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Abstract. Protein domains are evolutionarily-conserved structural or
functional subunits in proteins that are suggestive of the proteins’ propen-
sity to interact or form a stable complex. In this paper, we propose a novel
domain-based probabilistic classification method to predict protein-protein
interactions. Our method learns the interacting probabilities of domain
pairs based on domain pairing information derived from both experimentally-
determined interacting protein pairs and carefully-chosen non-interacting
protein pairs. Unlike conventional approaches that use random pairing
to generate artificial non-interacting protein pairs as negative training
data, we generate biologically meaningful non-interacting protein pairs
based on the proteins’ biological information. Such careful generation of
negative training data set is shown to result in a more accurate classifier.
Our classifier predicts potential interaction between any pair of proteins
based on the probabilistically inferred domain interactions. Comparative
results showed that our probabilistic approach is effective and outper-
forms other domain-based techniques for protein interaction prediction.

1 Introduction

Cellular processes are biochemical events that are typically achieved by the in-
teractions of proteins with one another. The elucidation of protein interactions
is therefore the necessary first-step for understanding the biology of cellular
processes. Many experimental methods have been developed to detect protein-
protein interactions, however, none of the current experimental methods is ade-
quate to interrogate the entire interactome [11, 15]. It is therefore useful to de-
velop complementary computational methods for predicting new protein-protein
interactions.

Several computational techniques have been proposed to predict protein-
protein interactions. For example, potential protein interactions can be derived
from gene context analysis such as gene neighborhood [3, 13], gene fusion [5,
9], and gene co-occurrences and phylogenetic profiles [8, 14]. Alternatively, the
physiochemical properties or tertiary structure of proteins can also be used for
predicting interactions[1, 10].
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Recently, however, there is an increased focus on using protein domains to
predict protein-protein interactions [4, 6, 7, 12, 16]. Protein domains are evolutionarily-
conserved structural or functional subunits in proteins found across different
proteins. They are often found to participate in intermolecular interactions with
one another. The existence of certain domains in proteins can therefore sug-
gest the possibility of interaction between two proteins. As such, the analysis of
many protein-protein interactions can be reduced to understanding the under-
lying domain-domain interactions between two proteins.

Domain-based protein interaction prediction methods generally consist of two
main steps: 1) inferring domain-domain interactions from known protein inter-
actions, 2) predicting protein interactions based on the inferred domain-domain
interaction information. A few domain-based interaction detection techniques
have recently been proposed. Deng et al. described a Maximum Likelihood es-
timation technique to infer domain-domain interactions that was then used to
predict protein interactions [4]. Wan at al. presented a alternative statistical
scoring system as a measure of the interaction probability between domains [16].
Ng et al. devised an integrative approach to infer the protein domain interactions
[12] from other data sources in addition to experimentally determined protein
interactions. Han et al. designed a probabilistic framework that takes domain
combinations instead of single domains as basic units of protein interactions
[6, 7].

These proposed techniques can be grouped into two main paradigms in terms
of the way they infer domain-domain interactions. The domain interactions that
are used for predicting protein-protein interactions are learned either (1) from
an interacting protein set or positive class only [4, 12, 16], or (2) from both an
interacting protein set and an artificially generated non-interacting protein set as
negative set; the latter being generated by randomly pairing the proteins [6, 7].
In the case of (1) where learning is conducted only from an interacting protein
set, many false positive domain pairs may be derived because these domain
pairs may occur in the (unavailable) negative set with high frequency. In the
case of (2), the use of a putative negative data set helps alleviate this problem.
However, using artificially generated non-interacting protein set as negative set
is inadequate for inferring domain-domain interactions because the randomly
generated negative dataset may contain interacting protein pairs. In addition,
if the artificially generated negative dataset is subsequently used in evaluating
the performance of classifier, it will lead to inaccurate computation of the actual
sensitivity and specificity of the technique.

In this paper, we propose a novel probabilistic technique to infer domain-
domain interactions using both positive and negative training datasets. Our
probabilistic model was able to outperform other domain-based techniques in
predicting potential protein interactions. Unlike conventional approaches that
use random pairing to generate artificial non-interacting protein pairs as negative
training data, we generate biologically meaningful non-interacting protein pairs
based on the proteins’ biological information, namely, proteins are most unlikely
to interact if they are from different cellular locations and functional categories.
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We showed that the performance of classifier is improved with the more confident
negative dataset.

2 Methods

Our proposed approach classifies a protein pair to be either interacting or non-
interacting based on inferred underlying domain-domain interactions. The ap-
proach consists of three steps as follows: 1) generate the negative set N (non-
interacting protein pairs); 2) infer domain-domain interactions based on the
interacting proteins pair set I and the negative set N; 3) build a classifier based
on the interacting probabilities of domain pairs. Below, we present the methods
for these three steps in turn.

Generate the negative set: Proteins are most unlikely to interact if they
are from different cellular locations and functional categories. So our generated
negative set only pairs those proteins located at different locations and with
different functions. Algorithm 1 shows how to generate non-interacting protein
pairs (negative set).

Algorithm 1 Generate non-interacting protein pairs
1: Input: interacting set I, protein set P;
2: Output: negative set N;
3: BEGIN
4: Set N = ∅;
5: for all the protein pi ∈ P do
6: Search pi’s locations (l) and functional categories (c);
7: end for
8: Combine all protein pairs into a set PS: PS = {(pi, pj)|pi ∈ P, pj ∈ P, i 6= j};
9: repeat

10: for each protein pair (pi, pj) ∈ PS do
11: if (pi, pj) 6∈ I then
12: if ((pi.l 6= pj .l) ∧ (pi.c 6= pj .c)) then
13: N = N ∪ {(pi, pj)};
14: end if
15: end if
16: PS = PS − {(pi, pj)};
17: end for
18: until (PS = ∅)
19: END

In Algorithm 1, for each protein in P, the set of proteins of interest, we
retrieve the biological information about its locations and functional categories
(Steps 5-6) from the MIPS database1. Then, from Step 9 to Step 18, we check

1 http://mips.gsf.de/genre/proj/yeast/index.jsp
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each protein pair (pi, pj) in protein pair set PS: if it is already in the interacting
protein set I , we eliminate it from PS; otherwise, if pi and pj are located at
different cellular locations and from different functional categories, we add them
into negative set N.

Note that in Step 12, a protein (pi or pj) may be located at multiple loca-
tions and has multiple functions. We consider (pi, pj) to be non-interacting only
if none of pi’s locations and functions match the pj ’s locations and functions.
In addition, because the proteins’ functional classifications given in MIPS are
hierarchical, we will only regard two proteins to have different functions at the
highest possible level of the MIPS functional hierarchy(Level 1). Such strict se-
lection strategy helps us get a much purer negative set for training our classifier.

Infer domain-domain interactions: The objective of this next step is to
assign interaction probabilities to each domain pair based on its occurrence in
the protein-protein interacting set I and the negative set N. For a protein pair
(pi, pj) ∈ I, we infer that domain di,r potentially interacts with domain dj,s with
a probability of 1/(|pi| ∗ |pj |), where |pi| and |pj | are the number of domains in
proteins pi and pj respectively; di,r and dj,s are the r-th and s-th domains of
proteins pi and pj respectively.

Given that a domain pair (dx, dy) may occur in many interacting protein
pairs of I, the interacting frequency of (dx, dy) in I is defined as:

N((dx, dy), I) =
|I|∑
i=1

λi(dx, dy) ∗ 1
|pi

x| ∗ |pi
y|

(1)

where (pi
x, pi

y) is the i-th protein pair in I and λi(dx, dy) is the total number of
occurrences of the domain pair (dx, dy) in (pi

x, pi
y). We compute N((dx, dy), N),

the interacting frequency of (dx, dy) in N , in a similar way:

N((dx, dy), N) =
|N |∑
i=1

λi(dx, dy) ∗ 1
|pi

x| ∗ |pi
y|

(2)

Let a set of pre-defined classes be C = {I, N} and all the domain pairs
set be DP . For any domain pair (dx, dy) ∈ DP , their interacting probability
P ((dx, dy)|ce), with Laplacian smoothing and ce ∈ C, is defined as:

P ((dx, dy)|ce) =
1 + N((dx, dy), ce)

|DP | +
∑|C|

k=1 N((dx, dy), ce)
(3)

For a domain pair (dx, dy), the greater the interacting probability P ((dx, dy)|I),
the more frequent it occurs in the interacting set I. However, since such a domain
pair may also be chanced occurrences in class I, it is necessary to check its inter-
acting probability in N: P ((dx, dy)|N). Obviously, if P ((dx, dy)|I) is significantly
larger than P ((dx, dy)|N), then the domain pair (dx, dy) is likely to be a genuine
domain-domain interaction. Otherwise, if P ((dx, dy)|N) is similar or even bigger
than P ((dx, dy)|I), then the domain pair is unlikely to be interacting. In other
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words, to check if a domain pair (dx, dy) interacts, we compute its interacting
probabilities in both interacting set I and negative set N.

Note that the purity of N can affect the accuracy of inferred domain-domain
interactions. If N were generated from randomly paired proteins, the false neg-
ative protein pairs in N will result in the inference of many domain pairs that
should have occurred only in interacting protein set (i.e. positive class). This will
result in assigning inaccurate interacting probabilities to domain pairs and subse-
quently affect the accuracy of the eventual classifier to infer protein interactions.

Build a protein interaction classifier: Given a protein pair (pi, pj), in
order to perform classification (i.e. to judge whether the proteins may interact
with each other or not), we compute the posterior probability P (ce|(pi, pj)), ce ∈
C. The prior probability P (ce) of class ce is defined as:

P (ce) =
∑

p(ce, (pi, pj)), (pi, pj) ∈ I ∪ U

|I| + |N |
(4)

Based on Equations (4) and (3), our proposed technique uses the joint prob-
abilities of domain pairs and classes to estimate the probabilities of classes given
a protein pair. Our classifier is described as follows:

P (ce|(pi, pj)) =
p(ce) ∗

∏|pi|∗|pj |
m=1 p((di,r, dj,s)|ce)∑|C|

k=1 p(ce) ∗
∏|pi|∗|pj |

m=1 p((di,r, dj,s)|ce)
(5)

For a protein pair (pi, pj), the class with highest P (ce|(pi, pj)) is assigned
as its final class label. In other words, if I = argmaxce

P (ce|(pi, pj)), then the
protein pair (pi, pj) will be classified as an interacting pair. Otherwise, it is
classified as non-interacting.

3 Evaluation

In this section, we evaluate the proposed technique for predicting protein inter-
actions. Positive and negative datasets are employed to train a classifier and to
evaluate the performance of our method. For positive datasets, interacting pro-
teins are retrieved from DIP2—a comprehensive curated catalog of about 44,482
experimentally determined protein-protein interactions in over 110 organisms.
We select all yeast interactions in DIP to construct our positive dataset I as this
species is particularly well-studied. The yeast positive dataset consists of 15,658
interactions among 4,749 yeast proteins. The negative set of non-interacting pro-
tein pairs used in this work is constructed using Algorithm 1 described in the
previous section. Proteins are paired up only if they are not from the same cel-
lular location and functional category. This results in a very large negative set
of 213,560 protein pairs. To avoid size bias between the positive and negative
datasets, we randomly assembled a negative set N with the same number of
protein pairs as I.
2 http://dip.doe-mbi.ucla.edu/dip/
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The domain information of proteins are obtained from the Pfam database
[2], which contains a large collection of multiple sequence alignments and profile
hidden Markov models of protein domains. Both Pfam-A and Pfam-B are used
to ensure sufficient coverage. We first infer the domain-domain interactions from
both positive set I and negative set N. Each domain pair gets an interacting
probability for I and N using Equation (3).

Table 1. Top 10 interacting and non-interacting domain pairs

Interacting domain pairs Non-interacting domain pairs

(PF07719, PF00515) (PF00153, PF00400)
(PF02985, PF02985) (PF00560, PF00172)
(PF00515, PF00515) (PF00137, PF00400)
(PF00400, PF00118) (PF00172, PF07714)
(PF07719, PF07719) (PF00023, PF00153)
(PF02985, PF00514) (PF00036, PF00400)
(PF00400, PF00514) (PF00560, PF00096)
(PF00036, PF00612) (PF00400, PF00122)
(PF00076, PF00514) (PF00702, PF00400)
(PF00432, PF01239) (PF04082, PF00153)

For illustration, Table 1 shows the top 10 interacting and top 10 non-interacting
domain pairs respectively. The top interacting domain pairs have maximal val-
ues of P ((dx, dy)|I)/P ((dx, dy)|N). In other words, these are domain pairs with
biggest P ((dx, dy)|I), while smallest P ((dx, dy)|N). The top non-interacting do-
main pairs show those with significant occurrence in non-interacting protein
pairs. As we know, not all domain pairs derived from protein-protein interac-
tions are truly interacting as some could occur in interacting proteins by chance.
This could lead to false positive domain-domain predictions if we learn from
the positive class I only. For example, domain pair (PF07714, PF00400) and
(PF00515, PF00806) occurred 170 and 70 times in I respectively. If we just learn
from I, it is natural to infer them to be interacting domain pairs since they
have high occurrence in interacting set. However, with the help of our biologi-
cal refined negative class N, we were able to eliminate them since both domain
pairs also occurred 1141 and 160 times in N respectively. Furthermore, since our
negative class N is more biologically significant than randomly paired proteins,
we can estimate the interacting probabilities of each domain pair more precisely
and thus result in a more accurate classifier.

For evaluation, we use the inferred domain-domain interactions to classify
protein pairs. A 5-fold cross validation is performed to test the accuracy of the
classifier described in Equation (5). We compare our results with the reported
results using the “Hybrid Classification” technique from reference [7] and the
“Possibility Ranking” technique from reference [6], both of which used positive
and negative training datasets for improved protein interaction prediction. Ta-
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ble 2 shows the comparison results of four domain-based protein predication
techniques in terms of sensitivity and specificity. The first two techniques were
from references [7] and [6]. The other two are our probabilistic technique with
two different negative sets, namely, randomly paired negative set (random pairs)
and the biologically significant negative set (biological refinement).

Table 2. Classification results of different techniques

Techniques Specificity Sensitivity

Hybrid Classification [7] 56.00 86.00
Possibility Ranking [6] 75.00 84.36
Our technique with random pairs 83.71 84.80
Our technique with biological refinement 90.21 87.52

Compared with the techniques in [7] and [6], our probabilistic technique was
able to achieve much higher specificity at similar sensitivity regardless of whether
it has been trained with random protein pairs as the negative set or the refined
negative set assembled using biological domain knowledge. Our classifier that
was trained with the biologically refined negative dataset gave the best per-
formance, obtaining an increase of 6.5% and 3.3% in specificity and sensitivity
respectively as compared to the same probabilistic classifier trained with nega-
tive dataset of randomly paired proteins. This shows that the use of biological
domain knowledge for negative dataset construction can benefit the prediction
performance of the eventual classifier built on the training data.

The techniques from [7] and [6] were not tested with cross-validation. They
randomly selected 20% DIP data as test set and the remaining 80% as training
set. Then they repeated their experiments 3 times and got the average results.
In fact, as reported in [7], their specificities was rather fluctuating according to
the selected test sets. Our method is more robust as our results fluctuated only
within 3% in each division of cross validation.

Table 3. Performance of classifier with the different size of N

Size ratio 2 4 6 8 10

Specificity 93.00 95.51 96.07 96.27 96.32
Sensitivity 83.21 75.54 73.14 71.50 71.30

Finally, we also investigate how the size of negative set may affect the per-
formance of our classifier. We systematically increase the size of N by 2 to 10
times. The results are shown in Table 3. With the increase in the size of the neg-
ative set, the specificity of our classifier increases while the sensitivity decreases.
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One reason that sensitivity has decreased is that the imbalance of positive and
negative training set makes our classifier biased towards the negative class N .
However, we believe that it is possible to get better performance through intel-
ligently selecting negatives, and we will leave this problem as our future study.
Another possible future work involves integrate other biological features such
as “amino acid composition” with the domain information in the prediction of
protein interactions.

4 Conclusion

In this paper, we predict protein-protein interactions based on domain informa-
tion. Our learning algorithm first constructs a biologically meaningful negative
set based on biological domain knowledge. It then infers the underlying do-
main interactions based on their probabilities in both interacting class and non-
interacting class. A probabilistic classifier for predicting protein interactions is
then built upon the inferred probabilistic domain interactions. Our experimental
results show that our probabilistic approach is effective and outperforms other
similar domain-based techniques for protein interaction prediction.
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