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Integrated Oversampling for Imbalanced Time 
Series Classification 

Hong CAO, Xiao-Li LI, Yew-Kwong WOON and See-Kiong NG 

Abstract—This paper proposes a novel Integrated Oversampling (INOS) method that can handle highly imbalanced time series 
classification. We introduce an enhanced structure preserving oversampling (ESPO) technique and synergistically combine it 
with interpolation-based oversampling. ESPO is used to generate a large percentage of the synthetic minority samples based 
on multivariate Gaussian distribution, by estimating the covariance structure of the minority-class samples and by regularizing 
the unreliable eigen spectrum. To protect the key original minority samples, we use an interpolation-based technique to 
oversample a small percentage of synthetic population. By preserving the main covariance structure and intelligently creating 
protective variances in the trivial eigen dimensions, ESPO effectively expands the synthetic samples into the void area in the 
data space without being too closely tied with existing minority-class samples. This also addresses a key challenge for applying 
oversampling for imbalanced time series classification, i.e. maintaining the correlation between consecutive values through 
preserving the main covariance structure. Extensive experiments based on seven public time series datasets demonstrate that 
our INOS approach, used with Support Vector Machines (SVM), achieved better performance over existing oversampling 
methods as well as state-of-the-art methods in time series classification. 

Index Terms— Oversampling, learning, imbalanced data, time series, SVM, structure preserving, classification.  

——————————      —————————— 

1 INTRODUCTION

ata imbalance is a key source of performance degra-
dation [1, 2] in machine learning and data mining. 
Existing algorithms either explicitly or implicitly 

assume a balanced class distribution, with sufficient and 
roughly equal number of learning samples for each class, 
as illustrated in Fig. 1(a). In many real world applications, 
the data available for learning are highly imbalanced, 
where one class can severely out-represent another class. 
Moreover, the minority class often represents the class of 
interest. For instance, the known instances of earthquakes 
are rare but certainly of greater interest for earthquake 
prediction than the abundant normal instances. Similar 
scenarios can be found in fraud detection in financial data 
analysis, intrusion detection in network forensics, cancer 
detection in biomedical diagnosis, object detection in 
computer vision, diagnosis and prognosis of machine 
failures, etc. In these scenarios, the positive (Pos) class, 
containing only a few sparsely distributed samples, is 
outnumbered by the negative (Neg) class, as shown in 
Fig. 1(b). Consequently, the learning algorithms tend to 
bias towards the less important Neg class with the larger 
population. 

Existing solutions attempt to address the imbalanced 
learning issue at various levels: the data level [3-8], the 
algorithm level [2, 9], or a combination of both levels [10-
14]. The methods that address the problem at the data 
level re-establish the class balance through data resam-
pling, such as oversampling of the minority class, under-
sampling of the majority class, or both. The methods that 
address the problem at the algorithm level enforce em-
phasis on the minority class by manipulating and incor-
porating learning parameters such as dataspace weight-
ing [9-11, 13], class-dependant cost matrix, and receiver 
operating characteristics (ROC) threshold [15] into con-

ventional learning paradigms. While some recent algo-
rithm-level methods reviewed in [2] have achieved good 
results on certain imbalanced datasets, we believe the 
data-level approaches hold good potential in solving the 
data imbalance issue. In particular, we investigate the 
oversampling approach in this paper as it addresses the 
imbalance issue at the most fundamental data level and 
can serve as a generic preprocessing step. In addition, 
unlike undersampling, oversampling suffers no risk of 
losing important learning samples.  

Data mining in many domains such as finance, aero-
space, entertainment, network security, and medicine, 
involve time series data [16-20]. As defined in [18], a time 
series data sample is an ordered set of real-valued vari-
ables that are sampled or extracted from a continuous 
signal, which can be either in time or spatial domain. Due 
to its sequential nature, variables that are close by in a 
time series are often highly correlated. This observation 
can be exploited for time series classification. For exam-
ple, we can compute the distance between two samples, 
known as warping distance, by searching for the optimal 
mapping path that realigns the two time series sequences. 
We can then classify a given test sample based on the la-
bel of the top-one nearest training neighbor. This is the 
algorithm for the one nearest neighbor (1NN) classifier 
with dynamic time warping (DTW) [16], which is one 
best-known learning method for time series classification. 

Clearly, the imbalanced learning problem for time se-
ries classification is much more daunting than typical 
imbalanced classification problems because of its high 
dimensionality. Very often, the number of available sam-
ples in the minority class is few as compared with the 
dimensionality. The inherent data complexity of time se-
ries classification suggests that it is sensible to address the 
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imbalance problem at the data level using oversampling, 
as oversampling has been found to be effective for re-
establishing the class balance at the data level for generic 
imbalanced classification problems. However, as far as 
we know, oversampling has not been well-explored for 
imbalanced time series classification due to the com-
plexity of the problem. In this paper, we focus on the task 
of oversampling for learning from highly imbalanced 
two-class time-series data. 

2 OVERSAMPLING FOR IMBALANCED TIME SERIES 
LEARNING 

2.1 Prior Oversampling Methods 
For learning from imbalanced two-class datasets, over-

sampling is to balance the class distribution through 
augmenting the minority-class (or positive class) with 
synthetically generated samples. One naïve approach is to 
repeat the existing positive samples as many times as nec-
essary to balance the two classes. Clearly, this would lead 
to overfitting. As such, the current oversampling solu-
tions often introduce some degree of variations when 
generating the synthetic samples. This can be done in one 
of the following two approaches. The first approach in-
terpolates between selected positive samples and their 
random positive nearest neighbors for generating the syn-
thetic samples. Well-known oversampling methods that 
adopt this approach are SMOTE [3], Borderline-SMOTE 
[6] and ADASYN [7]. Particularly, SMOTE selects all posi-

tive samples and evenly generates the synthetic samples 
from each selected seed sample. Borderline-SMOTE iden-
tifies a set of hard and non-outlier positive samples at the 
class border and evenly generates the synthetic samples 
from this border set. ADASYN adopts an adaptive ap-
proach where the number of synthetic samples to be gen-
erated for each positive sample is determined by the per-
centage of negative samples in its neighborhood. For de-
tailed description and technical differences of these inter-
polation-based methods, one can refer to Sec. 3 of the sur-
vey [2]. While SMOTE has been extended [20] for over-
sampling in the distance space where the imbalanced data 
are represented in the special format of distance matrix 
with pairwise distance, it has not been targeted for imbal-
anced time-series classification.  

The second class of oversampling approaches gener-
ates the features of the synthetic samples individually. A 
well-known method is DataBoost [13] which generates 
each feature value based on Gaussian distribution within 
an empirical range [min, max]. 

2.2 Our Solution via Structure Preservation 
As the interpolation-based approaches have been 

shown to work fairly well for various generic imbalanced 
learning tasks, we opine that they will not be adequate for 
the task of oversampling highly imbalanced time series 
datasets. As we have noted earlier, the adjacent variables 
in the time series are usually not independent but highly 
correlated. The random data variances introduced by both 
conventional oversampling approaches will weaken the 
inherent correlation structures within the original time 
series data. This will lead to the generation of non-
representative synthetic training samples with excessive 
noise that confound the classification learning.  

As such, we have designed our proposed INOS 
method with two objectives in mind: one is to preserve 
the regularized eigen covariance structure which can be 
estimated using the limited positive time series samples, 
the other is to be able to provide adequate emphasis on 
the key minority samples with the remaining oversam-
pling capacity. For the first objective, we propose a new 
enhanced structure preserving oversampling (ESPO).  
ESPO performs oversampling in the transformed signal 
space in the following steps: 1) Generating the synthetic 
samples by estimating and maintaining the main covari-
ance structure in the reliable eigen subspace; 2) inferring 
and fixing the unreliable eigen spectrum, which is insuffi-
ciently estimated due to the limited number of positive 
samples, using a regularization procedure. In this way, 
some buffer variances of the synthetic data are created in 
the trivial eigen subspace to improve the generalization 
performance on the unseen data. For the second objective, 
we use an interpolation-based method to generate a small 
percentage of synthetic samples so as to emphasize on the 
border set of existing samples, which are critical for build-
ing accurate classifiers in the subsequent steps.  

Compared with our previous preliminary SPO work 
[26], the current proposed INOS method differs and im-
proves in the following aspects: 1) The oversampling is 
performed in the signal space with improved efficiency 

(b) 

(a) 

Fig. 1. Comparison of the balanced class population in (a) and the 
practical imbalanced distribution in (b) in 2D (two-dimensional) fea-
ture space. The data is synthetically generated for illustration pur-
pose. 
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and no risk of artificially introducing variances in the 
common null space; 2) The cleaning mechanism is redes-
igned to remove the “noise links” or pairs of positive and 
negative samples on the classification border with good 
efficiency; 3) We further reserve a small percentage of 
oversampling capacity for protective interpolation-based 
oversampling on the positive-class boundary, which pro-
duces better classification performance. For evaluation, 
we apply INOS with Support Vector Machines (SVM) 
classification to show that INOS outperforms current 
oversampling methods and that our classification results 
are highly competitive with other state-of-the-art methods 
for time series classification. 

3 THE PROPOSED LEARNING FRAMEWORK 
Fig. 2 shows the workflow of our proposed INOS frame-
work. Given an imbalanced two-class time series dataset, 
we first remove the common null space by transforming 
the learning data into the signal space. Then, we perform a 
large portion of oversampling using enhanced structure 
preserving oversampling (ESPO): 1) Estimate the posi-
tive-class covariance and perform eigen decomposition 
and spectrum regularization; 2) Conduct oversampling 
by conforming to the regularized covariance structure. In 
parallel, a small portion of the remaining synthetic sam-
ples are generated using a nearest-neighbor interpolation 
method for oversampling. The resulting collective syn-
thetic positive samples are then integrated to balance the 
original learning dataset. Here, the word “balance” refers 
to equal number of learning samples from each class and 
previously the work in [7] shows that the test error per-
formance reduces when the learning data become more 
and more balanced through oversampling. After over-
sampling, we employ Support Vector Machines to learn a 
time series classifier from the balanced dataset. The de-
tails of the procedures are described in the following sec-
tions. 

3.1 Removal of Common Null Space 
Given the positive and the negative learning datasets, 
P={x11, x12, …, x1|P|} and N={x01, x02, …, x0|N|}, where 

N P , 1n
ijx and n denotes the time series length or 

dimension, our oversampling algorithm first computes 
the total covariant matrix using 

1 1 0 0=1 1

P N TT
i i j jjW i

T P N
=

+

x x x x x x x x
 (1) 

where 
1 1

1 P N
1i 0ji j

= +
P + N

x x x  is the mean vec-

tor. We perform eigen decomposition on WT using 

L W LT
T=                                 (2) 

where L=[l1, …, lj, …, ln], lj  is the j-th eigenvector, and A 
is a diagonal matrix with the corresponding eigenvalues 
a1 … aj … an organized in descending order. Very often, 
we can observe a string of trailing zeros among the eigen-
values, i.e. aj=0 for m<j n. This allows us to decompose 
the eigenvector space into two subspaces as: 

s nuL L L                            (3) 

where Ls=[l1, …, lm] consists of eigenvectors in the signal 
space and Lnu=[lm+1, …, ln] forms the null space such that 

0iWT l for all i>m. Previous works [24, 25] have pointed 
out that the common null space of the total covariance 
matrix does not contain useful information and can be 
effectively removed for enhanced discriminant perform-
ance. We therefore remove the null space through feature 
transformation. From Eqn (2) and (3), we write the fol-
lowing transformation for a training time series vector xij, 

T
T s ijT

ij s nu ij T
nu ij

L
L L L

L
x

x x
x

             (4) 

As T
nu ijL x  contains no data variance in the null space, it is 

easy to map T T
nu ij nuL Lx x  and Eqn (4) becomes 

T
T s ij

ij T
nu

L
L

L
x

x
x

                            (5) 

By removing the constant term L T
nu x , we can simply use  

 ij s ijL T= xq                                 (6) 

to fully represent xij in a lower-dimensional signal space. 
Derived from Eqn (5), xij can also be fully recovered from 
qij using  

ij T
nu

q
x = L

L
ij

x
                           (7)          

Our removal of the null space is to use Eqn (6) to trans-
form each of our training time series vectors to a low di-
mensional signal space. Note that in the scenario of high 
feature dimensionality, i.e. a large n, the number of zero 
eigenvalues can be significant. The transformation in Eqn 
(6) has two advantages: first, we can perform the over-
sampling computation more efficiently in the lower di-

Fig. 2. Block diagram of the proposed integrated oversampling framework 

ENHANCED STRUCTURE PRE-

SERVING OVERSAMPLING 
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mensional space; second, it eliminates the potential risk 
that the oversampling method artificially introduces data 
variance in the common null space, which originally con-
tains no data variance. 

3.2 Enhanced Structural Preserving Oversampling 

3.2.1 Positive-Class Eigen Spectrum Regularization 
After removing the common null space, we further com-
pute the positive-class covariance matrix using 

1j
W

TP
P j jP 1 1 1 1

1= q q q q             (8) 

1 11

1 P

jjP
q q  denote the corresponding positive-class 

mean vector. On the positive training data covariance 
matrix WP, we then perform eigen decomposition using 

=D V W VT
P                 (9) 

where D is a diagonal matrix with the eigenvalues 
d1 … dj … dn organized in descending order and V=[v1, 
…, vj, …, vm] is the corresponding eigenvector matrix. The 
eigenvectors in V satisfy = 0Wv vT

i P j  for i j. Here, covari-
ance matrix WP is a symmetric positive semi-definite ma-
trix. In other words, dj 0 must be satisfied for 1 j m and 
dj represents the projection variance on the jth eigenvector 
for the positive training data. Suppose we have a large 
number of positive samples, all the eigenvalues {dj} shall 
be greater than zero and from Eqn (9), we derive 

1 1
1

1
j j

I VD W VD F W F

F F F F

T T
m P P

P
T T

j j
jP

1 2 1 2

T T
1 1

= =

q qq q
    (10) 

where 1 2
1 1= = [ , , , , ]F VD v v vj j n nd d d   repre-

sents a scaled transformation so that our transformed 

feature vectors FT j ,1 j P1{ }q  of the positive samples 
have a covariance structure of an identity matrix 

m mIm .  Here, the transformation F will turn an arbi-
trary full-rank covariance matrix into a simple and well-
known covariance structure of an identity matrix. This 
one-to-one mapping thus can be exploited to simplify the 
oversampling process; that is, we can generate the new 
samples based on an identity-matrix covariance structure 
and then map them into the targeted covariance structure 
using the inverse transformation of F. 

In many real world scenarios, the number of positive 
training samples ( P ) can be significantly less than the 
time series dimension n and even our reduced dimension 
m. Our estimated covariance structure cannot be fully 
trusted in such a case as it could over-adapt to the small 
set of positive time series data samples for learning. This 
can be observed in Fig. 3(a) and (b), where we find that 
the large eigenvalues are often good approximations to 
the projected variances of the test spectrum, but not the 
remaining portion of very small eigenvalues. Here, we 
compute the test spectrum by projecting a set of test posi-
tive samples onto each of eigenvectors {vj} and then calcu-
lating its corresponding projection variance. Given that 
the inverse of an eigenvalue is commonly used as a 
multiplicative term in feature scaling as seen in Eqn (5), 
the unreliable portion of the eigen spectrum is a major 
source of learning instability and poor generalization per-
formance in discriminant feature extraction [22, 23] and in 
machine learning. 

We aim to generate random synthetic samples that not 
only maintain the positive dataset’s major covariance 
structure but also generalize well on the test dataset (so as 
to ensure accurate classification results subsequently). 
Therefore, we bring in a regularization step to fix the co-
variance eigen spectrum {dj} of the positive dataset. To 
achieve this, we need to divide the eigen spectrum into 
two regions, namely, the reliable and the unreliable sub-
space, and then perform regularization on the unreliable 
spectrum. Here, we perform a c-fold cross validation (CV) 
to determine the division location between the two sub-
spaces (marked as M in Fig. 3). To do this, we randomly 

(b) 
Fig. 3. Comparison of estimated minority-class spectrum, projection variance spectrum of test data and the regularized spectrum for Yoga and 
Wafer datasets in (a) and (b) respectively. One can refer to Table I for description of the datasets 

(a) 
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divide the positive data into c equal partitions. One parti-
tion is reserved for testing and the remaining c-1 parti-
tions are used for computing the eigen vectors and the 
eigen spectrum. The testing partition is then projected 
onto the eigen vectors to measure the test variance spec-
trum. We repeat this c times to use each partition as a test 
partition once. By averaging the c eigen spectrums and 
the c testing spectrums, a good M is located where the 
average eigen spectrum departs from the test spectrum. 
In this work, given that we our dataset can have as few as 
about ten positive samples in the evaluation experiments, 
a small c=2 is chosen to avoid tiny partitions.  

With a fixed M, we then compute the regularized eigen 
spectrum using 

forˆ j M+ ,
=

, otherwisej
j

j
d

d
           (11) 

where ( ) = ( + )T j j  is a smooth eigen spectrum model 
in [22]. We use T(1)=d1 and T(M)=dM to ensure the smooth 
transition and compatibility of the two spectrum regions 
with the two parameters determined as follows: 

,1 1

1 1

1
= =M M

M M

d d M Md d
d d d d

              (12) 

3.2.2 Oversampling with Preserved Covariance 
We generate a total of rN P  synthetic positive 

samples (to contribute to a balanced population of posi-
tive and negative classes) using the regularized positive 
dataset’s covariance structure and based on multivariate 
Gaussian distribution (MGD). Here, r 0 1  is the inte-
gration percentage of synthetic samples contributed by 
ESPO, which is chosen empirically. The remaining (1-r) 
synthetic samples are generated by the interpolation-
based oversampling method. 

We chose MGD here because it is the most natural dis-
tribution. It is also well-known that summation of a large 
number of random and independent distributions obeys 
the Gaussian distribution [23]. Sup-

pose ˆ ˆ ˆˆ
1 1= [ , , , , ]j j n nd d dv v vF

 
and assume that 

1
ˆ )F= (z b q , the transformed version of the synthetic posi-

tive sample b to be generated, follows two MGDs of 
0 IM M( , )N  and 0 Im M m M( , )N  catering for the reliable and 

the unreliable eigen spectrum regions, respectively. Here, 
0M denotes a vector of M zeros. We generate the two por-
tions z1 and z2 separately. z1 is generated from the MGD 
of ( , )M M0 IN  and z2 from 0 Im M m M( , )N . The two por-
tions z1 and z2 are concatenated to form z. The synthetic 
sample in the signal space is then computed using 

D̂ VT1 2
1= +b z q   (13) 

where D̂  is the diagonal matrix of regularized eigen val-
ues ˆ ˆ

1{ , , }nd d .  
The above oversampling procedure is repeated until 

all rN P required synthetic samples are generated.  

3.3 Oversampling through Interpolation Nearest 
Neighbor Pair 
The synthetic samples generated by ESPO follow multi-
variate Gaussian distribution and are not tied closely with 
the original positive learning samples. Despite its many 
advantages (to be discussed in Sect. 3), it is still lacking in 
the aspect that original set of positive samples, especially 
their key (hard-to-classify) samples, are not well pro-
tected by the synthetic data generated. This is particularly 
critical for highly imbalanced learning tasks, where there 
would be a large capacity for oversampling. 

To complement the synthetic population generated by 
ESPO, we propose to use interpolation-based method to 
oversample a second portion of 1 rN P  synthetic 
positive samples to provide additional protection of the 
existing positive learning samples. The interpolation-
based methods, e.g. SMOTE [3], Borderline-SMOTE [6] or 
ADASYN [7], yield synthetic samples that are distributed 
closely around the seed samples from original positive set 
by generating synthetic samples through interpolating 
selected positive seed samples with their nearest 
neighbors found within the same class. We choose 
ADASYN [7] for its good adaptiveness in allocating quota 
for each seed sample based on the number of samples 
belonging to the opposite class (i.e. the Neg class) in its 
nearest k-neighbourhood. The larger this number, the 
harder the seed positive sample is classified correctly. 

For improved efficiency, we execute the interpolation-
based method in the transformed signal space rather than 
in the original feature space. Given our transformed data-
sets Pt={q1i} and Nt={q0j}, and the remaining quota of 

1 rN P  for oversampling, we perform the follow-
ing: 
1. For each positive sample q1i, find its k nearest 

neighbors Si:k-NN in the entire learning dataset; 
2. Calculate the ratio: 

i i k tS N Z: NN   (14) 

          where Z is a normalization factor so that 1tP
ii=1

.  

3. Choose each sample q1i as a seed in the positive class 
to generate 1 r iN P  synthetic positive sam-
ples. Each time for a seed sample q1i, we randomly se-
lects one sample q1j out of its Q (Q=5 as used in [3, 7]) 
nearest positive neighbors and interpolate a new 
sample q using, 

11 i j1q q q   (15) 

where 0,1  is randomly chosen. 
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3.4 Integration and Cleaning  
We are now ready to integrate the oversampled popula-
tion from ESPO and the interpolation-based method to-
gether with the original positive dataset to form an over-
all positive-class dataset Po={q11, …, q1|P|, q1|P|+1,…, q1|N|}, 
where q1|P|+1,…, q1|N| denote the synthetic samples gen-
erated. At the same time, we also have the transformed 
negative-class learning dataset No={q01, … q0|N|}. How-
ever, since oversampling could potentially generate out-
liers residing closely to the class boundary that unneces-
sarily impede the learning of a good decision boundary, 
we perform data cleaning as follows:  
1. For a synthetic positive sample, q1i, where i>|P|, we 

find its nearest positive neighbor q1s that satis-
fies j i 1i 1js = f ,argmin q q , where f  denote a dis-

tance function. We use the simple Euclidean distance 
for this, as it is efficient in computation and also 
known as a suitable distance metric for time series 
classification [18, 19]. In addition, computing the 
Euclidean distance in our transformed signal space is 
identical to computing it in the original feature space; 

2. We also find the nearest negative neighbor q0w of q1i 
that satisfies j 1i 0jw = f ,argmin q q ; 

3. For q0w, we find its nearest positive-class neighbor q1e 
that satisfies j 1j 0we = f ,argmin q q ; 

4. If 1i 0w 1i 1sf , f ,q q q q  and e=i, we record that 1iq  
and q0w form a “noise link” on the decision boundary, 
which is similar to a Tomek link [5].  

5. We repeat Steps 1 – 4 for each synthetic positive sam-
ple. 

6. For all the recorded noise links, we remove their cor-
responding positive and negative samples from the 
oversampled learning dataset. Our concept of clean-
ing is similar to the previous work in [5], which re-
moves the Tomek links to mitigate class overlapping 
for improved classification performance. 

The above cleaning procedure differs from our previous 
cleaning mechanism in SPO [26] in the following aspects: 
1) The distance computation and data cleaning are per-
formed in the reduced m-dimensional signal space, mak-
ing it more efficient; 2) The cleaning is performed after 
the process of oversampling is completed; and 3) it re-
moves both positive and negative samples in pairs. Our 
previous approach performs cleaning after each sample is 
generated and only the positive synthetic samples are 
removed.  In comparison, our new approach is less sus-
ceptible to those individual noisy negative samples that 
intrude into the positive-class territory, which are de-
tected and removed by our new cleaning procedure. Fur-
thermore, the new approach is more efficient in that we 
do not generate more than |N|-|P| synthetic samples 
before cleaning is conducted, while previously, we gener-
ate more than this number of synthetic samples, depend-
ing on the percentage of synthetic positive samples that 
are cleaned. Also, as our cleaning mechanism removes 

positive and negative samples in pairs, it assures that the 
cleaned dataset is still balanced. Without these noisy 
links, the class boundary is usually better learned with 
standard learning algorithms [5].  

After cleaning, we convert each of the remaining sam-
ples back into the original feature space using Eqn (7).  

3.5 Learning Support Vector Machines Classifier 
With the synthetically balanced dataset, we are now 

ready to learn our time series classifier. We chose Support 
Vector Machines (SVM) for learning our classifier for the 
following reasons: 1) SVM is known to provide excellent 
generalization to unseen data as it minimizes the struc-
tural risk instead of the empirical risk [28]; 2) The formu-
lation of SVM allows users to choose different non-linear 
feature mapping to a high dimensional space so that a 
good linear separation hyper-plane can be found. Kernel 
tricks can also be employed in this process with accept-
able computational loads; 3) In our preliminary classifica-
tion test on balanced time series data, we found that the 
classification accuracy of SVM is comparable to the re-
ported best results of 1NN-DTW, which is the state-of-
the-art time series classification method, if the optimal 
learning parameters were chosen in conjunction with the 
common radial basis function (RBF) kernel.  

Our SVM learning consists of the following steps: fea-
ture scaling, searching of best parameters, and solving an 
optimization problem [29]. We use  

(Min)

(Max) (Min)

2
= 1j j

j
j j

h h
s

h h
                            (16) 

to linearly transform each feature hj to the range of [-1, 1], 
where (Max)

jh  and (Min)
jh   are the maximum and minimum 

of the j-th feature in the training data respectively. This 
step helps reduce the risk that good features with rela-
tively small numerical values being overshadowed by 
those having large values. The same scaling is also ap-
plied to all the test feature vectors in the testing scenario, 
where the same { (Max)

jh , (Min)
jh } are used as those from the 

training dataset.  
Next, the SVM classifier is learned by solving the op-

timization problem below [28]: 
   

                     
T

i
i

T
i i i

i

C
, ,

1min +
2

s.t. + 1

0

w b
w w

w s                (17) 

where w defines the separation hyper-plane, C is a pen-
alty constant for the total margin error, i  is a slack vari-
able denoting the margin error for the i-th selected sup-
port vector si from our scaled training set, i is the class 
label of si, and is  denotes a nonlinear mapping to a 
high dimensional space. Only the kernel needs to be 
evaluated in solving the optimization problem. We use 
the radial basis function (RBF) kernel below 
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exp
2

i j i jK , = gs s s s                  (18) 

where 0g  is a constant defining the kernel width. Note 
that the good choice of (C, g) is important for good SVM 
learning performance. As such, we search for the best (C, 
g) within the common ranges of these two parameters in a 
two dimensional log-scale grid, which gives the best cross 
validation performance. With the best (C, g), our SVM 
classifier is learned by solving Eqn (17) to classify the time 
series data. 

4 EXPERIMENTAL RESULTS AND DISCUSSIONS 

We perform a series of experiments to evaluate our pro-
posed integrated oversampling procedure against exist-
ing oversampling methods as well as state-of-the-art 
methods for imbalanced time series classification. 

4.1 Visual Comparison 
Based on the example in Fig. 1(b), we visually compare 

the oversampling effect of our proposed INOS with five 
methods in Fig. 4 in two-dimensional feature space. For 
each method, we oversample the set of 50 positive sam-
ples nine times to have a total of 500 positive samples 
(same size of negative examples).  

Among all five existing oversampling methods, the 
synthetic samples generated from DataBoost [13] fills the 
void areas within the territory of positive samples most 
competently. However, the sample distribution appears 
square-like (i.e. in a different structure from the original 
positive data distribution) and intrudes into the territory 
of the negative class. The synthetic samples generated by 
the other three nearest-neighbor interpolation methods 
formed dense clusters with small data variances near the 
existing samples. Among them, SMOTE creates the most 
even synthetic distribution, since every existing positive 
sample has been selected for generating roughly the same 
number of new samples. Borderline-SMOTE creates a 
synthetic sample distribution where only a small set of 
existing positive samples, whose neighborhood contains 
more negative samples than the positive samples, are 
heavily emphasized. ADASYN strikes a balance between 

Fig. 4. Visual comparison of the proposed INOS with other oversampling techniques; (a) Proposed integrated oversampling; (b) our earlier 
work on structure preserving oversampling; (c) Synthetic minority over-sampling technique (SMOTE) [3]; (d) DataBoost oversampling [12]; (e) 
Borderline-SMOTE [6]; and (f) Adaptive synthetic sampling approach (ADASYN)  [7] 

(a) (b) (c) 

(d) (e) (f) 

DataBoost-IM Borderline SMOTE ADASYN 

SPO SMOTE Proposed 

TABLE 1
IMBALANCED TIME SERIES DATASETS 

Training Test 
Datasets #Apportions 

#Pos #Neg IM-Ratio #Pos #Neg 

Time 
series 
Length 

Adiac 10 10 380 38 10 15 376 381 176
FaceAll 10 50 1000 20 62 223 977 1138 131
50Words 10 10 50 400 8 40 12 59 396 483 270

SLeaf 10 35 450 12.9 40 50 250 600 128
TwoPats 4 50 1800 36 1151 1256 1894 1999 128

Wafer 2 50 380 3000 7.6 60 712 6532 382 3402 152
Yoga 2 50 800 900 16 18 1480 1720 730 870 426
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SMOTE and Borderline-SMOTE by adaptively emphasiz-
ing more towards the samples that are closer to the classi-
fication border. Our earlier work, SPO, shared the most 
similar covariance shape with the existing limited posi-
tive samples. Its synthetic samples not only adequately 
fill the void internal spaces within the positive class terri-
tory but also sensibly expand towards the void areas in 
the vicinity of positive-class territory which are not cur-
rently occupied by the abundant negative samples. How-
ever, we can also see that SPO does not place any extra 
emphasis in its oversampling to protect the existing hard-

to-classify samples that are close to the classification bor-
der. 

The effects of our proposed INOS method in integrat-
ing ESPO and interpolation–based oversampling can be 
seen clearly. The synthetic samples created by INOS 
largely shared similar covariance shape with the existing 
limited positive samples. In addition, there were more 
synthetic positive samples generated near the decision 
boundary to protect the existing positive samples that are 
hard to classify. 

TABLE II
AVERAGE SVM PERFORMANCE COMPARISON FOR DIFFERENT OVERSAMPLING METHODS. THE RESULTS ARE AVERAGED OVER 

MULTIPLE APPORTIONS AND TEN OVERSAMPLING EXPERIMENTS FOR EACH APPORTION 
Oversampling Methods Evaluation  

Measure Dataset 
Repeat SMOTE B-SMOTE ADASYN DataBoost SPO Proposed 

INOS 
Adiac .663 .0005 .732 .0022 .718 .0018 .733 .0022 .728 .0012 .784 .0029 .800 .0032

FaceAll .903 .0002 .907 .0004 .904 .0004 .908 .0004 .925 .0005 .936 .0004 .936 .0005
50Words .774 .0014 .783 .0010 .786 .0014 .782 .0009 .769 .0008 .778 .0023 .778 .0026

SLeaf .897 .0003 .890 .0010 .894 .0011 .893 .0010 .888 .0007 .906 .0015 .904 .0014
TwoPats .296 .0015 .358 .0020 .352 .0018 .359 .0022 .371 .0022 .479 .0022 .546 .0002

Wafer .958 .0010 .965 .0020 .964 .0010 .966 .0015 .974 .0005 .983 .0005 .985 .0015
Yoga .653 .0015 .684 .0020 .677 .0025 .686 .0025 .678 .0025 .702 .0060 .724 .0030

F-Value 

Average .735 .0009 .760 .0015 .757 .0014 .761 .0015 .762 .0012 .796 .0023 .810 .0020
Adiac .730 0 .807 .0001 .794 .0026 .809 .0013 .813 .0009 .872 .0014 .882 .0023

FaceAll .910 .0003 .916 .0004 .913 .0003 .917 .0004 .934 .0004 .946 .003 .945 .0004
50Words .851 .0006 .863 .0008 .862 .0008 .861 .0008 .839 .0004 .877 .0009 .880 .0006

SLeaf .931 .0004 .933 .0009 .936 .0008 .933 .0008 .938 .0004 .959 .0009 .962 .0008
TwoPats .417 .0001 .467 .0015 .462 .0001 .468 .0013 .477 .0015 .561 .0015 .614 .0020

Wafer .959 .0005 .966 .0010 .965 .0010 .967 .0005 .974 .0005 .984 .0005 .985 .0005
Yoga .695 .0015 .720 .0025 .714 .0010 .721 .0020 .713 .0010 .733 .0025 .750 .0030

G-Mean 

Average .785 .0006 .810 .0011 .807 .0011 .811 .0010 .813 .0007 .847 .0011 .860 .0014
Adiac .924 .0004 .828 .0012 .837 .0011 .824 .0012 .809 .0009 .806 .0026 .820 .0022

FaceAll .995 .0001 .992 .0003 .991 .0003 .992 .0003 .983 .0004 .982 .0003 .981 .0004
50Words .857 .0010 .846 .0007 .853 .0010 .847 .0006 .849 .0006 .806 .0017 .806 .0014

SLeaf .926 .0002 .907 .0008 .908 .0009 .910 .0007 .891 .0004 .889 .0009 .879 .0008
TwoPats .991 .0012 .993 .0016 .993 .0015 .993 .0017 .992 .0018 .978 .0017 .971 .0015

Wafer .999 .0011 .999 .0018 .999 .0011 .999 .0014 .998 .0005 .998 .0013 .996 .0015
Yoga .991 .0013 .991 .0017 .994 .0018 .992 .0022 .987 .0020 .989 .0039 .986 .0026

Precision 

Average .955 .0008 .936 .0012 .939 .0011 .937 .0012 .930 .0010 .921 .0018 .920 .0015
Adiac .592 .0006 .673 .0018 .657 .0016 .677 .0017 .676 .0013 .780 .0035 .792 .0038

FaceAll .833 .0003 .843 .0005 .839 .0006 .844 .0006 .876 .0007 .898 .0007 .896 .0007
50Words .741 .0017 .763 .0013 .760 .0016 .760 .0012 .722 .0010 .788 .0028 .794 .0024

SLeaf .872 .0004 .876 .0009 .883 .0014 .877 .0014 .888 .0008 .927 .0014 .935 .0015
TwoPats .175 .0010 .219 .0015 .215 .0013 .220 .0015 .228 .0018 .323 .0022 .386 .0018

Wafer .921 .0020 .934 .0035 .930 .0020 .934 .0030 .952 .0010 .970 .0015 .975 .0020
Yoga .487 .0015 .522 .0025 .513 .0025 .524 .0030 .517 .0030 .545 .0075 .573 .0040

Recall 
(or True 
Positive 
Rate) 

Average .660 .0011 .690 .0018 .685 .0016 .691 .0017 .694 .0014 .747 .0028 .764 .0024
Adiac .998 0 .996 .0001 .997 .0001 .996 0 .995 .0001 .995 .0002 .995 .0001

FaceAll 1 0 .999 0 .999 0 .999 0 .998 .0001 .998 .0001 .998 0
50Words .991 0 .991 .0001 .991 .0001 .991 .0001 .993 .0001 .987 .0002 .986 .0003

SLeaf .995 0 .994 .0001 .994 .0001 .994 .0001 .992 .0001 .992 .0001 .991 .0001
TwoPats .999 0 .999 .0001 .999 .0001 .999 0 .999 .0001 .997 .0002 .994 .0002

Wafer 1 0 1 0 1 .0001 1 .0001 .997 .0005 .998 .0004 .996 .0004
Yoga .992 .0003 .991 .0005 .994 .0009 .992 .0006 .985 .0005 .987 .0008 .983 .0012

True Nega-
tive Rate 

Average .997 .0001 .996 .0001 .996 .0002 .996 .0001 .994 .0002 .993 .0003 .992 .0003
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4.2 Comparison for Time Series Classification 
For evaluation, we constructed a total of 48 imbalanced 
two-class data apportions from seven balanced bench-
mark datasets in the UCR time series repository [17], as 
tabulated in Table I. Each apportion here represents a 
standalone binary imbalanced learning task. Please refer 
to [17, 18] for the detailed descriptions of these datasets. 
Note that S-Leaf here refers to the “Swedish Leaf” dataset. 
We have chosen these datasets since they contain large 
number of samples to facilitate the simulation of scenarios 
of large class imbalance. 

Out of the seven datasets, Adiac, FaceAll, 50words and 
S-Leaf originally contained 37, 14, 50 and 15 classes, re-
spectively. In each of its apportions, we converted them 
into two-class datasets by selecting one class as the posi-
tive class and using the remaining classes to form the 
negative class. For each set, the training and test data are 
divided randomly and all available samples are included 
either in the training or in the test set. As shown in Table 
I, we chose round numbers for the positive training sam-
ples and made sure that they do not exceed 50% of the 

total available positive samples. For each training set, the 
number of positive samples is kept no more than 50 to 
simulate the scenario of rare positive instances. We main-
tained high imbalance ratios (IM-ratios), i.e. the number 
of negative samples divided by the number of positive 
samples, in the datasets, with the highest being 60 for the 
Wafer dataset and the lowest being 7.6 for the second ap-
portion of the Wafer dataset. Note that for all datasets, the 
number of positive samples is significantly smaller than 
the time series length (dimension of the time series). In 
particular, for Adiac, the feature dimension is about 18 
times of the number of positive samples. This sparsity of 
data with respect to the high dimensions in time series 
classification is another key challenge. For reproducibility 
of our results, we have shared our 48 apportioned data-
sets online (http://sites.google.com/site/sstarcao/). 

To evaluate the effectiveness of our INOS for over-
sampling, we compared it with six oversampling meth-
ods (five different existing methods and our earlier SPO 
method) to balance the classes in the training dataset 
separately, and then trained a SVM classifier for each re-
sulting balanced dataset using the steps in Sec. II. The 
performance of the classifiers is evaluated using various 
metrics shown in Eqn (19) below. In particular, F-Value 
and G-Mean are well-reported performance metrics for 
imbalanced learning. 

 Predicted Class 
 Positive Negative 

Postive TP (True Positives) FN (False Negatives) 

A
ct

ua
l 

C
la

ss
 

Negative FP (False Positives) TN (True Negatives) 

2×Recall PrecisionF Value :
Recall + Precision
TP TNG Mean :

TP + FN TN + FP

Precision : TP TP + FP
Recall(True Positive Rate) : TP TP + FN

True Negative Rate : TN FP +TN

    (19) 

The results presented in Table II shows that our pro-
posed INOS achieved F-Value and G-Mean of 0.81 and 
0.86, respectively, which are significantly better than all 
six existing oversampling methods. On a closer examina-
tion of our results, we found that our good results are 
largely attributed by excellent recall scores, with compa-
rable precisions and true negative rates. The high recall 
rates indicate that most of the test positive samples can be 
classified with a good accuracy when using INOS to sup-
plement the limited positive training datasets. In com-
parison, oversampling by repeating achieved the largest 
precision score at the expense of the poorest recall value. 
This is due to the tendency that a smaller set of positive 
predictions at a high accuracy rate is made by the corre-
sponding SVM (i.e. overfitting). Besides our proposed 
INOS method and our earlier work SPO, ADASYN 
achieved the third best pair of F-Value and G-Mean re-
sults. This shows that the adaptive approach of ADASYN 

TABLE III 
SVM PERFORMANCE COMPARISON (ADIAC DATASET) FOR DIF-

FERENT OVERSAMPLING METHODS 
Oversampling Methods Eval.  

Measure 
P-
Cl REP SMO BoS ADA DB SPO INOS 
1 .842 .789 .785 .770 .643 .831 .834
2 .600 .500 .500 .500 .571 .623 .704
3 .750 .750 .75 .750 .75 .971 .924
4 .900 .900 .900 .900 .842 .838 .879
5 .182 .573 .563 .583 .500 .642 .700
6 .615 .686 .600 .668 .705 .779 .750
7 .778 .749 .749 .749 .632 .684 .784
8 .125 .417 .382 .437 .640 .517 .499
9 1 1 1 1 1 1 1

F-
Value 

 

10 .842 .955 .955 .975 1 .952 .931
1 .893 .892 .892 .891 .831 .924 .925
2 .679 .619 .619 .619 .678 .731 .795
3 .775 .775 .775 .775 .775 .999 .927
4 .947 .947 .947 .947 .893 .946 .947
5 .316 .705 .705 .705 .680 .806 .889
6 .698 .773 .712 .773 .773 .845 .846
7 .836 .811 .811 .811 .772 .833 .869
8 .258 .567 .502 .588 .728 .634 .644
9 1 1 1 1 1 1 1

G-
Mean 

10 .893 .979 .979 .984 1 .999 .979
The acronyms are: REP: repeating; SMO: SMOTE; BoS: Borderline SMOTE.
ADA: ADASYN; DB: DataBoost oversampling. P CI: index of the selected positive
class in the original dataset.

TABLE IV 
SVM PERFORMANCE COMPARISON (YOGA DATASET) FOR DIF-

FERENT OVERSAMPLING METHODS 
Oversampling Methods Eval.  

Measure 
P-
CI REP SMO BoS ADA DB SPO INOS 
1 .667 .667 .663 .670 .654 .680 .696F-

Value 2 .639 .701 .690 .702 .701 .725 .752
1 .705 .706 .703 .708 .697 .705 .729G-

Mean 2 .684 .733 .725 .734 .729 .762 .771
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in choosing the seeds is also quite effective for dealing 
with highly imbalanced time series classification. 

We examined our achieved results on the individual 
apportions for two particularly interesting datasets, Adiac 
and Yoga, as tabulated in Table III and IV, respectively. As 
we can see from Table 1, each of the Adiac apportions has 
only 10 positive samples, which is very small as com-
pared to its time series length of 176. It thus represents a 
challenging (but quite common) scenario in which the 
positive learning samples are extremely scarce. In con-
trast, the Yoga apportions have the longest time series 
length of 426, which is significantly larger than that for 
the remaining six datasets. The classification results in 
Table III show that out of the ten Adiac apportions, our 
INOS’s oversampling achieved the most competitive F-
value and G-Mean for five and seven times, respectively, 
representing the most number of wins among all seven 
different oversampling methods. For the two Yoga appor-
tions, INOS also achieved the best F-value and G-Mean, 
which outperform the second best set of results from SPO. 
These suggest that our proposed INOS is most competi-
tive for imbalance correction for the two challenging 
learning tasks.  

4.3 Comparison with Other Types of Integration 
Table II has suggested that the oversampling methods by 
repeating, SMOTE, Borderline-SMOTE and ADASYN 
tend to give a stronger precision value, while SPO and 
DataBoost oversampling are clearly stronger in giving 
better recall results. By visual inspection of Fig. 4, we 
have also seen that the synthetic distributions from SPO 
and DataBoost are not tied closely to existing samples, 
while the remaining four methods tend to tie their syn-
thetic distribution closer to the existing training positive 
samples. This suggests that better results may be obtained 

if the complementary characteristics for the two groups of 
oversampling methods can be combined in an integrative 
approach, and our INOS method has been designed to do 
so. Fig. 5 shows the performance of INOS with different 
integration percentages, i.e. with r increasing from 0 to 1 
with a step of 0.1. The F-Value and G-Mean for most of the 
datasets continued to improve until contributions from 
both methods reached 50% or more. From Fig. 5, on aver-
age, the F-Value and the G-Mean peaked at an integration 
percentage of r [0.7, 0.9], i.e. 70%-90% of the synthetic 
positive samples are from ESPO and the remaining per-
centage from ADASYN. In other words, INOS generates 
most of the synthetic positive samples following the co-
variance structure of existing positive samples, and gen-
erates 10-30% positive samples which protect the key 
original minority samples. In fact, we observed from Fig. 
5 that when r  [0.5, 0.9], the experimental results are very 
stable across all the 7 datasets, indicating that selecting a 
suitable r value for good performance is not an issue. In 
all our experiments, we fixed r=0.7 for INOS. 

Table V compares the results achieved by other types 
of integrations. We can observe that ESPO used in inte-
gration with existing oversampling methods also im-
proves the performance in terms of F-value and G-Mean. 

4.4 Evaluation of Separate INOS Procedures 
We also performed experiments to evaluate how much 
improvement was gained by each of the sub-procedures 
in our INOS algorithm. We compared the full INOS with 

(a) 

(b) 
Fig. 5. F-Value versus the integration percentage r in (a) and G-
Mean versus the integration percentage in (b) for our proposed 
INOS. Here, integration percentage r refers to percentage of syn-
thetic samples generated by ESPO 

TABLE V 
 SVM PERFORMANCE COMPARISON FOR INTEGRATING DIFFER-

ENT PAIRS OF OVERSAMPLING METHODS. THE PERCENTAGE 
SHOWN INDICATES THE BEST EMPIRICAL INTEGRATION PER-
CENTAGE FOR THE FIRST INDICATED METHOD OF THE PAIR 

Integrated oversampling distribution 
Eval. 
meas
ure 

Dataset 
ESPO

+ 
REP 
100% 

ESPO
+ 

SMO 
 70% 

ESPO
+ 

BoS 
70% 

Pro-
posed 
INOS 
70% 

DB+ 
ADA 
30% 

Adiac .797 .799 .798 .800 .737 
FaceAll .936 .934 .935 .936 .923 
50Words .776 .775 .774 .778 .793 
SLeaf .900 .901 .902 .904 .890 
TwoPats .530 .544 .543 .546 .377 
Wafer .982 .985 .986 .985 .983 

F-
Value 

 

Yoga .704 .721 .722 .724 .703 
Adiac .875 .876 .876 .882 .823 
FaceAll .947 .944 .944 .945 .932 
50Words .880 .877 .877 .880 .873 
SLeaf .962 .961 .961 .962 .939 
TwoPats .601 .613 .613 .614 .482 
Wafer .982 .985 .985 .985 .983 

G-
Mean 

Yoga .733 .748 .748 .750 .733 
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the following cases: (i) no positive dataset oversampling 
being performed, (ii) ESPO without eigen spectrum regu-
larization in Eqn (11), (iii) ESPO without cleaning in Sect. 
2.3, (iv) ESPO without feature scaling by Eqn (16), (v) 
ESPO with uniform distribution, (vi) ESPO and (vii) pro-
posed INOS. For Case (i), the SVM classifier was learnt 
from the original imbalanced training set (with feature 
scaling). For each case, we perform logscale search for the 
best combination of (C, g), which gives the highest G-
Mean in five-fold cross-validation. For the non-
regularization Case (ii), we replaced D̂  in Eqn (13) with 
D, diagonal matrix with the unregularized eigen spec-
trum {dj}, to generate the synthetic samples. For Case (ii), 
uniform distribution is chosen instead of multivariate 
Gaussian distribution to generate random synthetic sam-
ples. 

Without oversampling, the average F-Value and G-
Mean over the seven datasets are 72.9% and 77.7% respec-
tively, which are apparently lower than the average F-
Value and G-Mean of the various oversampling cases 
shown in Fig. 6 (a) and (b). INOS achieved an average F-
Value of 0.81, which is 0.7%, 2.8%, 3.1%, 0.7% and 1.4% 
higher than the cases of ESPO alone, ESPO with uniform 
distribution, ESPO without scaling, ESPO without data 
cleaning and ESPO without regularization, respectively. 
The average G-Mean for our INOS is 0.860, which is also 
0.5%, 2.4% 1.3%, 0.5% and 1.1% higher than the cases of 
ESPO alone, ESPO with uniform distribution, ESPO with-
out scaling, ESPO without data cleaning and ESPO with-
out regularization, respectively. The improved results 
showed that each of the four INOS sub-procedures, 
namely integration of ESPO with interpolated based 
method, eigen regularization, feature scaling and data 
cleaning, are important for enabling INOS to attain better 
learning outcomes for imbalanced time series datasets. 

4.5 Comparison of Different Learning Methods 
Finally, we compared our proposed learning framework 
in Fig. 2 with two recently developed imbalanced learn-
ing methods, EasyEnsemble [8] and BalanceCascade [8], 

as well as with two other well-known state-of-the-art 
methods, 1NN-DTW [16] and 1NN [18, 19], for time series 
classification. Like our INOS method, EasyEnsemble and 
BalanceCascade also addressed the data imbalance issue 
at the data level. However, unlike our oversampling 
strategy, EasyEnsemble and BalanceCascade adopted the 
approach of undersampling the negative class to achieve 
balance in the training datasets. In both methods, multi-
ple balanced sets were constructed to learn multiple deci-
sion-tree [30] weak classifiers. These classifiers were then 
systematically integrated by AdaBoost into a strong en-
semble classifier. The difference between EasyEnsemble 
and BalanceCascade is that BalanceCascade periodically 
removes a pre-computed percentage of relatively easier 
negative samples from the overall negative training set 
before the random undersampling takes place. This is to 
enforce more hard-to-classify negative samples being in-
cluded in the final balanced training set. A similar 
method to EasyEnsemble was also proposed recently in 
[27], except that bagging was used to integrate the weak 
classifiers learnt from the undersampled rebalanced data-
sets. 1NN-DTW and 1NN do not explicitly address the 
data imbalance issue since their performance is less sus-
ceptible by data imbalance. As mentioned earlier, 1NN-
DTW has been shown to be highly competent for classify-
ing balanced time series data [16].  The 1NN classifier 
with a simple Euclidean distance metric, which has also 
been popularly suggested for semi-supervised time series 
classification tasks [18, 19], involves utilizing a large por-
tion of unlabelled samples to improve the learning out-
comes.  

Table VI shows the comparison of our proposed INOS 
cum SVM learning with other time-series learning meth-
ods in terms of F-Value and G-Mean. While the perform-
ance is dependent on the individual datasets, our pro-
posed method showed good results in terms of ranking 
by scoring the best performance for the most number of 
times, i.e. four and four times for a total of seven datasets 
in terms of F-Value and G-Mean respectively. Except for 
the FaceAll, TwoPats and Yoga datasets which INOS was 

(a) (b) 
Fig. 6. INOS performance comparison with the separate cases when no data cleaning, ESPO alone with no eigenspectrum regularization, 
ESPO alone with no data cleaning, ESPO with no feature scaling, ESPO alone, i.e. with no integration of ESPO with ADASYN. (a) F-value 
comparison; (b) G-mean comparison 
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ranked as the 2nd, the 4th and the 2nd places, respectively, 
INOS achieved the best F-Value consistently for the re-
maining four datasets, Adiac, 50Words, SLeaf and Wafer. In 
terms of G-Mean, our proposed INOS is ranked the best 
for Adiac, SLeaf, Wafer and Yoga, the second best for 
FaceAll, the third for 50Words, and the fourth for TwoPats. 
These ranking results showed that our method is highly 
competitive compared with the existing methods on 
highly imbalanced time series classification.  

Amongst the existing methods, we noticed that 1NN-
DTW gave the best results for the FaceAll and TwoPattern 
datasets. In particular, for TwoPats, its performance (F-
Value, G-Mean) of (1, 1) is remarkablely better than (0.608, 
0.661), the second-best result from 1NN. Yet, despite its 
superiority found on such time series datasets, its good 
performance was not consistent and its counterpart 1NN 
performed better than 1NN-DTW at times, e.g. on the 
50Words and Wafer datasets.  

BalanceCascade provided significantly better average 
F-Value and G-Mean than its counterpart EasyEnsemble. 
This is in agreement with the discussion in [8] that Bal-
anceCascade is more suitable for highly imbalanced data 
than EasyEnsemble. Other than the good ranking of 
INOS, its average results showed that it is in a compara-
ble range to the results of 1NN-DTW. However, the good 
average performance of 1NN-DTW is mainly contributed 
by its excellent margin on TwoPats dataset. 

We have also conducted comparison experiments on 
another 7 UCR datasets including CBF, Synthetic Control, 
OSU Leaf, Fish, Gun-Point, Trace, and ECG, which contain 
relatively less samples for our simulation of highly imbal-

anced learning scenarios. The results (available at: 
https://sites.google.com/site/sstarcao/publication/jou

rnal-papers) demonstrate similar good performance for 
our proposed INOS method as it achieved the highest 
average F-Value and average G-Mean amongst the vari-
ous oversampling-based time series classification meth-
ods and the non-oversampling based methods.  

4.6 Computation Efficiency 
In our current framework, the number of synthetic 

samples to be generated by the proposed INOS is de-
pendent on size of the negative class. The oversampling 
and the subsequent learning can be inefficient when the 
negative training class is extremely large, e.g. with bil-
lions of samples. Nevertheless, in such a situation, we 
can reduce the negative class to a manageable yet repre-
sentative size through undersampling using existing 
methods [3, 4]. Our proposed method can then be ap-
plied to the modified training set on a smaller scale for 
efficiency.  

As tabulated in Table VII, using our most populous 
time series dataset, Wafer, our current MATLAB imple-
mentation takes an average of 2.1 10-2 and 1.5 10-2 sec-
ond for SPO [26] and our proposed INOS, respectively, 
to create a synthetic sample of 152 dimensions using a 
ordinary computer with 2.79-GHz CPU. For Yoga, which 
has the longest time series length, it took 1.7 10-1 and 
5.0 10-2 second, respectively, for SPO and our INOS to 
create a sample of 426 dimensions. For TwoPats, it took 
1.0 10-1 and 2.7 10-2 second, respectively, for SPO and 

our INOS to create a sample of 128 dimensions. For all 
seven types of time series datasets, it took an average of 
4.7 10-2 and 1.6 10-2 second to create a sample. This 
shows that INOS has significantly reduced the oversam-
pling time needed for SPO at per-sample basis by 28.6% 
for Wafer, 70.6% for Yoga, 76.8% for TwoPats and 66.0% for 
the average case. This is largely contributed by the fol-
lowing factors. 1) The main oversampling computation is 
now conducted in the signal space with a feature dimen-
sion of m instead of the original dimension of n. The com-
plexity of our algorithm thus reduces to 2O N P m  
from the original 2O N P n . This reduction is par-
ticularly significant for the dataset with long time series 
length. For instance, m is only about 56% and 29% of n for 
50words and Yoga datasets, respectively, after the null-
space removal.  2) For some dataset, e.g. TwoPats, we 
found that the rate of rejecting a synthetic sample is high 
using our previous-SPO’s cleaning mechanism. Therefore, 
significantly more synthetic samples were needed to be 
created in order to fulfill a required number of N P  
samples that can survive through the cleaning mecha-
nism. On the other hand, our newly designed ESPO will 
not generate more than N P  samples. 

Out of all the sub-procedures of our proposed INOS, 
we found that our cleaning process required the most 
processing time, i.e. more than 90% of the total oversam-
pling time on average. By taking away the cleaning pro-
cedure, our INOS took only 4.7 10-4 second for Wafer, 
2.5 10-3 second for Yoga, 3.6 10-4 second for TwoPats, and 
an average of 8.8 10-4 second for over the seven datasets, 

TABLE VI 
PERFORMANCE COMPARISON OF SEVERAL CONVENTIONAL 

METHODS 
Learning methods Eval. 

meas-
ure 

Dataset 
Easy Bal. 1NN 1NN 

DTW INOS 

Adiac .464 .297 .621 .603 .800
FaceAll .675 .806 .910 .946 .935
50Words .579 .482 .768 .696 .778
SLeaf .699 .692 .774 .787 .904
TwoPats .211 .605 .608 1 .546
Wafer .808 .962 .975 .930 .985
Yoga .322 .760 .599 .673 .724

F-Value 
 

Average .537 .658 .751 .805 .810
Adiac .669 .847 .736 .752 .882
FaceAll .719 .936 .936 .973 .945
50Words .684 .864 .890 .881 .879
SLeaf .783 .938 .874 .876 .962
TwoPats .344 .657 .661 1 .614
Wafer .825 .966 .976 .925 .985
Yoga .435 .711 .651 .709 .750

G-Mean 

Average .637 .846 .818 .874 .860

The acronyms are:  Easy: EasyEnsemble;  Bal: BalanceCascade;    1NN: One nearest 

neighbor classifier using Euclidean distance;    1NN DTW: One nearest neighbor classi-

fier using dynamic time warping distance;  INOS: Proposed integrated oversampling, 

where majority of positive synthetic samples are generated by enhanced structural 

preserving oversampling with support vector machines classifier 
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to create one synthetic sample. Thus, in situations where 
efficiency is the most critical factor, INOS can be used 
without the cleaning procedure at a slight expense on the 
F-value and G-mean performance as shown in our Sect. 3.4. 

After oversampling, it took 1.1 seconds to train the 
SVM classifier using the balanced Wafer dataset of 6000 
samples and 2.2 10-4 second to classify a test sample. The 
relatively small time requirements for oversampling and 
SVM classification suggest that our proposed algorithm 
can be used for many practical time series classification 
tasks.  

5 CONCLUSION 
In this paper, we have proposed a novel integrated over-
sampling method INOS for the challenging learning prob-
lem of imbalanced time series classification.  In the cur-
rent work, INOS addresses the imbalanced learning issue 
by oversampling the minority class with a hybrid ap-
proach in the signal space. The main portion of synthetic 
samples is generated by ESPO in eigen decomposed sub-
space and is based on regularized eigen spectrum. This 
allows our resulting synthetic sample data to preserve the 
main covariance structure of the original minority-class 
samples and at the same time, to incorporate some protec-
tive variances in the trivial eigen dimensions. The syn-
thetic samples are able to fill up the gaps between the 
minority-class samples and sensibly expand into the vi-
cinity in a consistent shape with the existing positive 
samples. A smaller portion of the synthetic samples is 
also created with interpolation-based method with an aim 
to protect the existing samples that are hard to classify. 

Based on seven public sets and forty eight apportions 
of highly imbalanced UCR time series data, our INOS 
with SVM achieved good average F-Value and G-Mean of 
0.81 and 0.86, respectively. It outperformed an array of 
existing oversampling methods as well as state-of-the-art 
learning methods for time series data. We have also 
shown that each of our suggested procedures, namely, 
integration of ESPO with an interpolation-based method, 
eigen spectrum regularization, feature scaling and data 
cleaning, are effective in enabling INOS to attain better 
learning outcomes for imbalanced time series datasets.  

Our results are particularly significant given that many 
real-world data mining applications are afflicted with 
data imbalance and involve time series data, but there 
have been relatively limited work on imbalanced time 
series learning. Our results with INOS showed that by 
taking into careful consideration of the specific issues 
related to time series data, such as preserving covariance 
structure and providing extra emphasis on distribution of 
the existing hard samples, the oversampling approach 
can be employed to effectively address the challenging 
problem of data imbalance in time series classification. 

While our proposed INOS have achieved generally 
good results, we also noticed that some time series data-
sets are certainly better classified with 1NN-DTW algo-
rithm (e.g. TwoPats). Our future work will investigate the 
characteristics of different time series datasets and design 
meta-learning algorithm that predicts the best classifica-

tion methodologies for each time series dataset. 
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