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Abstract
Social recommender systems exploit users’ so-
cial relationships to improve recommendation ac-
curacy. Intuitively, a user tends to trust different
people regarding with different scenarios. There-
fore, one main challenge of social recommendation
is to exploit the most appropriate dependencies be-
tween users for a given recommendation task. Pre-
vious social recommendation methods are usually
developed based on pre-defined user dependencies.
Thus, they may not be optimal for a specific recom-
mendation task. In this paper, we propose a novel
recommendation method, named probabilistic rela-
tional matrix factorization (PRMF), which can au-
tomatically learn the dependencies between users
to improve recommendation accuracy. In PRMF,
users’ latent features are assumed to follow a matrix
variate normal (MVN) distribution. Both positive
and negative user dependencies can be modeled by
the row precision matrix of the MVN distribution.
Moreover, we also propose an alternating optimiza-
tion algorithm to solve the optimization problem of
PRMF. Extensive experiments on four real datasets
have been performed to demonstrate the effective-
ness of the proposed PRMF model.

1 Introduction
Recommender systems have been widely used to help us
discover useful information. For example, on e-commerce
websites, e.g., Amazon, recommender systems predict users’
preferences on products based on their past purchasing behav-
iors and then recommend a user a list of interesting products
she may prefer. For a recommender system, the most crit-
ical factor is the prediction accuracy of users’ preferences.
In practice, the most successful prediction methods are col-
laborative filtering based approaches [Su and Khoshgoftaar,
2009]. Especially, matrix factorization has been widely ap-
plied in different recommendation tasks [Koren et al., 2009;
Liu et al., 2013; Hu et al., 2014; Liu et al., 2014; 2015].

The recent rapid developments of online social network-
ing services (e.g., Facebook and Twitter) motivate the emer-
∗Corresponding author

gences of social recommender systems that exploit users’
online social friendships for recommendation [Yang et al.,
2014]. The social recommender systems usually assume that
a user has similar interests with her social friends. Although
the recommendation accuracy can usually be improved, there
do not exist strong connections between the online friend-
ship and the similarity of users’ interests [Ma, 2014]. Be-
cause there are different categories of social networking
friends in online social networks, e.g., school friends, work-
related friends, and friends sharing same interests or activi-
ties [Zhang et al., 2013]. The tastes of a user’s online friends
usually vary significantly. In different scenarios, a user tends
to trust recommendations from different subsets of her online
social friends. Hence, the key to success for a social recom-
mender system is to exploit the most appropriate dependen-
cies between users for a specific recommendation task.

Moreover, existing social recommender systems are usu-
ally developed based on users’ explicit social relationships,
e.g., trust relationships [Jamali and Ester, 2010; Fang et
al., 2014; Mei et al., 2014; Guo et al., 2015] and on-
line social friendships [Ma et al., 2011; Yang et al., 2012;
Tang et al., 2013; Hu et al., 2015]. However, users’ explicit
social relationships may be unavailable in many application
scenarios. This limits the application of traditional social
recommendation approaches. To remedy this problem, the
underlying implicit social relationships between users that
have most similar or dissimilar behaviors have also been ex-
ploited for improving recommendation accuracy [Ma, 2013].
In these studies, users’ dependencies adopted for recommen-
dation are pre-defined based on users’ explicit or implicit so-
cial relationships.

Differing from previous work, this paper proposes a novel
recommendation method, namely probabilistic relational ma-
trix factorization (PRMF), which aims to automatically learn
the user dependencies to improve the recommendation accu-
racy. The proposed method can be applied to the recommen-
dation scenarios with or without users’ explicit social rela-
tionships. In PRMF, the user latent feature matrix is assumed
to follow a matrix variate normal (MVN) distribution [Gupta
and Nagar, 1999], where the row precision matrix models the
dependencies between different rows (i.e., users). Therefore,
both positive and negative dependencies between users can
be learned by fitting the MVN distribution. This is motivated
by the success of applying the MVN distribution to model
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the task relationships for multi-task learning [Zhang and Ye-
ung, 2010]. The optimization problem of PRMF is solved
by an alternating algorithm based on the stochastic gradient
descent (SGD) [Koren et al., 2009] and alternating direction
method of multipliers (ADMM) [Boyd et al., 2011] methods.
Moreover, we extensively evaluated PRMF and five baseline
methods on four real datasets. Empirical experiments showed
that PRMF consistently achieved the best recommendation
accuracy on all datasets, in terms of root-mean-square error
(RMSE) and mean absolute error (MAE).

2 Related Work and Background
This section first introduces some background about proba-
bilistic matrix factorization (PMF) [Mnih and Salakhutdinov,
2007] and then reviews social recommendation methods.

2.1 Probabilistic Matrix Factorization
For the recommendation problem withm users {ui}mi=1 and n
items {vj}nj=1, the matrix factorization models map users and
items into a shared latent space, which has a low dimension-
ality d � min(m,n). For each user ui, her latent features
are represented by a latent vector Ui ∈ R1×d. Similarly, the
latent features of the item vj are described by a latent vector
Vj ∈ R1×d. In PMF, users’ ratings on items are assumed to
follow a Gaussian distribution as follows:

p(R|U, V, σ2) =
m∏
i=1

n∏
j=1

[
N (Rij |UiV >j , σ2)

]Wij
, (1)

where R ∈ Rm×n is the matrix denoting users’ ratings on
items; U ∈ Rm×d and V ∈ Rn×ddenote the latent features
of all users and items, respectively; σ2 is the variance of the
Gaussian distribution; Wij is an indicator variable. If ui has
rated vj , Wij = 1; otherwise, Wij = 0. In addition, we also
place zero-mean spherical Gaussian priors on U and V as:

p(U |σ2
u) =

m∏
i=1

N (Ui|0, σ2
uI), p(V |σ2

v) =
n∏
j=1

N (Vj |0, σ2
vI).

(2)
where I is the identity matrix, σ2

u and σ2
v are the variance

parameters. Through the Bayesian inference, we have
p(U, V |R, σ2, σ2

u, σ
2
v) ∝ p(R|U, V, σ2)p(U |σ2

u)p(V |σ2
v).

(3)
The model parameters (i.e., U and V ) can be learned via max-
imizing the log-posterior in Eq. (3), which is equivalent to
solving the following problem:

min
U,V

1

2
‖W � (R− UV >)‖2F +

λu
2
‖U‖2F +

λv
2
‖V ‖2F , (4)

where W ∈ Rm×n is the indicator matrix, and Wij is the
(i, j) entry ofW . In Eq. (4),� denotes the Hadamard product
of two matrices, λu = σ2/σ2

u, λv = σ2/σ2
v , and ‖·‖F denotes

the Frobenius norm of a matrix.

2.2 Social Recommendation Methods
In recent years, lots of social recommendation approaches
have been proposed [Yang et al., 2014]. The Social Regu-
larization (SR) [Ma et al., 2011] is one of the most represen-
tative methods. The SR method was implemented by matrix

factorization framework. It assumed that a user may have
similar interests with her social friends, and thus the learned
latent features of a user and that of her social friends should be
similar. As a user tended to trust different subsets of her social
friends regarding with different domains, the circle-based rec-
ommendation (CircleCon) models proposed in [Yang et al.,
2012] considered domain-specific trust circles for recommen-
dation. In [Tang et al., 2013], both the local and global social
contexts were exploited for recommendation. Recently, the
SR model was extended to exploit users’ implicit social rela-
tionships for recommendation [Ma, 2013]. The implicit so-
cial relationships were defined between a user and other users
that had most similar or dissimilar rating behaviors with her.
In [Fang et al., 2014], users’ social relationships were studied
from four different trust aspects for recommendation. In [Li
et al., 2015], SR was also extended to exploit the commu-
nity structure of users’ social networks to improve recom-
mendation accuracy. Moreover, the recent work [Guo et al.,
2015] developed the TrustSVD model, which incorporated
both user and item biases, as well as the explicit and implicit
influences from rated items and trusted users for recommen-
dation. In [Hu et al., 2015], a recommendation framework
named MR3 was proposed to jointly model users’ rating be-
haviors, social relationships, and review comments.

3 The Proposed Recommendation model
This section presents the details of the proposed PRMF model
that jointly learn users’ preferences and the dependencies be-
tween users for recommendation.

3.1 Probabilistic Relational Matrix Factorization
In Section 2.1, the PMF model assumes the users are inde-
pendent of each other (see Eq.(2)). Thus, it ignores the de-
pendencies between users. However, in practice, users are
usually connected with each other through different types of
relationships, e.g., trust relationships and online social rela-
tionships. In this work, to exploit users’ dependencies for
recommendation, we place the following priors on the user
latent features:

p(U |σ2
u) ∝

( m∏
i=1

N (Ui|0, σ2
uI)
)
q(U), (5)

where the first term of the priors is used to penalize the com-
plexity of the latent features of each user, and the second term
q(U) is used to model the dependencies between different
users. Specifically, we define

q(U) =MNm×d
(
0,Θ−1, I

)
, s.t. Θ � 0, (6)

whereMN a×b(M,A,B) denotes the matrix variate normal
(MVN) distribution1 with mean M ∈ Ra×b, row covariance
A ∈ Ra×a, and column covariance B ∈ Rb×b; Θ � 0 indi-
cates Θ is a positive definite matrix. In Eq. (6), Θ is the row

1The density function for a random matrixX following the MVN
distributionMN a×b(M,A,B) is

p(X) =
exp(− 1

2
tr
[
B−1(X −M)>A−1(X −M)

]
)

(2π)ab/2|B|a/2|A|b/2
.
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precision matrix (i.e., the inverse of row covariance matrix)
that models the dependencies between different rows of U .
The row Ui is independent of another row Uk, if and only if
Θik = 0 [Liu et al., 2009]. Note that each row ofU represents
the latent features of an individual user. Thus, in other words,
Θ describes the dependencies between different users. In this
work, Θ is called the user dependency matrix. For simplicity,
we set the column covariance matrix of the MVN distribu-
tion as I , which indicates the user latent features in different
dimensions are independent. Then, we rewrite Eq. (5) as:

p(U |Θ, σ2
u) =MNm×d

(
0, (Θ +

1

σ2
u

I)−1, I
)
. (7)

In practice, a user usually only depends with a small frac-
tion of other users. Thus, it is reasonable to assume the user
dependency matrix Θ is sparse. To achieve this objective, we
introduce a sparsity-inducing prior for Θ as follows:

p(Θ|γ) ∝ exp(−γ
2
‖Θ‖1), (8)

where γ is a positive constant used to control the sparsity of
Θ, and ‖ · ‖1 is the `1-norm of a matrix. In addition, the spar-
sity of Θ can also help improve the computation efficiency.

Moreover, we also assume users’ ratings follow the Gaus-
sian distribution in Eq. (1) and add Gaussian priors on the
item latent features as in Eq. (2). Through the Bayesian infer-
ence, we have

p(U, V,Θ|R, σ2, σ2
u, σ

2
v , γ)

∝p(R|U, V, σ2)p(U |Θ, σ2
u)p(Θ|γ)p(V |σ2

v). (9)

Then, the model parameters (i.e., U , V , and Θ) can be ob-
tained by solving the following problem:

min
U,V,Θ�0

1

2σ2
‖W � (R− UV >)‖2F +

1

2σ2
u

‖U‖2F +
1

2σ2
v

‖V ‖2F

+
1

2

[
tr(U>ΘU)− d log |Θ +

1

σ2
u

I|+ γ‖Θ‖1
]
, (10)

where | · | denotes the determinant of a matrix. Here, the
model parameters are learned without prior information about
users’ relationships.

Incorporating prior user relationship information
Previous studies have demonstrated that user’ explicit social
relationships [Yang et al., 2014] and implicit social relation-
ships derived from users’ rating behaviors [Ma, 2013] can
benefit recommendation accuracy. These prior relationship
information contains some prior knowledge about users’ de-
pendencies in a recommendation task. Let Σ ∈ Rm×m de-
note the covariance matrix calculated based on users’ rating
behaviors. The elements of Σ are defined as follows:

Σik = cov(Ri∗, Rk∗), (11)

where Ri∗ is the ith row in R; cov(x1, x2) denotes the co-
variance between two observations. If users’ explicit social
relationships are available, we consider the following sparse
covariance matrix Σ:

Σik =

{
cov(Ri∗, Rk∗) if uk ∈ F(ui) or ui ∈ F(uk) or i=k,

0 otherwise,

where F(ui) denotes the set of ui’s social friends. Then,
users’ dependencies in the rating space2 can be described us-
ing the precision matrix Σ−1.

To incorporate the prior information, we assume that the
learned user dependencies in latent space are close to the user
dependencies derived from prior relationship information in
the rating space. This is achieved by minimizing the LogDet
divergence [Davis et al., 2007] between the row precision ma-
trix in Eq. (7) and the precision matrix Σ−1 as:

min
Θ

Dld(Θ +
1

σ2
u

I,Σ−1)

= tr[(Θ +
1

σ2
u

I)Σ]− log
∣∣(Θ +

1

σ2
u

I)Σ
∣∣−m

∝ tr
(
ΘΣ
)
− log |(Θ +

1

σ2
u

I)|. (12)

Note that other distance metrics can also be used to estimate
the matrix closeness. Moreover, although Σ may be singular,
the proposed method can also be used in practice (i.e., no
computation of Σ−1 in Eq. (12)).

The unified model
Considering both the constraints in Eq. (10) and Eq. (12), we
formulate the final objective function of the proposed PRMF
model as follows:

min
U,V,Θ�0

1

2
‖W � (R− UV >)‖2F +

λu
2
‖U‖2F +

λv
2
‖V ‖2F

+
α

2

{
tr
[
Θ(UU> + βΣ)

]
− (d+ β) log

∣∣Θ +
λu
α
I
∣∣

+γ‖Θ‖1
}
, (13)

where λu = σ2/σ2
u, λv = σ2/σ2

v , and α = σ2; β is a param-
eter controlling the contribution of prior information.

3.2 Optimization Algorithm
The problem in Eq. (13) can be solved by the following alter-
nating algorithm.
Optimize U and V : By fixing Θ, the optimization problem
in Eq. (13) becomes:

min
U,V

1

2
‖W � (R− UV >)‖2F +

λu
2
‖U‖2F +

λv
2
‖V ‖2F

+
α

2
tr(U>ΘU). (14)

The optimization problem in Eq. (14) can be solved using the
SGD algorithm.The updating rules are as follows:

Ui ← Ui + θ
(
∆ijVj − λuUi − αΘi∗U

)
Vj ← Vj + θ

(
∆ijUi − λvVj

)
, (15)

where ∆ij = Rij − UiV >j , Θi∗ is the ith row of Θ, and θ is
the learning rate. Note the SGD updates are only performed
on the observed rating pairs D = {(ui, vj , Rij)|Wij > 0}.
Optimize Θ: By fixing U and V , the optimization problem
with respect to Θ is as follows:

min
Θ�0

tr
[
Θ(UU> + βΣ)

]
− (d+ β) log |Θ +

λu
α
I|+ γ‖Θ‖1.

(16)
2Each user is represented by a vector of her ratings on items.
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The optimization problem in Eq. (16) is convex with respect
to Θ. Therefore, the optimal solution Θ̂ to Eq. (16) satisfies:

(Θ̂ +
λu
α
I)−1 − 1

d+ β
(UU> + βΣ) =

γ

d+ β
Ĝ, (17)

where Ĝ is the sub-gradient of ‖Θ‖1 over Θ, and the ele-
ments of Ĝ are in [−1, 1]. Thus, according to the derivation
of Dantzig estimator [Candes and Tao, 2007], we drop the
constraint Θ � 0 and consider the following problem:

min ‖Θ‖1 s.t.∥∥(Θ +
λu
α
I)−1 − 1

d+ β
(UU> + βΣ)

∥∥
∞ ≤

γ

d+ β
. (18)

By multiplying Θ + λu

α I with the constraint, we obtain the
following relaxation of Eq. (18):

min ‖Θ‖1 s.t.
∥∥CΘ− E

∥∥
∞ ≤ τ, (19)

where C = 1
d+β (UU> + βΣ), E = I − λu

α C, and τ =
γ
d+β . This relaxation has been used in the constrained `1-
minimization for inverse matrix estimation (CLIME) [Cai et
al., 2011]. Indeed, the optimization in Eq. (19) is equivalent
to the following optimization problem [Liu and Luo, 2014]:

min
Θ

tr
(
Θ>CΘ

)
− tr(EΘ) + τ‖Θ‖1. (20)

Let Θ̃ be the solution of Eq. (20), which is not necessarily
symmetric. We use the following symmetrization step to ob-
tain the final Θ̂:

Θ̂ik = Θ̂ki = Θ̃ikI(|Θ̃ik| ≤ |Θ̃ki|) + Θ̃kiI(|Θ̃ik| > |Θ̃ki|),
(21)

where I(·) is an indicator function, which is equal to 1 if the
condition is satisfied, and otherwise 0. In addition, although
constraint Θ � 0 is not in Eq. (20), the symmetrized Θ̂ is
positive definite with high probability and converge to the
solution of Eq. (16) under the spectral norm, guaranteed by
Remark 1 and Theorem 1 in [Liu and Luo, 2014].

The problem in Eq. (20) can be solved by the ADMM al-
gorithm [Boyd et al., 2011]. The augmented Lagrangian of
Eq. (20) is as follows:

Lρ(Θ, Z, Y ) =tr
(
Z>CZ

)
− tr(EZ) + τ‖Θ‖1 + 〈Y,Θ− Z〉

+
ρ

2
‖Θ− Z‖2F , (22)

where Y is a scaled dual variable and ρ > 0. We can obtain
the following ADMM updates:

Θt+1 = arg min
ρ

2
‖Θ− Zt + Y t‖2F + τ‖Θ‖1, (23)

Zt+1 = arg min
ρ

2
‖Θt+1 − Z + Y t‖2F + tr(Z>CZ)− tr(EZ),

(24)

Y t+1 = Y t + Θt+1 − Zt+1. (25)

The closed solution to Eq. (23) is as follows:

Θt+1 = soft
[
Z − Y, τ

ρ

]
, (26)

Algorithm 1: PRMF Optimization Algorithm

Input : D, Σ, d, λu, λv , α, β, γ, θ, ρ
Output: U , V , Θ

1 if β > 0 then
2 X ← SV D(Σ, d);
3 Initialize U and V randomly, and set Θ = I;
4 for iter = 1, 2, . . . ,max iter do
5 for t = 1, 2, . . . , T do
6 foreach (ui, vj , Rij) ∈ D do
7 Ui ← Ui + θ

(
∆ijVj − λuUi − αΘi∗U

)
;

8 Vj ← Vj + θ
(
∆ijUi − λvVj

)
;

9 if β = 0 then
10 Û = 1√

d
U ; τ = γ

d ;

11 else
12 Û = [ 1√

d+β
U,

√
β√
d+β

X]; τ = γ
d+β ;

13 Z0 = Θ; Y 0 = 0; E = I − λu

α Û Û
>;

14 P = I − 1
ρ Û(I + 1

ρ Û
>Û)−1Û>;

15 for t = 0, 1, . . . ,K − 1 do
16 Θt+1 = soft

[
Zt − Y t, τρ

]
;

17 Zt+1 = P ( 1
ρE + Θt+1 + Y t);

18 Y t+1 = Y t + Θt+1 − Zt+1;

19 Compute Θ by symmetrizing ΘK using Eq.(21);

where

soft
[
A, λ

]
=

{
Aij − λ if Aij > λ,
Aij + λ if Aij < −λ,

0 otherwise.
(27)

The solution to Eq. (24) is as follows:

Z = (
1

ρ
C + I)−1(

1

ρ
E + Θ + Y ). (28)

The time complexity of the inverse operation in Eq. (28) is
O(m3). As Σ is symmetric, to improve the computation effi-
ciency, we consider the following approximation Σ ≈ XX>,
where X ∈ Rm×d. In this paper, we obtain X by factorizing
Σ using SVD and choosing the singular vectors with respect
to the top d largest singular values (see line 2 in Algorithm 1).
Let Û = [ 1√

d+β
U,

√
β√
d+β

X] ∈ Rm×2d. When the prior co-

variance matrix Σ is not available, we set Û = 1√
d
U . Then,

C ≈ Û Û>. Following Woodbury matrix identity, we have

(
1

ρ
C + I)−1 ≈ I − 1

ρ
Û(I +

1

ρ
Û>Û)−1Û>. (29)

Using this matrix operation, the time complexity of the up-
date of Z in Eq. (28) becomes O(dm2). The details of the
optimization algorithm are summarized in Algorithm 1. At
each iteration, the time complexity of the SGD updates is
O(T · |D| · m̄ · d), where m̄ denotes the average number
of nonzero elements in a row of Θ. Thus, the sparsity of
Θ can help improve the computation efficiency of the pro-
posed method. The time complexity of the ADMM updates
is O(K · d ·m2).
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4 Experiments
We conduct empirical experiments on real datasets to demon-
strate the effectiveness of the proposed method.

4.1 Experimental Setting
Datasets
The experiments are performed on four public datasets:
MovieLens-100K, MovieLens-1M3, Ciao, and Epinions4.
MovieLens-100K contains 100,000 ratings given by 943
users to 1,682 movies. MovieLens-1M consists of 1,000,209
ratings given by 6,040 users to 3,706 movies. We denote these
two datasets by ML-100K and ML-1M, respectively. For the
Ciao and Epinions datasets, we remove the items that have
less than 3 ratings. Finally, on Ciao dataset, we have 185,042
ratings given by 7,340 users to 21,881 items. On Epinions
dataset, there are 642,104 ratings given by 22,112 users to
59,104 items. The densities of the rating matrices on these
datasets are 6.30% for ML-100K, 4.47% for ML-1M, 0.12%
for Ciao, and 0.05% for Epinions. Moreover, on Ciao and
Epinions datasets, we have observed 111,527 and 353,419 so-
cial relationships between users. The densities of the social
relation matrices are 0.21% for Ciao and 0.07% for Epinions.
Table 1 summarizes the details of the experimental datasets.
For each dataset, 80% of the observed ratings are randomly
sampled for training, and the remaining 20% observed ratings
are used for testing.

Evaluation metrics
The performances of the recommendation algorithms are typ-
ically evaluated by two most popular metrics: mean absolute
error (MAE) and root mean square error (RMSE), which are
defined as follows:

MAE =
1

|Dtest|
∑

(ui,vj)∈Dtest

|Rij − R̂ij |, (30)

RMSE =

√√√√ 1

|Dtest|
∑

(ui,vj)∈Dtest

(Rij − R̂ij)2, (31)

where Rij denotes observed rating in testing data, R̂ij is the
predicted rating, and Dtest denotes the set of tested ratings.

Evaluated recommendation methods
We compare the following methods: (1) PMF: This is the
probabilistic matrix factorization model [Mnih and Salakhut-
dinov, 2007]. (2) SRimp: This is the SR method that exploits
users’ implicit social relationships for recommendation [Ma,
2013]; (3) SRexp: This is the SR method that exploits users’
explicit social relationships for recommendation [Ma et al.,
2011]; (4) LOCABAL: This is the social recommendation
model that exploits both local and global social contexts for
recommendation [Tang et al., 2013]; (5) eSMF: This method
extends LOCABAL to consider the graph structure of social
neighbors for recommendation [Hu et al., 2015]; (6) PRMF:
This method learns users’ dependencies without prior infor-
mation. The objective function is Eq. (10); (7) PRMFimp:

3http://grouplens.org/datasets/movielens/
4http://www.public.asu.edu/ jtang20/datasetcode/truststudy.htm

Table 1: The statistics of the experimental datasets.
ML-100K ML-1M Ciao Epinions

#Users 943 6,040 7,340 22,112
#Items 1682 3,706 21,881 59,104
#Ratings 100,000 1,000,209 185,042 642,104
Rat. Den. 6.30% 4.47% 0.12% 0.05%
#Soc. Rel. N.A. N.A. 111,527 353,419
Soc. Den. N.A. N.A. 0.21% 0.07%

Table 2: Performance comparisons on datasets without users’ ex-
plicit social relationships.

Dataset Method RMSE MAE

ML-100K

PMF 0.9251±0.0021 0.7314±0.0017
SRimp 0.9205±0.0013 0.7290±0.0008
PRMF 0.9157±0.0006 0.7226±0.0005
PRMFimp 0.9132±0.0003 0.7210±0.0005

ML-1M

PMF 0.8728±0.0029 0.6807±0.0023
SRimp 0.8621±0.0008 0.6739±0.0006
PRMF 0.8592±0.0009 0.6738±0.0010
PRMFimp 0.8572±0.0009 0.6727±0.0010

This is the proposed method that exploits users’ implicit so-
cial relationships as prior knowledge to learn users’ depen-
dencies; (8) PRMFexp: This is the proposed method exploit-
ing users’ explicit social relationships as prior knowledge to
learn users’ dependencies.

Parameter settings
Cross-validation is adopted to choose the parameters for each
evaluated algorithm. The validation data is constructed by
randomly chosen 10% of the ratings in the training data.
For matrix factorization methods, the dimensionality of la-
tent space d is set to 10. The latent features of users
and items are randomly initialized by a Gaussian distribu-
tion with mean 0 and standard deviation 1/

√
d. Moreover,

we set the regularization parameters λu = λv and choose
the parameters from {10−5, 10−4, · · · , 10−1}. For PRMF,
α is chosen from {2−5, 2−4, · · · , 2−1}, θ is chosen from
{2−5, 2−4, · · · , 2−1}. For simplicity, we empirically set γ =
10−4, β = 10, and ρ = 100. For SR methods, the reg-
ularization parameter α is chosen from {2−7, 2−6, · · · , 20}.
The user similarity is computed using Pearson correlation co-
efficient, and we set the threshold of the user similarity at
0.75 and N = 10, following [Ma, 2013]. The parameters of
LOCABAL and eSMF are set following [Tang et al., 2013]
and [Hu et al., 2015]. For each algorithm, we repeated the
experiments five times with different random seeds. The re-
sults reported are average of the five runs.

4.2 Summary of Experimental Results
Table 2 summarizes the experimental results on the datasets
without users’ explicit social relationships, and Table 3 sum-
marizes the results on the datasets with users’ explicit social
relationships. We make the following observations:
• On all datasets, PRMF outperforms PMF by 0.94% on

ML-100K, 1.36% on ML-1M, 7.05% on Ciao, and 5.16%
on Epinions, in terms of RMSE. This indicates the recom-
mendation accuracy can be improved by jointly learning
users’ preferences and users’ dependencies.
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Figure 1: Performance trend of PRMFimp on the ML-100K and Ciao datasets measured by RMSE with different settings of γ.

Table 3: Performance comparisons on datasets with users’ explicit
social relationships.

Dataset Method RMSE MAE

Ciao

PMF 1.1031±0.0045 0.8439±0.0034
SRimp 1.0597±0.0042 0.8234±0.0036
SRexp 1.0286±0.0029 0.7951±0.0020
LOCABAL 1.0777±0.0039 0.8330±0.0022
eSMF 1.0592±0.0043 0.8122±0.0010
PRMF 1.0326±0.0030 0.8006±0.0023
PRMFimp 1.0305±0.0030 0.7993±0.0023
PRMFexp 1.0258±0.0035 0.7980±0.0025

Epinions

PMF 1.1613±0.0022 0.8932±0.0019
SRimp 1.1321±0.0054 0.8874±0.0016
SRexp 1.1263±0.0027 0.8795±0.0023
LOCABAL 1.1289±0.0008 0.8734±0.0010
eSMF 1.1306±0.0025 0.8749±0.0025
PRMF 1.1097±0.0024 0.8703±0.0022
PRMFimp 1.1081±0.0023 0.8691±0.0022
PRMFexp 1.1085±0.0024 0.8695±0.0022

• Compared with SRimp, PRMFimp achieves better results
on all datasets. For example, in terms of RMSE, PRMFimp

outperforms SRimp by 0.73%, 0.49%, 2.92%, and 2.40%,
respectively. This shows that users’ dependencies learned
from the rating data are more effective than the user de-
pendencies pre-defined based on users’ implicit social re-
lationships, for improving the recommendation accuracy.

• The proposed PRMFexp method outperforms several ex-
isting social recommendation methods that exploit users’
explicit social relationships for recommendation. On the
Ciao and Epinions datasets, the average improvements of
PRMFexp over SRexp, LOCABAL, and eSMF, in terms of
RMSE, are 1.03%, 3.60%, 2.77%, respectively. This again
demonstrates the effectiveness of the proposed method.

• PRMFimp and PRMFexp outperforms PRMF on all
datasets. This observation consistently indicates the prior
information about user dependencies (i.e., users’ explicit
and implicit social relationships) are beneficial in improv-
ing recommendation accuracy. However, the improve-
ments are not very significant. One potential reason is the
SVD factorization used in Algorithm 1 (line 2) may not
accurately approximate the prior covariance matrix.

In addition, we also study the impact of the sparsity of
the learned user dependency matrix Θ on the recommen-
dation accuracy. We choose the regularization parameter

γ from {0, 10−4, 10−3, 10−2, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 10}.
Figure 1 shows the performance trend of PRMFimp on the
ML-100K and Ciao datasets, in terms of RMSE. Observed
that the sparsity of Θ increases with the increase of γ. As
shown in Figure 1(a), denser user dependency matrix gen-
erally achieves better recommendation accuracy. However,
denser user dependency matrix causes more computation
time used to learn the user latent features. Indeed, there ex-
ists some balance between the computation efficiency and the
recommendation accuracy. For example, on the ML-100K
dataset, by setting γ to 0.3, the sparsity of the learned Θ is
65.21%, and the RMSE value is 0.9149, which is 0.56% bet-
ter than the best competitor SRimp. Moreover, Figure 1(b)
also indicates that better recommendation accuracy may be
achieved by learning a sparse Θ. For example, on the Ciao
dataset, the best recommendation accuracy is achieved by set-
ting γ to 0.1, and the sparsity of the learned Θ is 83.67%.
On the ML-1M and Epinions datasets, we have similar ob-
servations with that on the ML-100K dataset. Due to space
limitation, we do not report those results here.

5 Conclusion and Future Work
In this paper, we propose a novel recommendation method,
namely probabilistic relational matrix factorization (PRMF).
For a specific recommendation task, the proposed approach
jointly learns users’ preferences and the dependencies be-
tween users, to improve the recommendation accuracy. Em-
pirical results on real datasets demonstrate the effectiveness
of PRMF, in comparison with strong baseline algorithms.

The future work will focus on the following directions.
First, we would like to develop more efficient optimization
algorithms for PRMF using the parallel optimization frame-
work [Wang et al., 2013]. Second, we are also interested in
extending PRMF to solve top-N item recommendation prob-
lems with users’ implicit feedback. The potential directions
are adopting logistic matrix factorization [Johnson, 2014;
Liu et al., 2016] or ranking metrics optimization meth-
ods [Zhao et al., 2011] to model users’ implicit feedback.
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