
Stochastic Least Squares Learning for Deep
Architectures

Girish Kumar∗, Jian Min Sim†, Eng Yeow Cheu‡ and Xiaoli Li§
∗ NUS High School of Mathematics and Science, Singapore 129957

Email: girishvilla@gmail.com
†Exploit Technologies Pte Ltd, A*STAR (Agency for Science, Technology and Research), Singapore 138671

Email: sim jian min@etpl.sg
‡Rolls Royce Singapore Pte Ltd

Email: engyeow.cheu@rolls-royce.com
§Institute for Infocomm Research, A*STAR, Singapore 138632

Email: xlli@i2r.a-star.edu.sg

Abstract—In this paper, we present a novel way of pre-training
deep architectures by using the stochastic least squares autoen-
coder (SLSA). The SLSA is based on the combination of stochastic
least squares estimation and logistic sampling. The usefulness of
the stochastic least squares approach coupled with the numerical
trick of constraining the logistic sampling process is highlighted
in this paper. This approach was tested and benchmarked against
other methods including Neural Nets (NN), Deep Belief Nets
(DBN), and Stacked Denoising Autoencoder (SDAE) using the
MNIST dataset. In addition, the SLSA architecture was also
tested against established methods such as the Support Vector
Machine (SVM), and the Naive Bayes Classifier (NB) on the
Reuters-21578 and MNIST datasets. The experiments show the
promise of SLSA as a pre-training step, in which stacked of SLSA
yielded the lowest classification error and the highest F-measure
scores on the MNIST and Reuters-21578 datasets respectively.
Hence, this paper establishes the value of pre-training deep neural
network, by using the SLSA.

I. INTRODUCTION

Deep architectures orginate from Artificial Neural Net-
works (ANN), a machine learning method inspired by the way
biological neurons function [1]. ANNs are typically trained
with gradient-descent based methods amongst which, error
backpropagation is the most common approach. While this
has proven to be feasible, it has a number of limitations
such as poor scaling with learning time, and poor resulting
local optima. As such, deep architectures have long been
difficult to tackle using supervised methods such as error
backpropagation, which may not be efficient for practical
purposes [2].

A breakthrough occurred in 2006 when Hinton et. al.
[3] proposed a novel approach by treating deep, directed
networks as a composition of individual units called Restricted
Boltzmann Machines (RBMs) [4]. Multiple RBMs are pre-
trained using a greedy algorithm layer by layer to obtain good
initial weights that can later be stacked together to form a
Deep Belief Net (DBN). A DBN can then be fine-tuned using
gradient descent [5], [3]. Other approaches include replacing
RBMs with autoencoders for pre-training in which Bengio et.
al. reported that the results were comparable to that of Deep
Belief Nets (DBNs) [6].

However, the approaches used in architectures such as

DBNs and SDAEs are still susceptible to local minima. To
overcome this issue, we present the SLSA architecture which
combines stochastic least squares estimation with constrained
logistic sampling. The motivation for the proposed method
stems from the similarity between the logistic sampling process
and the stochastic nature of neuro-biological process in which
the neurons are activated when the membrane potential exceeds
the firing threshold [7]. Because the stochastic nature of the
logistic sampling process provides a way for solutions to
escape local minima more easily, our proposed method was
shown to converge much faster (c.f. Section IV). In addition,
the least squares approach helped SLSA achieved better results
than established methods such as DBN, SVM and NB (c.f.
Section IV).

II. LITERATURE REVIEW

Stochastic and deterministic methods have been used to
train individual units that can be stacked to make up a
deep neural net. The following section aims to highlight the
differences between such units which include the Restricted
Boltzmann Machine (RBM), Principal Component Analysis
(PCA), Kernel PCA (KPCA), stochastic KPCA, stochastic
autoencoder, and denoising autoencoder.

A. Restricted Boltzmann Machine

Restricted Boltzmann Machine (RBM), a bipartite graph
variant of the boltzmann machine, is essentially an energy-
based probability model to infer hidden variables [8]. The
bipartite nature of the RBM means that it does not allow
connections among units in each layer [9], which makes it
efficient in learning [8].

RBMs are trained as probabilistic models by maximizing
a log-likelihood criterion [4]. To achieve this, contrastive
divergence (CD) is used to efficiently approximate the log-
likelihood gradient of RBMs [10], [11], [12]. The RBM learns
in an unsupervised fashion with a stochastic element being
introduced in the random sampling process. The CD algorithm
updates the weights from the following:

W t+1 =W t + ε (htvt − ht+1vt+1) (1)

where the subscript t represents the number of iterations, v is
the visible inputs, h is the hidden vector, and ε is the learning
rate.

Pre-training of stacked RBMs, known as a Deep Belief Net
[13], is explicitly done by constantly treating the hidden layer
of one RBM as the visible inputs to the next RBM to form
a stacked RBM architecture according to the desired number
of layers. The pre-training stage helps to generate good initial
weights for supervised fine-tuning via error backpropagation
on the entire architecture.

B. Autoencoder

The autoencoder can be viewed as a two-layer building
block for training deep architectures, with the first layer as
the mapping for the encoding process and the next layer as
the decoding mapping. The encoder maps the input, v, into
the hidden representation, h, while the decoder reconstructs
the inputs, v̂, from the hidden representation. The general
form of the encoding and decoding process can be represented
mathematically as follows:

fencode = g(Wv + b) (2)
fdecode = k(V fencode + c) (3)

where W and V are weight matrices, b and c are the bias
vectors, and g and k are the mapping functions for the encoder
and decoder respectively.

The individual autoencoder is often trained using super-
vised aproaches such as the different variants of the error
backpropagation method. Using the layer-wise training strat-
egy for DBN, the RBM can be replaced by an autoencoder
to generate a stacked autoencoder [6]. The main difference
between the autoencoder and the RBM lies in the fact that
RBM is probabilistic while an autoencoder is deterministic.
Hence, the gradient of the log-likelihood of RBM is intractable
and has to be approximated by CD algorithm, while that of an
autoencoder can be computed with gradient descent.

Replacing g and k with sigmoid functions in Eqn (2) and
Eqn (3), the training objective for the stacked autoencoder
architecture is then to minimize the reconstruction cross-
entropy [6].

R = −
∑
i

vi log pi (v) + (1− vi) log (1− pi (v)) (4)

C. Principal Component Analysis

Principal component analysis (PCA), a well-known feature
extraction approach introduced in [14], can be viewed as the
linear example of the autoencoder in representation learning
[15]. PCA can be thought of as a building block, similar
to the autoencoder, which can be implemented to make the
output to be the same as the input. The only difference is the
minimization of the mean squared errors by compressing the
input vector in a code, with linear visible and hidden layers.

While PCA is a linear dimensionality reduction technique,
which takes n dimensional data and represents them compactly
in m principal directions [16], the practical advantage lies in
its ability to compress the information contained within the
data and to reconstruct the data based on the compressed

information at a later stage. On the other hand, autoencoders
can allow non-linear dimensionality reduction via non-linear
mappings [16]. Backpropagation algorithm can then be used to
train these autoencoders via a local search on the weight space
[17]. As opposed to PCA, training autoencoders will provide
the flexibility in terms of non-linear mappings, a linear learning
time and a fairly compact and fast encoding mode [16].

D. Kernel Principal Component Analysis

By introducing the kernel approach to PCA, it is possible to
achieve non-linear dimensionality reduction of the data. While
the non-linear mapping resembles that in an autoencoder, the
main difference lies in the application of the kernel trick.
This kernel trick deals with non-linear distribution of inputs
by attempting to linearize it via non-linear mapping from the
input to the feature space. This means that it is now possible
to perform linear PCA in the feature space.

KPCA can similarly be viewed as a building block for
learning deep architectures. The advantage over PCA and
autoencoder is the computation of the principal components
without the need to know the high-dimensional mapping
functions.

E. Probabilistic KPCA

In order to obtain stochastic models and non-linear high
dimensional mapping of input data, probabilistic versions of
KPCA have been proposed [18], [19], [20]. By introducing the
probability density, p (v), the probabilistic KPCA maximizes
the following log-likelihood.

L =

n∏
i=1

p (vi) (5)

This is done by first taking into account a linear combination
of a vector y and noise vector n [21].

v = Uy + µ+ n (6)

where U is a matrix to relate the two set of variable vectors y
and v, n is a noise vector and µ is a vector to offset non-zero
mean. By finding U and expressing p (v) in terms of U , Eqn
(5) can then be maximized. Introducing a stochastic element
in KPCA takes advantge of both the generative property of the
RBM and the flexibility of the kernel trick in KPCA in dealing
with non-linear input data.

F. Denoising Autoencoder

Denoising autoencoder (DAE) is a stochastic version of
the autoencoder. Because of the various limitations of the
autoencoder including the inability to guarantee extraction of
useful features and that it might learn an identity mapping,
one of the strategy is to introduce a bottleneck or sparse
representation [15], [22]. The idea of a denoising autoencoder
is to alter the reconstruction criterion to make learning good
representation more robust under corruption of the inputs,
c.f. Eqn (6). As opposed to the vanilla autoencoder, the
introduction of input corruption in the denoising autoencoder
brings about a more robust representational learning compared
to the basic autoencoder as a result of the corruption process.

Fig. 1. The architecture of the proposed stochastic least squares autoencoder
which is based on logistic sampling process.

Denoising autoencoders can also be stacked like a building
block, to obtain the stacked denoising autoencoder which is
introduced by Vincent et. al. [23].

III. THE PROPOSED TECHNIQUE

The proposed stochastic least squares autoencoder (SLSA)
in Fig. 1 is developed upon the encoding-decoding concept
employed by autoencoders in Section II. The main novelty in
SLSA is the simple stochastic least squares solution which is
derived by Singular Value Decomposition (SVD) on a sparse
random matrix, of which, is generated by the logistic sampling
process inherently introduced by sampling the sigmoid activa-
tion function associated with the hidden nodes. The encoding
weights and decoding weights are tied i.e. they are transposes
of one another. The logistic sampling process maximizes the
likelihood of certain specific data samples during the encoding
process and the least squares solution generated by SVD during
the decoding process minimizes the sum of squared errors.
The recurrent stochastic encoding and least squares decoding
process will lead to the asymptotic convergence of the weight.

Similar to the RBM, SLSA can be seen as an energy-based
model such that energy of the model is minimized. Hence, to
achieve the descent of the energy function with iterations, we
will have to establish that the competing natures of both h and
W will lead to the asymptotic convergence of the new energy
function in Eqn (7) [8].

Energy (v,h) = −hTWv − cTh− bTv (7)

where b and c are the visible and hidden biases respec-
tively.
The first layer of hidden nodes first computes the dot product
of the input vector v and the weight matrix W . The output
of this hidden layer of SLSA as shown in Fig. 1 represents
the sparse representative code h of the input data v after
sampling from the logistic activation function associated with
the nodes. This encoding process is likened to the activation
of the biological neuron when its membrane potential exceeds
the firing threshold such that a value of 1 represents the
corresponding hidden node is activated and a value of 0 non-
activation of the node. The input data v is then recovered by
gating the dot product of the sparse code h with the transpose
of the weight W T through logistic activation function at the
decoding stage. Similar to the encoding and decoding process
in Eqn (2) and Eqn (3) respectively, the SLSA architecture can
be expressed mathematically in Eqn (8),

v = sigm
(
sigmrnd (vW t + bt) ·W T

t

)
(8)

where g is represented by sigmrnd (i.e. logistic sampling), k
by sigm (i.e. sigmoid function) and V by W T.

The kernel function g and k in Eqn (2) and Eqn (3)
respectively can either represent linear or non-linear mapping
functions. The simpler case of affine mapping functions and
squared error loss criterion will correspond to PCA. It is
possible for the solution to remain in the linear segment of
the sigmoid function, and obtaining the PCA subspace is only
a likely possibility [24]. In order to lower the possibility of a
PCA subspace solution, weights are tied between the encoder
and decoder (i.e. the weight matrix used in the decoder is
a transpose of that in the encoder). In addition, tying the
weights as a constraint helps to avoid having perfect but useless
reconstruction via an identity mapping [15], [2].

Hence, the weight update rule is simply reformulated from
Eqn (8) into Eqn (9) and Eqn (10),

W T
t+1 = pinv (sigmrnd (vW t + bt)) · x (9)
bt+1 = −Q (vW t+1, q) (10)

where x is defined in Eqn (11), Q is the quantile function,
vW t+1 and q are inputs to the function. The Quantile function
provides a value which is more than fraction q of the vector
vW t+1. As such, q governs the the faction of input data
samples with less than 50% chance of activating the hidden
node.

Since logit function extends to negative and positive infinity
when v is 0 and 1 respectively, a simple numerical approxi-
mation is applied to limit the logit function from producing an
infinite value and causing numerical computation error. Here,
any value less than -10 will be capped at -10, and any value
more than 10 will be capped at 10. This constraint effective
clips the logit function within -10 and 10. Why -10 and 10?
Firstly, this is because the sigmoid of these values are already
very close to 0 and 1 respectively. Secondly, it is less important
to further distinguish data points that are already far from the
decision margin. Furthermore, the values are further scaled
down to -1 and 1. This is done to prevent saturation and more
to capture the relative importance of the different features. This
numerical approximation is summarized in Eqn (11).

Fig. 2. An example to illustrate the relationship between the bias associated
with every hidden node and the sparsity of the hidden layer code h.

x =

{
max(y,−10)/10 if y < 0
min(y, 10)/10 if y ≥ 0

(11)

where y = logit(v).

A. Quantile Parameter

As proposed by Hinton [4], the method to minimize the
training error would be to use parameters such as size of
mini-batches, learning rate, momentum, weight decay, initial
weights and biases, and the number of hidden units. We
propose an additional parameter q to determine the sensitivity
of each neuron to the data samples. In this paper, the quantile
parameter q was used as an important parameter, which is de-
fined as the fraction of samples which will have less than 50%
likelihood of firing the hidden node. This quantile parameter
q provides a way to adjust the sparsity of the random hidden
code h through the bias term b.

The bias term b determines the mean of the sigmoid
activation functions for the hidden nodes. Increasing the bias
term increases the likelihood for a data sample to fire the
hidden node. Thus, increasing the bias term is also equivalent
to shifting the logistic function towards the left. Decreasing the
bias term does the inverse. In the example as shown in Fig.
2, the quantile parameter q is set to 0.97 and the bias for one
of hidden nodes is -1.7965 as determined by Eqn (10). Here,
only 3% of the data samples have more than 50% likelihood
to activate the particular node.

B. Logistic Sampling

The stochastic nature of the SLSA arises from the logistic
sampling process introduced through the sigmrnd function
in Equation 8. Through the sigmrnd function, we sample
hidden neurons using a sigmoidal cummulative distribution
function (CDF). Since the sigmoid function is the CDF of the
logistic distribution, we model the data points as following a
logistic distribution. Note that the SLSA can be used to model
data following other distributions via modifying the activation
function of the neurons and the weight-update rule.

C. Singular Value Decomposition (SVD)

The term in Eqn (9), sigmrnd (vW t + bt), is computed
using the Moore-Penrose pseudo-inverse method [25] which is
based on the concept of Singular Value Decomposition (SVD)
[26]. Taking the SVD on the term result in Eqn (12),

sigmrnd (vW t + bt) = U
∑
V ∗ (12)

where U and V are real or complex unitary matrices,
∑

is a
rectangular diagonal matrix with non-negative real values on
the diagonals and V ∗ is the conjugate transpose of V . Hence,
computing the Moore-penrose pseudoinverse is simply,

pinv (sigmrnd (vW t + bt)) = V pinv
(∑)

U∗ (13)

The pseudoinverse of the diagonal matrix,
∑

, is computed by
taking the reciprocals of the diagonal elements. Since the rank
of the term sigmrnd (vW t + bt) and hence the rank of the new
weight matrix W t+1, as shown in Eqn (9), can be obtained
by reading off from its SVD, this can be determined by the
number of diagonal elements of

∑
not exceedingly close to

zero. Since the rank of the matrix corresponds to the number of
linearly independent solutions, the number of unique solutions
in a system of equations consisting of each dimension that is
made up of the pre-determined number of neurons. Hence, the
usage of SVD in the computation of the pseudoinverse leads
to each dimension of a sample selecting the unique neurons
that are able to describe it.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our proposed stacked stochastic
least squares autoencoders technique SLSA and compare it
against 3 existing state-of-the-art techniques, namely, stacked
denoising autoencoders (SDAE), Deep Belief Net (DBN), and
Neural Nets (NN). Note the implementations of SDAE, DBN,
and NN were obtained from a MATLAB package developed
by Rasmus (Palm, 2012). Stacking is done similar to the DBN
and SDAE. The hidden layer activation of the first layer will
be the input to the second layer. Each layer is trained greedily,
one after another.

In the experiments, we have tested the above techniques on
two different yet commonly used classification problems, i.e.
1) digit classification using MNIST benchmark dataset, and
2) text classification using Reuters benchmark datasets. For
both experiments, we have employed two layers of network
consisting of 1500 nodes in the first layer and 500 nodes in
the second layer, with the quantile parameter q set to 0.97
(Eqn 10). For the length of the training time, 50 epochs were
used for pre-training, while 500 epochs were used for training
the neural net. For fair comparison, the same parameter values
have been used for all the architectures. The detailed results are
described in following Sections IV-A and IV-B respectively.

A. Digit Classification Problem

We have performed the experiments using the standard
MNIST benchmark digit classification dataset, with 60, 000
training examples and 10, 000 test examples [27].

Fig. 3 shows an example of the visualization of the digits
using one layer of 100 hidden nodes that are pre-trained with

Fig. 3. A visualization of the digits using one layer of 100 hidden nodes
pre-trained with SLSA.

Fig. 4. A visualization of the digits using one layer of 100 hidden nodes
pre-trained with RBM.

TABLE I. ERROR RATES ON THE MNIST TEST SET

DBN SDAE NN SLSA
Error Rate (%) 1.3 1.3 1.4 1.3

SLSA. In contrast, Fig. 4 shows the same visualization with
pre-training by RBMs. While the main difference lies with
the resulting clarity of the images, it also emphasizes that the
RBMs needed more layers to be trained.

Table I shows that the SLSA architecture is able to achieve
0.1% less error rates than the NN respectively, and has the
same lowest error rate with SDAE and SBN. Compared with
all the other architectures (Fig.6), SLSA is able to converge
much faster. This is could be due to the gradient descent
approach used by the other architectures which leads to the
bigger number of epochs when solution gets stuck in a local
minima. On the other hand, the logistic sampling process
facilitates SLSA escape from local minima and thus converge
quickly. Fig. 5 shows the typical asymptotic convergence of the
energy function against the length of pre-training with SLSA,
indicating that SLSA is able to quickly reduce the average
energy within just around 15 epochs. The ripples highlight the
stochastic nature of the logistic sampling process.

Fig. 6 and Fig. 7 further illustrate the value of pre-training

Fig. 5. The plot of average energy against number of epochs for SLSA using
a layer of 100 hidden nodes.

Fig. 6. Plot of convergence rates of different methods for test errors using
the dropout method [28] during the supervised learning phase.

with individual units such as RBM, DAE and SLSA, as
described in Sections II-A and II-F, in which SLSA, DBN
and SDAE performed better than NN in terms of the rate of
convergence. Without pre-training, NN is unable to achieve a
lower error rate due to its gradient descent approach that could
cause the solution obtained to fall into a poor local minima.
In addition, the results shown in Table I and Fig. 6 highlight
the value of pre-training specifically with the proposed method
of using SLSA, in which the error rate is similar to the best
result obtained by SDAE and the rate of convergence is the
best among SDAE, DBN and NN.

B. Text Classification Problem

We have also evaluated the proposed SLSA technique by
comparing it with existing techniques using the Reuters-21578
text collection, which is commonly used as a benchmark
dataset for evaluating text classification methods. In addition to
the existing techniques like DBN, SDAE, we also incorporate
two state-of-the-art classification methods, namely, Support

Fig. 7. Plot of convergence rates of different methods for training errors.

TABLE II. CATEGORIES AND NUMBERS OF DOCUMENTS IN REUTERS.

acq corn crude earn grain interest money ship trade wheat
2369 238 578 3964 582 478 717 286 486 283

Vector Machines (SVM) and Naı̈ve Bayes classifier (NB),
which have been proven to perform very well on text clas-
sification tasks.

The Reuters-21578 collection contains 21578 text doc-
uments. We have used the most populous 10 out of the
135 topic categories, namely acq, corn, crude, earn, grain,
interest, money-fx, ship, trade, and wheat. Table II provides
the number of documents in each of the ten categories. In our
experiments, we build binary classification tasks using one-
vs-others fashion, where each category is used as the positive
class, and the rest of the 9 categories as the negative class,
which gives us 10 datasets. In addition, we have employed
5-fold cross validation to evaluate the F-measure, which is
the commonly used evaluation metric in text classification, of
various techniques. The results for NB and SVM are obtained
from [29].

The detailed results are shown in Table III. We observe that
deep architectures, including DBN, SDAE, SLSA, as well as
NN, perform significantly better than SVM and NB for most
Reuters data sets where SVM and NB need more training data
(like in the categories acq and corn) to build more accurate
classification models. Our proposed SLSA is able to achieve
consistently better results across all the Reuters data sets.

V. CONCLUSION

In this paper, we have shown that the SLSA is better
than the other pre-training techniques used in SDAE or DBN
in finding a good guess of the initial set of weights, which
were used for the subsequent stage of localized optimization
technique. This was supported by the low classification error
rate on the MNIST dataset and the consistently best F-measure
scores across all the Reuters data sets. In addition, the training
and test errors converge faster than other state-of-the-arts, as
shown in the experiments. As such, this paper establishes

TABLE III. THE EXPERIMENTAL RESULTS FOR REUTERS DATA SETS.

SVM NB DBN SDAE SLSA
acq 95.0 91.8 97.0 96.7 97.5
corn 8.5 38.1 96.8 96.7 97.4
crude 75.2 80.5 96.8 96.7 97.4
earn 97.7 95.0 96.8 96.7 97.4
grain 22.5 61.2 96.8 96.6 97.5

interest 59.5 61.5 96.7 96.7 97.4
money-fx 66.1 72.8 96.8 96.7 97.4

ship 46.5 68.8 96.9 96.8 97.5
trade 74.6 74.7 96.7 96.6 97.4
wheat 12.6 41.5 96.8 96.8 97.5

the value of the pre-training phase, in particular using the
SLSA, whose novelty stems from the stochastic least squares to
generate a weight update. Furthermore, the introduction of the
simple numerical trick in the logistic sampling process and an
additional parameter, quantile, help to provide more robustness
to the SLSA architecture. Using the general framework of
stochastic least squares approach and the numerical trick to
constraint the sigmoid function, further work could include
using a different activation function such as the Gaussian to
train different variation of the SLSA architecture to achieve
faster convergence and more accurate results.

REFERENCES

[1] B. Yegnanarayana, Artificial Neural Networks. PHI Learning Pvt. Ltd.,
2004.

[2] L. Arnold, S. Rebecchi, S. Chevallier, and H. Paugam-Moisy, “An
introduction to deep learning,” ESANN, 2011.

[3] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” Science, 2006.

[4] G. E. Hinton, “A practical guide to training restricted boltzmann
machines,” Momentum, 2010.

[5] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Computation, 2006.

[6] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” Advances in Neural Information
Processing Systems, 2007.

[7] E. Izhikevich, “Simple model of spiking neurons,” Neural Networks,
IEEE Transactions on, 2003.

[8] Y. Bengio, “Learning deep architectures for ai,” Foundations and Trends
in Machine Learning, November 2009.

[9] R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,” in
International Conference on Artificial Intelligence and Statistics, 2009.

[10] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Computation, 2002.

[11] O. Woodford, “Notes on constrastive divergence,” Department of Engi-
neering Science, University of Oxford, Tech. Rep.

[12] M. A. Carreira-Perpinan and G. E. Hinton, “On constrastive divergence
learning,” Artificial Intelligence and Statistics, 2005.

[13] C. Sammut and G. Webb, Encyclopedia of Machine Learning. Springer,
2010.

[14] H. Hotelling, “Analysis of a complex of statistical variables into
principal components,” Journal of Educational Psychology, 1933.

[15] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” JMLR, December 2010.

[16] G. E. Hinton, “Lecture 15: From pca to autoencoders,”
http://class.coursera.org/neuralnets-2012-001/lecture/index/, September
2013.

[17] I. Arel, D. C. Rose, and T. P. Karnowski, “Deep machine learning -
a new frontier in artificial intelligence research,” IEEE Computational
Intelligence Magazine, November 2010.

[18] Z. Zhang, G. Wang, D.-Y. Yeung, and J. T. Kwok, “Probabilistic kernel
principal component analysis,” Department of Compputer Science, The
Hong Kong University of Science and Technology, Tech. Rep.

[19] M. Alvarez and R. Henao, “Probabilistic kernel principal component
analysis through time,” Neual Information Processing, Springer Berlin
Heidelberg, 2006.

[20] L. Neil, “Probabilistic non-linear principal component analysis with
gaussian process latent variable models,” JMLR 6, 2005.

[21] H. Hoffmann, “Unsupervised learning of visuomotor associations,”
Universitat Bielefeld, Technische Fakultat, Tech. Rep., 2005.

[22] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, August 2013.

[23] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in 25th
ICML, 2008.

[24] H. Boulard and Y. Kamp, “Auto-association by multi-layer perceptrons
and singular value decomposition,” Biological Cybernetics, 1988.

[25] A. Arthur and A. Albert, Regression and the Moore-Penrose pseudoin-
verse. New York Academic Press, 1972.

[26] G. G. H. and C. Reinsch, Singular value decomposition and least
squares solutions. Numerische Mathematik, 1970.

[27] R. B. Palm, “Prediction as a candidate for learning deep hierarchical
models of data,” Technical University of Denmark, Palm, Tech. Rep.,
2012.

[28] G. E. Hinton, N. Krivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, Improving neural networks by preventing co-adaptation
of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[29] B. Liu, W. Lee, P. Yu, and X. Li, “Partially supervised classification of
text documents,” ICML Vol. 2., 2002.

