3
mac.hardware-med 18.3 52.6 16.5 0.0 70.4
mac.hardware-space 21.3 40.0 17.5 0.0 77.9
ibm.hardware-crypt 25.4 46.5 16.9 0.0 82.9
ibm.hardware-electro 19.6 47.5 17.1 1.3 82.4
ibm.hardware-med 17.4 41.9 16.4 0.0 74.5
ibm.hardware-space 21.3 41.5 17.4 1.3 75.5
windows-crypt 22.6 54.1 17.3 2.3 82.0
windows-electro 19.4 48.2 16.0 0.0 76.3
windows-med 20.4 39.9 16.1 1.3 66.2
windows-space 18.3 34.4 16.4 0.0 69.8
Average 20.2 44.2 16.8 0.5 77.0

Figure 4 shows the macro-average results of all α values
(from 5% to 100%) for all five techniques in the 2-classes
experiments. Our method LGN outperformed all others sig-
nificantly for α ≤ 60%. When α was increased to 80% and
100%, Roc-SVM achieved slightly better results than LGN.
We also observe that OSVM, S-EM and Roc-SVM outper-
formed PEBL since they were able to extract more reliable
negatives than the 1-DNF method used in PEBL. PEBL
needed a higher α (200%) to achieve similar good results.

3-classes: Figure 5 shows the 3-classes results where LGN
still performed much better than the methods when the pro-
portion of unexpected documents is small (α ≤ 60%) and
comparably with S-EM and Roc-SVM when the proportion
is larger. OSVM’s results are much worse than S-EM,
Roc-SVM and LGN when α is larger, showing that PU
learning is better than one-class SVM in the problem. Again,
PEBL required a much larger proportion of unexpected
documents to produce comparable results.

0.0

20.0

40.0

60.0

80.0

100.0

5% 10% 15% 20% 40% 60% 80% 100%
a % of unexpected documents

F-
sc

or
e

LGN
S-EM
Roc-SVM
PEBL
OSVM

Figure. 4. The comparison results with different percentages
 of unexpected documents in U in the 2-classes experiments.

In summary, we conclude that LGN is significantly better

(with high F-scores) than the other techniques when α is
small (α ≤ 60%), which indicates that it can be used to ef-
fectively extract unexpected documents from the test set even
in the challenging scenarios in which their presence in U is
non-obvious. The other methods all failed badly when α is
small. LGN also performed comparably in the event when
the proportion of unexpected instances is large (α ≥ 80%).

Finally, we also conducted 10-classes experiments in
which ten different classes from both the 20 Newsgroups and
Reuter collections (with same experimental setting for the
3-classes) were used. The behaviors of the algorithms for 10
classes were the same as for 2 classes and 3 classes. Using the
Reuter collection with 10 classes and α set to 5%, 10%, 15%,
20% and 40%, our algorithm LGN achieved 32.77%,
32.14%, 27.82%, 18.43%, 11.11% higher F-scores respec-
tively than the best results of the existing methods (OSVM,
S-EM, Roc-SVM and PEBL). Similarly, using 10 classes
from the 20 newsgroup collection, LGN achieved 10.56%,
4.80%, 5.46%, 6.20%, and 4.00% higher F-scores for α =5%,
10%, 15%, 20% and 40% of unexpected documents respec-
tively than the best of the four other existing methods.
Effect of priors: Recall that in Section 3 we have left the
prior probabilities as a parameter since we only generate a
single artificial negative document. To check the effect of
priors, we also varied the prior in our experiments by
changing the proportion of negative documents as a per-
centage of the number of positive documents in P. We tried
40%, 60%, 80% and 100%. The results were virtually the
same, with average differences only within ±1%. Thus, we
simply choose 100% as the default of our system, which
gives us Pr(+) = Pr(-) = 0.5. All the experimental results
reported here were obtained using this default setting.

5 Conclusion
In real-world classification applications, the test data may
differ from the training data because unexpected instances
that do not belong to any of the predefined classes may be
present (or emerge in the long run) and they cannot be iden-
tified by traditional classification techniques. We have
shown here that the problem can be addressed by formulating
it as a PU learning problem. However, directly applying
existing PU learning algorithms performed poorly as they

require a large proportion of unexpected instances to be
present in the unlabeled test data, which is often not the case
in practice.

0.0

20.0

40.0

60.0

80.0

100.0

5% 10% 15% 20% 40% 60% 80% 100%

a % of unexpected documents

F-
sc

or
e

LGN
S-EM
Roc-SVM
PEBL
OSVM

Figure. 5. The comparison results with different percentages
of unexpected documents in U in the 3-classes experiments.

We then proposed a novel technique LGN to identify un-
expected documents by generating a single artificial negative
document to help train a classifier to better detect unexpected
instances. Our experimental results in document classifica-
tion demonstrate that LGN performed significantly better
than existing techniques when the proportion of unexpected
instances is low. The method is also robust irrespective of the
proportions of unexpected instances present in the test set.
Although our current experiments were performed in the text
classification application using an NB classifier, we believe
that the approach is also applicable to other domains. Using a
single artificial negative document, however, will not suit-
able for other learning algorithms. In our future work, we
plan to generate a large set of artificial documents so that
other learning methods may also be applied.

References
[Crammer and Chechik, 2004] K. Crammer and G. Chechik.

A needle in a haystack: local one-class optimization,
ICML, 2004.

[Dempster et al., 1977] A. Dempster, N. Laird and D. Rubin,
Maximum likelihood from incomplete data via the EM
algorithm, Journal of the Royal Statistical Society, 1977.

[Denis, 1998] F. Denis, PAC learning from positive statisti-
cal queries. ALT, 1998.

[Denis , 2002] F. Denis, R. Gilleron, and M. Tommasi. Text
classification from positive and unlabeled examples.
IPMU, 2002.

[Fung, 2005] G. Fung, J. Yu, H. Lu, and P Yu. Text Classi-
fication without Labeled Negative Documents. ICDE,
2005.

[Lewis and Gale, 1994] D. Lewis and W. Gale. A sequential
algorithm for training text classifiers. SIGIR, 1994.

[Li and Liu, 2003] X. Li, and B. Liu. Learning to classify text
using positive and unlabeled data. IJCAI, 2003.

[Liu et al., 2002] B. Liu, W. Lee, P. Yu, and X. Li. Partially
supervised classification of text documents. ICML, 2002.

[Manevitz and Yousef, 2001] L. Manevitz, and M. Yousef.
One class SVMs for document classification. Journal of
Machine Learning Research, 2, 139–154, 2001.

[McCallum and Nigam, 1998] A. McCallum, and K. Nigam,
A comparison of event models for naïve Bayes text clas-
sification. AAAI, 1998.

[Muggleton, 2001] S. Muggleton. Learning from the positive
data. Machine Learning, 2001.

[Rocchio, 1971] J. Rocchio. Relevant feedback in informa-
tion retrieval. G. Salton. The smart retrieval system: ex-
periments in automatic document processing, 1971.

[Scholkopf et al., 1999] B. Scholkopf, J. Platt, J. Shawe, A.
Smola & R. Williamson. Estimating the support of a
high-dimensional distribution. Technical Report
MSR-TR-99-87, Microsoft Research, 1999.

[Yu et al., 2002] H. Yu, J. Han, and K. Chang. PEBL: Posi-
tive example based learning for Web page classification
using SVM. KDD, 2002.

