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Abstract
Time-series forecasting in geo-spatial domains
has important applications, including urban plan-
ning, traffic management and behavioral analysis.
We observed recurring periodic patterns in some
spatio-temporal data, which were not considered
explicitly by previous non-linear works. To ad-
dress this lack, we propose novel ‘Periodic-CRN’
(PCRN) method, which adapts convolutional recur-
rent network (CRN) to accurately capture spatial
and temporal correlations, learns and incorporates
explicit periodic representations, and can be opti-
mized with multi-step ahead prediction. We show
that PCRN consistently outperforms the state-of-
the-art methods for crowd density prediction across
two taxi datasets from Beijing and Singapore.

1 Introduction
Spatio-temporal forecasting, which aims to predict future
events and trends given the spatial and temporal dynamics in
historical data, is one of the most important problems in ma-
chine learning and AI research. One typical application is fu-
ture crowd density estimation. Today, with the large amount
of location reporting sensors available in mobile devices, ve-
hicles and other moving objects, it is possible to build accu-
rate models for a wide range of applications such as estimat-
ing traffic flow and congestion, predicting taxi demand, and
forecasting people crowd density in public transportation sta-
tions.

Formally, the forecasting problem can be defined as
follows: Given a sequence {X(1), X(2), ..., X(t)} of ob-
served values, the goal is to predict future values of
{X(t+1)...X(t+τ)} for an arbitrary horizon τ ≥ 1. In recent
years, numerous spatio-temporal forecasting techniques and
applications have been studied, including road traffic fore-
cast [Lippi et al., 2013; Lv et al., 2015], human mobility pat-
tern prediction for urban planning [Zheng et al., 2014] as well
as next frame prediction in videos [Srivastava et al., 2015;
Finn et al., 2016].

Many spatio-temporal time-series data in geo-spatial do-
mains show periodic patterns over different time scales such
as days or weeks. For instance, the number of cars passing
a pre-defined bounded region usually increases in rush hours

Figure 1: In-flow of taxis over 30 min intervals into 3 different re-
gions of size 750m ∗ 750m over period of 10 days in Beijing. The
time-series data show clear daily and weekly periodic patterns.

and decreases over night, and this pattern repeats everyday.
On a weekly scale, the traffic patterns in weekends are sim-
ilar to each other, compared to the weekday patterns. Some
examples of these periodic patterns can be observed in Figure
1. In this paper, we will leverage these recurring patterns for
our predictions.

Classic linear time-series forecasting models such as
ARIMA and its variants [Box et al., 2015] are only appli-
cable to stationary time-series where statistical properties of
data should remain approximately constant over time. More-
over, finding the right set of parameters for these models are
challenging. Seasonal ARIMA (SARIMA) is able to incor-
porate seasonal parameters into the ARIMA model [Williams
and Hoel, 2003], but it becomes ineffective and not applicable
for modeling recurring patterns with long seasonal periods in
practice [Hyndman, 2010].

Recently, deep learning models have become popular for
spatio-temporal prediction problems, due to their inherent
ability to model complex non-linearities in data. Emergence
of convolutional recurrent networks (CRNs) such as Con-
vLSTM [Xingjian et al., 2015] and ConvGRU [Ballas et
al., 2016] was a breakthrough in spatio-temporal forecasting,
due to their ability to capture spatial and temporal correla-
tions in end-to-end trained models. However, these models
have not explicitly considered periodic patterns. Previous at-
tempts to do so in deep learning based models for other time-
series forecasting applications have been limited; for exam-
ple, [Zhang et al., 2017a] additionally used raw input data
from previous periods in their model.

In this paper, we propose Periodic-CRN (PCRN), a novel
deep learning based model for crowd density prediction in
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spatio-temporal domain. Specifically, our model predicts the
next state of a geo-spatial space, given a sequence of previous
states. Our key idea is using periodic representations of pre-
viously observed recurring patterns with tensors, rather than
using raw input data from those periods in the learning pro-
cess as in previous work [Zhang et al., 2017a]. In addition to
relieving practitioners from providing redundant input to the
model, it lets the model learn effective representations from
sequence of inputs in previous periods, as compared to single
snapshots from raw inputs. Our specific contributions can be
summarized as follows:

• We introduce periodic representations, into a spatio-
temporal prediction model, and show their effectiveness in
producing more accurate predictions. To the best of our
knowledge, this is the first work that makes use of periodic
patterns in a convolutional recurrent network architecture,
for a spatio-temporal forecasting problem.

• We propose three different methods for updating and
reusing periodic representation and introduce a weighting
based fusion mechanism to weigh the periodic tensors of
different scales (e.g. daily, weekly) based on their rele-
vance to the current state.

• We use a pyramidal architecture for multi-layer convolu-
tional recurrent network, for efficient and enhanced captur-
ing of spatial and temporal correlations in spatio-temporal
data.

• We adapt our proposed method and show its effectiveness
for multi-step ahead prediction as compared to other lin-
ear and non-linear methods. We also show that prediction
accuracy for a desired time interval could be enhanced by
using multi-step ahead prediction with a shorter time inter-
val.

2 Related Work
In time-series literature, models based on Auto Regressive
Moving Average (ARMA) [Box et al., 2015] focus on linear
temporal modeling of time-series data [Williams et al., 1997;
Lee and Fambro, 1999]. ARIMA and its variants such as
Vector ARIMA (VARMA) and Seasonal ARIMA (SARIMA)
have been extensively used in traffic flow forecasting prob-
lems [Lippi et al., 2013; Min and Wynter, 2011; Kamari-
anakis and Prastacos, 2003; Williams and Hoel, 2003].

Recently, deep neural network models have been used for
next frame prediction problem in video analysis. [Srivas-
tava et al., 2015] introduced an encoder-decoder LSTM net-
work for video prediction, and [Donahue et al., 2015] intro-
duced a recurrent convolutional network for visual learning.
The works of ConvLSTM [Xingjian et al., 2015] and Con-
vGRU [Ballas et al., 2016] replaced the full connections of
state-state and input-state transitions in GRU and LSTM, re-
spectively, with convolution operations, which had the two
following implications: (1) better modeling of spatial reg-
ularities and (2) reducing the number of parameters signif-
icantly. Based on this architecture, several studies further
improved next frame prediction in videos [Finn et al., 2016;
Mathieu et al., 2016; Byeon et al., 2017; Lotter et al., 2016;
Oh et al., 2015]. In geo-spatial forecasting domain, [Ziat

et al., 2017] used latent representations to capture spatio-
temporal dynamics and RNNs for decoding states into ob-
servations. However, these approaches did not consider peri-
odically recurring patterns.

CW-RNN [Koutnik et al., 2014] addressed the challenge
of modeling long-term dependencies in sequences; however,
their model is not applicable for capturing patterns spanning
over days or weeks where the input is highly dimensional.
Several studies focused on traffic density prediction using
deep learning without considering either spatial, temporal or
both correlations [Lv et al., 2015; Zhang et al., 2017b]. Clos-
est to our work is the study [Zhang et al., 2017a] which uses
deep residual network for crowd flow prediction. However,
their model only consists of convolutional layers, which is
not effective for modeling temporal correlations.

3 The Proposed Method
In this section, we first define the problem and then introduce
the proposed PCRN model and its components: (1) Pyrami-
dal convolutional recurrent network, (2) Periodic representa-
tions and (3) Fusion process in detail. Finally we explain the
implementation and design decisions related to our model.

3.1 Problem Statement
We define the geo-spatio-temporal prediction problem simi-
lar to next frame prediction problem in a video sequence. The
observations of crowd density or any other feature of interest
for each pre-defined geographic region during a fixed time
interval are aggregated and mapped into a 2-D dimensional
multi-channel imageX(t) ∈ RM∗W∗H for discrete time point
t, referred to as ‘spatial image’ hereafter. Here W,H,M re-
fer to the width, height and number of channels of spatial
images, respectively. Therefore, {X(1), X(2), ..., X(T )} rep-
resents the set of all spatial images used for model creation.

As the input, our proposed model receives a sequence of
spatial images {X(t−τ+1), ..., X(t)}, where τ is a pre-defined
sequence length. As the outcome of our model, we are inter-
ested in predicting a spatial image for the next time interval
X(t+1). Since the temporal information of the spatial im-
ages is implicated in spatio-temporal setting, we also treat this
meta-data information as an additional input to the model. Al-
together, PCRN is proposed as an optimization model to learn
an approximation function f , based on a deep neural network
architecture and formulated as:

X̂(t+1) = f(X(t), ..., X(t−τ+1), X
(t+1)
meta ; θ) (1)

In Eq.1, X(t+1)
meta denotes the temporal meta-data informa-

tion for the predicted frame, and θ are the parameters of the
model to be learned. X̂(t+1) is generated by an approxi-
mation function over previously observed spatial images de-
fined by a deep neural network architecture, which will be
explained later.

In Eq.2, we define the objective function in least-square
form to minimize the Euclidean distance between the ground
truth and the predicted image at the next time point.
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Figure 2: Examples of 32 × 32 partitioned spatial images. Lighter
colors represent higher density. Left to right: volume of all taxis and
taxis with passengers on board in downtown Singapore, in-flow and
outflow of taxis in Beijing.

L(θ) = 1

T − τ

T−1∑
t=τ

‖ X(t+1) − X̂(t+1) ‖22 (2)

Spatial Images: We create spatial images from the records
generated by independent actors, which contain both tempo-
ral (time-stamp) information and geo-spatial coordinates.

Formally each record r(t
′,l) ∈ RD is a D dimensional

record generated at time t′, and at location l where l =
〈lat, lon〉 indicates latitude and longitude coordinates of the
generated record respectively. r(t

′,l)
d indicates the d-th dimen-

sional value of the record r(t
′,l).

To create spatial images from records, we partition the area
to be predicted into a W ×H grid map, and define mapping
function g(l), to map records located inside the partitioned
area into their corresponding grids in the grid map. Finally,
for a discrete time point t, representing a fixed interval, we
create spatial image X(t) as follows:

X
(t)
(d,i,j) = |{r

(t′,l)|g(l) = 〈i, j〉, t ≤ t′ < t+ v, I(r(t
′,l)

d )}|
(3)

The number of records satisfying an arbitrary requirement
based on feature r(t

′,l)
d , generated during interval of length v

from discrete time point t, and located at grid (i, j) are aggre-
gated together, and set as the pixel value of X(t)

(d,i,j). There-
fore, the multi-channel image X(t) will represent the crowd
density in discrete time interval t. Figure 2, shows examples
of spatial images used as input of the model.

3.2 Periodic Convolutional Recurrent Network
Periodic-CRN (PCRN) model proposed in this paper consists
of three main components: (1) Convolutional recurrent net-
work (CRN) to capture spatio-temporal representation of an
input sequence, (2) Periodic representation dictionaries to dy-
namically reuse and update representations from multiple pe-
riodic patterns, and (3) Fusion process to merge periodic rep-
resentations with current input sequence representation and
temporal meta-data. The overall model architecture is illus-
trated in Figure 3.

3.2.1 Pyramidal CRN Model
Capturing spatial and temporal correlations is crucial for
building accurate spatio-temporal prediction models. As in
many geo-spatial problems such as crowd density or traffic
congestion prediction, the state of traffic in one region in-
evitably influences nearby regions.

Specifically, we consider using Convolutional GRU [Bal-
las et al., 2016] as our recurrent neural network architecture,

Figure 3: Weighting based fusion model architecture
as it has shown good performance, but with fewer parameters
to be optimized. The equations for ConvGRU gates, candi-
date state h̃(t) and hidden state h(t) are shown in Equation
4.

z(t) = σ(Wz ∗ [x(t), h(t−1)]) (4)

r(t) = σ(Wr ∗ [x(t), h(t−1)])
h̃(t) = tanh(Wh ∗ [x(t), r(t) ◦ h(t−1)])
h(t) = (1− z(t)) ◦ h(t−1) + z(t) ◦ h̃(t)

In Equation 4, (∗) symbol denotes convolution operation and
(◦) denotes element-wise multiplication. Here h(t) is the hid-
den state tensor preserving the sequential information up to
time point t.

Stacking convolutional RNN layers would result in a wider
receptive field over nearby spatial regions and take their influ-
ence into account in upper layers, which leads to better repre-
sentations and more accurate predictions. At the same time,
stacking more layers with the same number of time steps
would increase computational complexity and memory con-
sumption significantly, resulting in very slow convergence.

Inspired by the RNN structure for speech recognition pro-
posed in [Chan et al., 2016], we adapt a pyramidal structure
for our multi-layer Convolutional GRUs, where the consecu-
tive outputs from lower layers are concatenated before being
passed to upper layer. This modification reduces the sequence
length of the upper layer by a factor of 2, which results in
significant speedup without negatively affecting performance.
Formally the input and hidden state in layer i > 0 are derived
as follows:

X
(t)
i = [h

(2t)
i−1, h

(2t+1)
i−1 ] (5)

h
(t)
i = f(X

(t)
i , h

(t−1)
i ) (6)

The inputs at layer i = 0 (X(t)
0 ) are the raw spatial images

and the function f(.) refers to the set of operations in Eq. 4.

3.2.2 Periodic Representations
Recurrent neural networks generate a hidden state vector at
each cell, forget unnecessary information and update them
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accordingly by recurrently processing their inputs and previ-
ous states (Eq. 6). Consequently, at the last cell, the hidden
vector (tensor) preserves the sequential information of input
in a dense representation. We aim to reuse these representa-
tion tensors for each period by introducing a loop-back mech-
anism in our learning procedure.

The key idea in this model is to dynamically maintain
memory-based dictionary of periodic representations learned
by the stacked pyramidal ConvGRUs, by implementing the
two following procedures: (1) Loading periodic represen-
tations for current time point t from all available dictionar-
ies, and (2) saving representation of the current time point in
the dictionaries after the forward pass through stacked Con-
vGRUs. We denote the current representation tensor at the
last ConvGRU layer as h(t)c , where t refers to the data point
as in X(t).
Definition 1: For a spatio-temporal time-series data X , let
Pj be a periodic pattern, i.e. a set of periodic representations
with the same scale, e.g. P1:daily pattern, P2:weekly pattern,
etc. We define lPj

as the size of the set Pj i.e. the number
of discrete time intervals within the period scale of Pj . For
instance, lPdaily

= 48 when the time interval duration is 30
minutes.

We build a dictionary of periodic representations for each
Pj . When predicting X(t+1), the pyramidal ConvGRU out-
puts a current representation tensor h(t+1)

c , given the input
sequence (X(t−τ+1), ..., X(t)). This representation tensor is
stored in a key-value dictionary data structureDj = (Kj ,Vj),
where Kj is the set of keys, and Vj is the set of periodic rep-
resentation tensors hPj

, for period Pj . For each periodic pat-
tern Pj , the keys Kj of Dj are generated using a bucketing
function defined as follows:
Definition 2: We define bucketing function bj(t) to map the
time point t into bucket k, such that {k ∈ N|k ≤ lPj

}.
For instance, assuming the interval is given in minutes, and

60 is divisible by the interval duration, we define bucketing
function bdaily(t) as follows:

bdaily(t) = t.hour ∗ (60/interval) (7)
+ bt.minute/intervalc+ 1

We propose 3 different approaches for retrieving and up-
dating periodic representations stored in Vj . (1) Using se-
quential periodic representation, (2) Using estimated average
of periodic representations and (3) Using temporally ordered
representations. The representations are initialized to zero, to
represent lack of knowledge from periodic patterns at early
stages.
Sequentially Ordered Representation
Assuming X(t+1) is the data point to be predicted, represen-
tation h(t+1)

Pj
is loaded from Dj as shown in Eq. 8. Here, the

bucketing function bj , outputs the lookup key for dictionary
Dj . In the saving procedure, the current representation out-
put h(t+1)

c generated from ConvGRU, replaces the previously
stored representation in Dj as shown in Eq. 9. This proce-
dure is performed sequentially on training and testing data,
however since the data might be randomly shuffled prior to

training, the periodic patterns are not temporally ordered nec-
essarily.

h
(t+1)
Pj

← Dj [bj(t+ 1)] (8)

Dj [bj(t+ 1)]← h(t+1)
c (9)

Estimated Average Representations
In this approach, instead of the last periodic representation, a
set of last n representations are stored in a FIFO queue. Here
Dj [bj(t + 1)] retrieves the queue of representation tensors
for period Pj and the average of all tensors is provided to
the model as shown in Eq. 10. In saving phase, the current
representation h(t+1)

c replaces the oldest representation tensor
in Dj [bj(t+ 1)], as shown in Eq. 11.

h
(t+1)
Pj

=
1

n

n∑
i=1

Dj [bj(t+ 1)]i (10)

Dj [bj(t+ 1)].enqueue(h(t+1)
c ) (11)

Temporally Ordered Representations
In this approach, we keep a list of representation tensors in the
exact temporal order for each periodic pattern Pj . Using the
lists, we can identify the representation tensor of the previous
period for the time point t; for instance, the representation
tensors of (t−lP1

) and (t−lP2
) indicate the daily and weekly

representations for t, respectively.
For this purpose, we use exact time-stamps as the keys for

dictionary Dj instead of using the bucketing functions bj .
The retrieving and saving procedures are shown in Eq. 12
and 13 respectively.

h
(t+1)
Pj

← Dj [(t+ 1)− lPj ] (12)

Dj [(t+ 1)− lPj
]← h(t+1)

c (13)
3.2.3 Fusion Process
In order to effectively make use of periodic representations in
the model, we should merge them with current representation
tensor h(t+1)

c generated by ConvGRU. In order to estimate
relevance of each periodic representation to the current state,
we propose a weighting based fusion method inspired by at-
tention mechanism in encoder-decoder networks [Bahdanau
et al., 2015].
Weighting Based Fusion: In this method, we consider cur-
rent representation tensor hc as the context, and during train-
ing, we learn scalar weights aj for each representation ten-
sor hPj

, which indicates importance and relevance of that
periodic representation with respect to current context hc.
Through softmax operation, we require that aj ∈ [0, 1] and∑
j aj = 1. The final context tensor is derived by the

weighted sum of all representation tensors by their impor-
tance factor. This procedure is shown in Eq. 14-17.

e
(t+1)
j =Wf .f latten(We ∗ [h(t+1)

c , h
(t+1)
Pj

]) + bf (14)

a
(t+1)
j =

exp(e
(t+1)
j )∑

j′ exp(e
(t+1)
j′ )

(15)

h
(t+1)
all =

∑
j

a
(t+1)
j h

(t+1)
Pj

(16)

h
(t+1)
f = relu(Wc ◦ h(t+1)

c +WP ◦ h(t+1)
all ) (17)
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In Eq.14, We is a (1 ∗ 1) convolutional kernel that acts as
a feature pooling mechanism in filter space [Lin et al., 2014].
A single tensor hall represents all periodic tensors weighted
by their importance.

After the fusion process, a convolution layer transforms hf
into the same shape as input spatial image i.e. RM∗W∗H . In
Eq. 18, Wf is aW ×H convolutional kernel withM number
of filters.

h
(t+1)
f = relu(h

(t+1)
f ∗Wf ) (18)

Meta-data Fusion: In spatio-temporal applications, time-
stamps of records are available and could be used to provide
additional information to the model. For this purpose, tem-
poral information, such as time of day and day of week are
one-hot encoded, concatenated and passed to two fully con-
nected layers. After reshaping the output, they are merged
with h(t+1)

f to create spatial image X̂(t+1), as shown in Equa-
tions 19, 20.

h
(t+1)
meta = relu(relu(X

(t+1)
meta .Wfc1 + bfc1).Wfc2 + bfc2)

(19)

X̂(t+1) = relu(h
(t+1)
f + h

(t+1)
meta ) (20)

3.3 Implementation and Optimization
To optimize the model, stochastic gradient descent (SGD)
method, using back propagation through time (BPTT) was
used. The least-square error term introduced in Eq.2 was used
as the objective function to be minimized. To ensure propor-
tional influence of all pixels, spatial images were down-scaled
using min-max normalization, mapping all records into range
[0, 1].

Using grid search method, three ConvGRU layers were
used in hierarchical architecture with 32, 64 and 96 number
of filters respectively. The input sequence length in the lowest
ConvGRU layer was set to 28 time steps. Tensorflow library
was used as the optimization framework, and the model was
trained on a server with 16GB GPU memory. The learning
rate was set to 1e−4 and the model was trained in 500 epochs,
with early stopping mechanism.

4 Experiments
4.1 Experimental Settings
In this section, we describe the datasets, various baselines and
the evaluation metric used in the experiments.

4.1.1 Datasets
The following two datasets were used for evaluation.
Singaopore taxi trajectories (TaxiSG): This dataset con-
tains trajectory log records generated from taxis in Singapore
in period of January to April 2015. The CBD area in down-
town Singapore were partitioned into a 32*32 grid map and
taxi log records were aggregated in each cell for intervals of
5 minutes. Density of all taxis and taxis with passengers on
board were used to create set of X(t) ∈ R2∗32∗32 spatial im-
ages according to Eq. 3. Last 12 day’s data were used for
validation and testing.

Dataset Type Period
(months)

Interval
(mins)

Total
Images

Test
days

TaxiBJ Taxi Flow 18 30 21360 28
TaxiSG Taxi Density 4 5 34560 12

Table 1: The characteristic of two benchmark datasets

Beijing taxi trajectories (TaxiBJ): The dataset contains in-
flow and out-flow of taxis in different regions in Beijing in
four separate time intervals: July-Oct. 2013, March-June
2014, March-June 2015 and Nov. 2015-April 2016. Beijing
is partitioned into 32*32 grids, and for each grid cell, in-flow
and out-flow of vehicles in intervals of 30 minutes are calcu-
lated using the procedure explained in [Zhang et al., 2017a],
resulting in set of spatial images X(t) ∈ R2∗32∗32.
4.1.2 Baseline Methods
The following 6 baselines are used in our experiments:
Snaive: Seasonal naive model, which sets the predicted value
equal to the last observed seasonal pattern, where the season
duration is set as week.
HA: Historical average over observed weekly patterns.
ARIMA: ARIMA is a powerful linear model to fit and fore-
cast time-series data.
VAR: Vector Autoregressive model that captures linear in-
terdependencies between multiple univariate time-series for
modeling and forecasting multivariate time-series data [Ka-
marianakis and Prastacos, 2003].
ConvGRU: Convolutional GRU architecture introduced
in [Ballas et al., 2016] modified to have pyramidal architec-
ture but without fusion with periodic representations.
ST-ResNet: A deep learning model for crowd flow prediction
by learning deep convolutional neural networks using resid-
ual learning [Zhang et al., 2017a]. Learned representations
are merged in a fusion process along with external informa-
tion such as weather condition and holidays. Raw inputs from
previous periods need to be provided during runtime.

4.1.3 Evaluation Metric
We employ the widely used root mean squared error

rmse(X, X̂) =
√

1
T

∑T
t=1(Xt − X̂t)2 as the evaluation

metric for similarity between predictions and ground-truth
X̂,X ∈ RM∗W∗H .

4.2 Next Frame Prediction
First, we compare 6 baselines with 3 different variants of
our model, namely (1) sequentially ordered periodic patterns
PCRNseq , (2) moving average patterns PCRNavg , and (3)
temporally ordered periodic representations PCRNtemp, for
crowd density prediction at the next interval. The results for
prediction performance from baselines and the best perform-
ing variant of our model PCRNtemp are shown in Table 2.
Each entry in the Table shows RMSE score obtained by the
particular method on the test set of a particular dataset. Note
that a lower value of RMSE means a better performance.

For parametric models such as ARIMA and VAR, best
set of parameters were found for each time-series using
grid search and Akaike Information Criterion (AIC). For ST-
ResNet we used their best performing variant, with 12 resid-
ual units. Please note that, unlike our model, ST-ResNet uses
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Method Taxi BJ Taxi SG
Snaive 44.83 6.946
HA 40.796 8.685
ARIMA 22.44 4.600
VAR 22.05 4.56
ST-ResNet 16.69 4.52
ConvGRU 17.35 4.341
PCRNtemp 15.85 4.252

Table 2: Next step prediction results

additional raw input from previous periods on the runtime.
As shown in Table 2, generally non-linear models outperform
linear models. We observe that our proposedPCRNtemp (in-
deed all the variants of our model) outperforms 6 baselines
consistently.

Results obtained from ConvGRU model, which has the
same architecture as our model but without merging with pe-
riodic representations, demonstrate that convolutional RNN
architecture is effective for modeling spatio-temporal time-
series data as it outperforms other linear and non-linear mod-
els, though not consistently outperforming ST-ResNet. Com-
paring results obtained from PCRN models with ConvGRU
shows the effectiveness of using periodic representations in
our model.

4.3 Representation Update Method and Fusion
Mechanism

To compare different periodic representation update methods,
we compare three different variants of our model, namely,
PCRNseq , PCRNavg and PCRNtemp. The results in Table
3 show the superiority of PCRNtemp over PCRNseq and
PCRNavg which can be attributed to leveraging the exact
temporal order of time point representations.

Compared to fusion method used in previous work [Zhang
et al., 2017a], our weighting-based fusion method is able to
take relevance of each periodic pattern into account, and in
fact, showed better performance in almost all cases in our ex-
periments. It also reduced number of parameters by learning
a single weight tensor for aggregated representations.

4.4 Multi-Step Ahead Prediction
PCRN can perform multi-step ahead prediction, by append-
ing the output for a time point t to the input for t + 1, and
running the model for an arbitrary number of steps. We com-
pare various methods for predicting next 6 steps ahead. The
results in Figure 4, show that RMSE of ARIMA and VAR
linearly grows as time step increases. PCRN shows lowest
rate of error increase among all, and consistently outperforms
deep learning based ST-ResNet, over all steps especially fur-
ther steps ahead. This can be attributed to better capturing of
temporal correlations through ConvGRUs, and using periodic

Method TaxiBJ TaxiSG
PCRNseq 16.06 4.262
PCRNavg 16.74 4.265
PCRNtemp 15.85 4.252

Table 3: Comparison over different PCRN variants

Figure 4: Comparison of PCRNseq with ARIMA, VAR and ST-
ResNet on multi-step prediction errors up to 6 steps ahead.

Figure 5: Multi-step and one step ahead prediction errors with vari-
able interval lengths

Interval 5mins 10mins 15mins 30mins
Images 31104 15552 10368 5184

Table 4: Number of training images for each interval length for
TaxiSG dataset

representations instead of raw inputs from previous periods in
our model.

We also do an experiment on multi-step ahead prediction
with different interval durations. As the prediction interval
duration grows, the size of the training set reduces, making
it harder for deep models with a large number of parameters
to get optimized. To measure the effect of interval length in
practice, we perform an experiment on multi-step ahead pre-
diction using variable interval lengths, to predict up to fixed
time point ahead on TaxiSG dataset. As illustrated in Fig-
ure 5, 6 steps ahead prediction with 5-min interval on TaxiSG
dataset has lower error than one step prediction with 30-min
interval. This can be attributed to lower training instances in
30-min case. This shows the improvement of results when
multi-step ahead prediction with a shorter interval is used.
The number of images in each training set for each interval
length is shown in Table 4.

5 Conclusion
In this paper, we proposed an optimization based model for
crowd density prediction, using pyramidal convolutional re-
current network architecture. By leveraging recurring peri-
odic patterns observed in geo-spatio-temporal domains, and
dynamically incorporating them in our prediction model with
a loop-back mechanism, our model outperforms other linear
and non-linear baselines in the next step and multi-step pre-
dictions. Moreover, by introducing a weighting based fusion
mechanism, the importance and relevance of periodic repre-
sentation were taken into account.
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