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Abstract

Argument unit recognition and classification (AURC) is a promising and critical
research topic in argument mining, which aims to extract the argument units that
express support or opposing stance in a given argumentative text under controver-
sial topics. Existing studies treated the AURC as a sequence labeling problem and
designed a unified approach to predict argument unit boundary and argument unit
stance simultaneously. In this paper, we propose a general framework hierarchical
neural network (HNN) for AURC, by fusing two different approach: divide-and-
conquer approach and unified approach. The divide-and-conquer approach con-
siders the correlation of the two tasks inherent in AURC (task 1: argument unit
recognition, AUR and task 2: argument unit classification, AUC), and jointly op-
timize them for prediction by a novel probability transition matrix. Finally, we
used a token-level attention mechanism to efficiently fuse probability distribu-
tions obtained by our proposed divide-and-conquer approach and existing unified
approach. Experimental results on two benchmark datasets demonstrate the effec-
tiveness of our proposed framework.
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1. Introduction

The act or process of giving reasons to support or opposing a viewpoint in
order to persuade a known or unknown audience is called argumentation [26]. Ar-
gumentation are fundamental human skills that play an important role in educa-
tion, everyday conversation, and many professional settings including journalism,
politics, and law [42]. With the rapid development of Internet technology and
social media, users will generate a large amount of subjective data such as opin-
ions and comments on a controversial topic. The research on these subjective data
contains huge commercial and academic value. The purpose of argument mining
is to study how to automatically identify arguments and extract argument relation-
ships from subjective data, so as to meet people’s higher demand for information
retrieval and information extraction [35].

Most existing methods perform argument mining at the discourse-level, such
as argument unit recognition (AUR) [2, 16], argument unit classification (AUC)
[28, 34], and argument relationship detection (ARD) [35, 9]. These discourse-
level methods address the identification of argument structures within a single
document, but they do not take into account the relevance of externally defined
controversial topics. Discourse-level argument mining models are highly depen-
dent on the text types (such as scientific publications [20] and persuasive es-
says [36]) for which they were designed and do not work well when applied to
other text types [7]. Therefore, another branch of argument mining, information-
seeking argument mining, was proposed. Unlike discourse-level argument min-
ing, information-seeking argument mining aims to identify argumentative sen-
tences relevant to a given topic. The goal of information-seeking argument mining
is to identify broad and diverse argument units that reflect different viewpoints on
a controversial topic [42].

In particular, the combination of the first two tasks, i.e., argument unit recog-
nition and classification (AURC) [42], aiming to extract the arguments of a stance
expression from a given text under a controversial topic, has gained increasing
attention recently. Stab et al. [37] and Fromm et al. [12] formulate AURC as
a sentence-level classification task that attempts to determine whether each sen-
tence in a given document is a non-argument, supporting argument, or opposing
argument. But this solution may not be enough to solve AURC problem, as shown
in the two examples below.

Example 1: Myth: [Having an abortion will help our relationship by removing
the stress of a pregnancy]pro . [topic = abortion]

Example 2:
:::::::::
[Nuclear

:::::::
energy

:::::
may

:::::
have

::::::::
horrific

::::::::::::::
consequences

::
if

:::
an

:::::::::
accident
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::::::::::
occurs]con, but [it has an enormous capacity for energy production with no carbon
emissions]pro. [topic = unclear energy]

In the above two examples, both Example 1 and 2 are classified as supporting
argument class, because it contain argument units with pro stance. Particularly,
in Example 1, the part underlined is pro argument unit, indicating authors favor
the topic of abortion due to the reason ‘abortion will help our relationship by
removing the stress of a pregnancy’. In Example 2, the part with a wavy line
is con argument unit, indicating authors oppose the topic if an accident occurs.
However, interestingly, Example 2 also contains pro argument unit due to the
benefits of enormous energy production without carbon emissions.

We observe determining whether a sentence containing the argument will not
be sufficient for argument extraction. Example 1 is an argumentative sentence,
but only the underlined argument unit is the core of the argument, as it describes
more precisely why the author holds this stance. In addition, from Example 2,
there may be more than one arguments unit with different stances in the same
sentence. Hence, the sentence-level argument unit recognition task cannot identify
the arguments corresponding to different stances mentioned in the given sentence.
Such gap motivates us pinpoint more precise or fine-grained span-level or token-
level argument expressions which can convey specific reasons of different stances
(pro and con) within a given text.

Task

AUR

AURC O O

O O I I I I I I I

Myth : Having an abortion will help our relationship

AUC pro

O

I I I I I I I O

by removing the stress of a pregnancy .

proI proI proI
proI proI proI proI proI proI proIproIproIproI proI

Text

Figure 1: Different tasks involved in AURC

Therefore, Trautmann et al. [42] has provided a benchmark datasets and used
bidirectional encoder representation from transformers (BERT) model to address
the AURC problem. In addition, Trautmann et al. [42] formulated the AURC as
a sequence labeling task where the argument unit labels (i.e., non-argument and
argument) and stance labels (i.e., pro and con) are mapped into a unified space
(see AURC in Figure 1), so that AUR and AUC are completed at the same time.
As shown in Figure 1, from the unified label space, it can obtain both argument
unit boundary that indicates whether each token belongs to an argument unit or not
(O indicates corresponding token is outside or not part of the argument unit, while
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I denotes the token is inside or part of the argument unit) and stance class of the
argument unit (pro). Here, the unified label Ipro consists of both boundary (I) and
stance class (pro). Essentially, it is a unified approach by performing three-class
classification for each token, with three class labels: O, Ipro, Icon.

From the perspective of sequence labeling task, AURC is similar to named
entity recognition (NER) task, both are labeling specific content in a given text.
But the length of the argument unit in AURC is significantly longer than that of the
entity type in NER. In addition, each argument unit contains complete semantics
and can exist as a separate clause. Obviously, identifying boundaries of argument
unit and classifying stance of argument unit are two difficult problems of this
task. Therefore, using the identified boundaries of argument unit to understand
the complete semantics of the argument unit, so as to classify the stance of the
argument unit under a controversial topic is an idea to solve the AURC task.

We address token-level AURC task by proposing hierarchical neural network
(HNN) framework, which is able to effectively integrate divide-and-conquer ap-
proach and unified approach, to improve the discrimination power of the frame-
work for AURC task. More specifically, we propose a divide-and-conquer ap-
proach to tackle the AURC task, where we focus on two inherent underlying
subtasks, AUR (boundary with labels O and I) and AUC (stance labels could be
pro and con). Both subtasks are binary classification and thus relatively simple.
Divide-and-conquer approach can potentially generate better prediction results as
we focus on them individually. In addition, to alleviate the error cascading prob-
lem brought by the divide-and-conquer approach, we jointly optimize the two
subtasks together. In particular, we first perform AUR prediction to identify argu-
ment unit spans, and subsequently perform AUC to identify corresponding stance
class for each argument unit span, and construct a probability transition matrix,
which is used to transfer the probability from the boundary space to the unified
space. In addition, we leverage the results of divide-and-conquer approach and
existing unified approach to construct a unified encoding layer to simultaneously
recognize argument units and classify their corresponding stances. Finally, we in-
tegrate the label probabilities obtained by the above two approach at token-level to
obtain the final unified labels. The main contributions of our work are three-fold:

• We propose a novel and generic sequence-to-sequence based hierarchical
neural network framework that integrates divide-and-conquer approach and
unified approach effectively for the token-level AURC task.

• In order to better integrate two probability distributions in unified space ob-
tained by two different approach, we design a token-level attention method.

4



• Extensive experimental results show that the proposed framework performs
significantly better than state-of-the-art methods on two benchmark datasets.

The remainder of this paper is organized as follows. Section 2 introduces the
related work. Section 3 details the proposed HNN. Section 4 discusses experiment
and analysis. Section 5 presents the conclusions of the study.

2. Related Work

In recent years, deep learning methods have been widely used in different
fields, across real-life applications or theoretical research [3, 10, 5, 1, 44, 32].
Among them, in natural language processing domain, the earliest research on ar-
gument mining began in some specific application domains, such as legal docu-
ments, online reviews and debates [25, 4, 27]. In recent years, however, due to the
development of deep learning technology and abundance of annotated corpora,
argument mining has gradually prospered across different domains. In existing
work [12, 37], some researchers addressed the problem of topic-focused argument
extraction on the sentence-level.

In general, argument mining mainly focuses on the microstructure of argu-
mentation, and its representative models mainly include: claim-premise model,
Toulmin model [41], standard approach [40], Freeman model [11], argumentation
scheme [43].

Most argument mining models [45, 33] rely on the claim-premise model (where
each argument must have an argumentative structure, i.e., consist of both claim
and associated supported premise), which is, however, hardly applicable to regu-
lar texts that do not contain an explicit argumentative structure, e.g., social media
data [17]. Information-seeking argument mining was therefore proposed. It solves
the following task: given a controversial claim or topic (e.g., abortion), we detect
pro or con statements from some relevant texts. In this context, an argument is
usually defined as a short text or span, that provides stance evidence or reasoning
about a topic, e.g., favor or oppose the topic [37].

AUR is the first step in argument mining. Some researchers treat it as a sen-
tence classification task. For instance, Moens et al. [27] first extracted different
features of sentences involving lexical, syntactic, semantic, and discourse prop-
erties, and subsequently trained a multinomial Naı̈ve Bayes classifier and maxi-
mum entropy model, so that they can classify a test sentence into a argumenta-
tive and non-argumentative sentence. Under the claim-premise model, Li et al.
[22] regarded AUR as a sequence labeling problem and trained a recurrent neural
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network model to more precisely detect argument unit boundaries. Ajjour et al.
[2] further discussed the effectiveness of different features in token-level AUR.
However, they ignored the stance class (pro or con) of argument units. Peld-
szus and Stede [29] used discourse analysis as the starting point to classify the
argument units, but they ignored the topic-dependency (a controversial claim) in
information-seeking argument mining.

As AUR is often transformed into a sequence labeling problem, conditional
random field (CRF) is a commonly used method [16, 31]. Because the context of
the argumentative text has strong semantic relevance, some scholars have begun to
use neural networks (recurrent neural network, long short-term memory networks)
combined with CRF to identify the boundaries of argument units [22, 30].

Recently, Trautmann et al. [42] combined argument unit recognition and clas-
sification tasks, and created a new token-level (fine-grained) benchmark corpus.
Their motivation was that token-level models support more specific selection of
argumentative spans within sentences. They have used BERT model to directly
conduct three-class classification so that they can predict boundary and stance
simultaneously.

In this paper, different from all the existing work, we propose a divide-and-
conquer approach to tackle AUR subtask and AUC subtask individually and then
assemble them to make prediction. In addition, since divide-and-conquer ap-
proach and unified approach make predictions from different and complementary
perspectives, integrating them could potentially lead to more accurate predictions.
Therefore, we also design a token-level attention component to integrate them to
further boost their performance for AURC task.

3. Framework

This paper proposes a hierarchical neural network (HNN) framework to ef-
fectively integrate the new divide-and-conquer approach and existing unified ap-
proach for AURC task prediction. In particular, the divide-and-conquer approach
decouples the overall AURC task into two inherent subtasks and tackles them in
sequence, and then re-integrate their learnt probability distribution knowledge at
the higher level for accurate prediction.

Specifically, the proposed HNN framework jointly optimizes three tasks: AUR,
AUC, and AURC. On the basis of the AUR module (bottom block), we design
AUC module (middle block) to construct a probability transition matrix, which
derives a boundary probability distribution to a unified label space. The AUR and
AUC combined together for joint optimization is divide-and-conquer approach
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Figure 2: The framework of hierarchical neural network.

part. In addition, via existing unified approach and the word representation with
boundary information, we can also generate a probability distribution in a unified
sequence labeling space direct. It’s unified approach part. Finally, the two prob-
ability distributions obtained by these two different approach are finally fused by
a token-level attention (top block). The overall architecture of the proposed HNN
framework is shown in Figure 2.

3.1. Task Definition
Following Trautmann et al. [42], we formulate the complete token-level AURC

task as a sequence labeling problem and employ a unified tagging scheme yU =
{O, Ipro, Icon}. In particular, O indicates that the corresponding token is not part
of the argument unit (outside boundary), while each tag in {Ipro, Icon} contains
two parts of tagging information: the inside boundary of the argument unit, and
the corresponding stance. For example, Ipro denotes the token is part of favor-
ing argument mention, while Icon denotes the token is part of opposing argument
mention. For a given input sequence W text = {wtext

1 , ..., wtext
t } with length t, our

goal is to predict a tag sequence Y U = {Y U
1 , ..., Y

U
t }, where Y U

i ∈ Y U . The
proposed HNN framework consists of three layers: AUR layer, AUC layer, and
AURC layer. Note the HNN framework is a general sequence labeling framework
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based on sequence-to-sequence, meaning different methods can be used for each
of the above three layers. Here we take a sequence label model conditional ran-
dom field based on bidirectional gate recurrent unit (BiGRU+CRF) as an example
to introduce the working methods for the proposed framework, although other
working methods may also be applied as we will show in experimental section.

The BERT is a pre-training model based on a bidirectional transformer, trained
on a large amount of unlabeled data. Depending on the specific downstream task,
the model can be initialized with pre-trained parameters, and then fine-tuned on
the labeled dataset for that task. In recent years, significant amount of research
have used BERT as an initialization method for word vectors as it has strong
contextualized representation ability [24, 21, 13, 6, 14].

We employ BERT as the backbone of the framework as it has strong contextu-
alized representation ability. The text and its associated topic words (e.g., abortion
is a topic to indicate the domain of the text) are concatenated by forming a com-
bined sequence as the input to BERT: [CLS], wtext

1 , ..., wtext
T , [SEP], wtopic

1 , ..., wtopic
M ,

[SEP], where [CLS] and [SEP] are special tokens. Then, BERT receives the se-
quence and outputs the representation of each token in the combined sequence.
Due to the structural properties of the BERT, topic information is incorporated
into the output contextual representation during the encoding process. The con-
textualized representations of each token X = [x1, x2, ..., xT ] can be given as:

xt = BERT (wtext
t ), 1 ≤ t ≤ T (1)

AUR layer. Based on the BERT encoding, we first use GRUB to learn long
term dependencies of tokens and encode the boundary information of its argument
unit, where the boundary information can be used as a clue and indicator for uni-
fied label prediction. In particular, if the boundary label of the current token is I,
it indicates that the word belongs to an argument unit. As such, the corresponding
unified labels can only be Ipro, Icon, depending on its different stance class. Note
the valid label set Y B for argument boundary prediction is {I,O}, and the valid
label set Y U for unified label prediction is {Ipro, Icon,O}.

The hidden representations hBt at the t-th time step t ∈ [1, T ] of the first
GRUB are concatenate as follows:

hBt = [
−−−→
GRUB(xt);

←−−−
GRUB(xt)] (2)

where [·; ·] is the concatenation operator of two vectors.
Finally, the probability scores zBt for all tokens xi ∈ X over the boundary tags

{I,O} are calculated by a CRF layer:

zBt = p(yBt |hBt ) = CRF (WBhBt + bB) (3)
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AUC layer. In the second layer of the HNN framework, we try to classify the
stance of each potential argument unit where each token in corresponding span
has label I. During training process of this layer, we input the real boundary labels
(O and I), and judge the stance of each argument unit span (Ipro, Icon) separately.
During testing process, however, we take the output of the predicted boundary
detection of the first layer as the input to the second layer, as we do not have
ground truth argument boundary for test examples. Specifically, we leverage a
binary mask matrix to mask content outside the argument unit span as they are not
part of the argument unit.

maskt =

{
0, yBt = O

1, yBt = I
(4)

We repeatedly concatenate maskT (mask = [mask1,mask2, ...,maskt]) for
dm times, and then perform element-wise multiplication with the context represen-
tation X to obtain the mask representation Xm. The specific operation is shown
in the following formula:

Xm = X � (maskT ⊗ dm) (5)

where ⊗ is a operator that repeatedly concatenates maskT for dm times; dm is the
dimension of xt.

Through the formula (5), we can get the context representation after mask.
Since BERT is a continuous contextual representation, brute force truncation re-
lying on the mask matrix may affect the semantics of word embedding represen-
tations. Thus, we utilize a GRUM to fine-tune the semantic encoding hmt .

hmt = [
−−−→
GRUM(xmt );

←−−−
GRUM(xmt )] (6)

Note topic-specific attention mechanisms has been shown to be beneficial for
stance detection [45, 33, 39]. Furthermore, different tokens play different roles in
an argument. To emphasize the important information composition in the argu-
ment span, we use a bilinear attention mechanism to calculate an attention score
for each word in the argument unit span, where the topic vector qt is a query. In
formula (7) we provide four different methods for calculating the attention scor-
ing function. The topic vectors here are generated by random initialization, and
fine-tuned gradually as the training progresses. Then through a softmax layer, the
normalized weights of the tokens can be obtained. Finally, we calculated the mask
representation of the current argument span by weighted sum.
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score(qt;hmt ) =


hmt

T qt, dot
hmt

TWqt, general
V T tanh(Whmt + Uqt), perceptron
V T tanh(W (hmt ; q

t) + b), bilinear

(7)

αt =
exp(score(qt;hmt ))∑t
i=1 exp(score(q

t;hmt ))
(8)

Hstance
spani

=
T∑
t=1

αth
m
t (9)

The probability score pstancespani
on the stance label of the current span i is calcu-

lated by a fully connected softmax layer:

pstancespani
= softmax(W SHstance

spani
+ bS) (10)

Inspired by Li et al. [23], we construct a probability transition matrix based
on the probability pstancespani

. However, different from Li et al. [23], we utilize prior
knowledge in transition probabilities between boundary tags and unified tags. One
of the reasons is that in the AURC task, the argument unit is usually relatively long
and contains complete semantics to provide argument evidence. Establishing the
transition probability for each argument unit span can effectively utilize the AUC
classification results enhanced by topic information. In particular, a transfer vector
W T

t is constructed as follows:

W T
t =

{
[1, 0, 0] , yBt = O,[
0, pprospani

, pconspani

]
, yBt = span(i,j).

(11)

where span(i,j) is the j-th token in spani. When yBt = O, it indicates that the
current token does not belong to part of the argument unit, i.e., the probabil-
ity of non-argument or non-class is 1. Correspondingly, the unified label after
the transfer should be O, and the corresponding transfer vector is [1, 0, 0]. The
three-dimensions correspond to the probabilities of the three stance labels. On
the other hand, when yBt belongs to a certain spani, the stance label probability[
pnonspani

, pprospani
, pconspani

]
of spani predicted by the second layer is used to assign the

transition probability of each word in the spani, where pnonspani
=0 as current token

is part of the argument unit.
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Likewise, on the basis of the AUR results, we map the probability scores of
boundary tags to unified tags through a transition matrix. Finally, we get the label
mapping result zU ′

t based on the transition matrix.

zU
′

t = zBt W
T (12)

The boundary probability zBt of the argument unit span can be combined with
the transition matrix W T to determine its distribution in the unified labeling deci-
sion space zU ′

t .
AURC layer. The hidden representation hUt used to predict the unified label

is calculated as follows:

hUt = [
−−−→
GRUU(hBt );

←−−−
GRUU(hBt )] (13)

Similarly, the scores over the unified tags zUt are obtained as below:

zUt = p(yUt |xt) = CRF (WUhUt + bU) (14)

At this point, we obtained two probability distribution of the unified label
space from two different and complementary methods, namely, 1) the probability
distribution zU ′

t is obtained by divide-and-conquer approach part with two sub-
tasks in AUC layer and AUR layer, and 2) the unified label distribution zUt is
obtained from the unified approach part which makes a prediction in the unified
label space. To effectively fuse the information from these two label probabilities,
we design a token-level attention mechanism, where we assign fusion weights at
the token-level to the two probability distributions for each token.

st = V T tanh(W [zU
′

t

T‖zUt
T
] + b) (15)

where [·‖·] means that two matrixs are concatenated by column. st is the score at
t-th time step. Finally, a score vector with size 1× 2 is obtained.

Finally, the normalized weight βt of the score at step t is calculated by a soft-
max layer. Finally, the distribution zt of the final unified label space is calculated
by formula (17).

βt = softmax(st) (16)

zt = βt

[
zU

′
t

zUt

]
(17)
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3.2. Loss
In general, the framework consists of three parts: 1) the first part detects the

boundaries of argument unit spans from a given text, 2) the second part per-
forms the stance detection for all the spans of argument units, 3) the third part
completes the information fusion of divide-and-conquer approach and unified ap-
proach. Among them, the two tasks, AUR and AUC, are independent but jointly
optimized. Correspondingly, the overall loss of the framework also contains 3
parts.

First part: we aim to minimize the negative log-likelihood in CRF.

LB = − 1

T

T∑
t=1

yBt log(zBt ) (18)

The gradients with respect to the parameters can be calculated efficiently through
the forward-backward algorithm in the CRF layer and back propagation in the
neural networks.

The second part loss is cross-entropy error:

Lstance
span = −

n∑
i=1

m∑
j=1

ystancjspani
log(p̂stancejspani

) (19)

where n is the number of spans and m is the number of stance classes.
Similar to the first part, the third part uses the loss of argument unit recognition

and unified label after fusion to further constrain the argument unit recognition
task.

LJoint = − 1

T

T∑
t=1

yBt log(zBt )−
1

T

T∑
t=1

yUt log(zt) (20)

The final loss function is defined as follows:

L = LB + Lstance
span + LJoint (21)

4. Experiments

In this section, we compare the proposed HNN framework with existing state-
of-the-art models using benchmark AURC-8 dataset [42] and SECA dataset [24].
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4.1. Datasets
AURC-8 1. We employ the latest AURC-8 dataset published in 2020 which

includes 8 topics, annotating with the token-level argument units and stances [42].
The topic names have been used together with text for argument boundary detec-
tion introduced in Section 3. In particular, each topic contains 1000 sentences.
#arg-sent, #non-arg, #arg-unit represents the number of argument sentences, non-
argument sentences, and number of argument units. Each argument sentences
contains at least one argument span and each argument units can be classified
two argument unit categories: PRO and CON. The statistics of the 8 datasets are
shown in the Table 1.

SECA 2. Emotion cause analysis (ECA) aims to identify the reasons behind
a certain emotion expressed in the text, but such clause-level ECA (CECA) can
be ambiguous and imprecise. As such, Li et al. [24] proposed span-level ECA
(SECA), and manually annotated cause spans based on ECA [15] dataset. This
task is similar to AURC, so we also evaluate the framework on this dataset. In
particular, each context in this task contains an emotion expression (or emotion
category) and one cause span. In addition, each cause span can be classified into
one of seven emotion categories, including anger, disgust, fear, happy, sad, shame,
and surprise. The SECA dataset contains 820 emotion-cause instances (each in-
stance contains one span only) and 1594 no-cause instances. Table 2 shows the
distribution of these emotions in the dataset.

Table 1: The proportion of AURC-8.

number #arg-sent #non-arg #arg-unit
T1 abortion 1000 424 576 458
T2 cloning 1000 353 647 380
T3 marijuana legalization 1000 630 370 689
T4 minimum wage 1000 630 370 703
T5 nuclear energy 1000 623 377 684
T6 death penalty 1000 598 402 651
T7 gun control 1000 529 471 587
T8 school uniforms 1000 713 287 821

total 8000 4500 3500 4973

1https://github.com/trtm/AURC
2https://github.com/xxxyyy2020/boundary-master
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Table 2: The proportion of SECA.

emotion-cause no-cause total
anger 199 284 483
disgust 38 57 95
fear 144 279 423
happy 211 268 479
sad 107 468 575
shame 68 78 146
surprise 53 160 213
total 820 1594 2414

4.2. The experimental setup
Data Split: In AURC-8, Trautmann et al. [42] presented two different dataset

splits: 1) an in-domain split (4000 / 800 / 2000 for train / dev / test) and 2) a cross-
domain split (4200 / 600 / 1200). In the cross-domain setup, Trautmann et al. [42]
defined topics T1-T5 to be in the train set, topic T6 in the dev set and topics T7 and
T8 in the test set. We will evaluate different methods using both splits. In SECA,
however, the training set and test set are not divided. Therefore, we perform
standard five-fold cross-validation on the dataset to evaluate the performance of
the proposed framework, following Li et al. [24].

Evaluation Metrics: To evaluate the performance of different models at a
more fine-grained level (token-level), we employ the macro-averaged F1 score
(or macro F1 score), which is computed by taking the arithmetic mean (aka un-
weighted mean) of all the per-class F1 scores. In other words, we compute the
mean value of F1 for the three classes in set yU = {O, Ipro, Icon} [42], where F1
for each class is computed for all tokens in the evaluation set and the mean F1
score is then finally reported. In addition, we also show the results of the HNN
framework in precision (P) and recall (R).

Compared Models: We compare the HNN framework with the following
methods:

• BERT: Trautmann et al. [42] uses BERT [8] for AURC task, which is a
state-of-the-art pretrained model that achieves impressive results on many
NLP tasks, including sequence labeling. BERT has been tested and ex-
tended in Trautmann et al. [42].

• Li-unified [23] is a seqence labelling method, aiming to detect the opinion
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targets and predict the sentiment polarities over the opinion targets in target-
based sentiment analysis (TBSA) task.

• BiGRU-CRF [19] is a bidirectional gated recurrent unit model with CRF
decoding layer, a commonly used sequence labeling model.

• IDCNN-CRF [38] is a faster alternative to bidirectional gated recurrent unit
for NER, which has better capacity than traditional convolutional neural
networks for large context and structured prediction.

• CNN-NER [46] used a convolutional neural network to model the interac-
tion between adjacent entity spans with special correlations.

• W2NER [21] proposed a novel alternative to NER by modeling NER as
word-word relation classification. This architecture solves the bottleneck of
NER by effectively modeling the adjacent relations between entity words.

Other Settings: We first use pre-trained BERT-base-uncased to encode the
AURC-8 and SECA datasets, then follow the default settings of BERT for fine-
tuning. Adam [18] optimizer is used with learning rate 1e-5. The random seed
is 2021. The dimension of the topic vector in AUC is 300. The training batch
size is 32. We fine-tuned for 10 epochs in the AURC task and for 15 epochs in
the SECA. Maximum sentence length is 90, dropout is 0.3. The gate dimension
of Li-unified is 300*300. The hidden representation dimension of BiGRU is 150,
and the number of layers is 1. The filters of IDCNN-CRF is 300. The code has
been made publically available online to advance science in this area and faciliates
researchers for their model comparions and further new model development 3.

4.3. Experimental results and analysis
4.3.1. Comparison results of different methods for AURC-8.

We show the comparison performance of the various methods in Table 3. As
mentioned, Trautmann et al. [42] adopted BERT for the AURC task, and its perfor-
mance is directly taken from the paper. *-HNN means to use the HNN framework
on the basis of *, that is, use different working methods of * for AUR and unified
approach part prediction. Among them, the AUC task adopts BiGRU+attention
model.

3https://github.com/cmfyj/Argument-Unit-Recognition-and-Classification
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Table 3: Performance comparison of different methods in AURC-8.

in-domain cross-domain
Model P R F1 P R F1

span-based
CNN-NER [46] 0.638 0.602 0.617 0.554 0.474 0.482
W2NER [21] 0.589 0.605 0.596 0.597 0.534 0.558

sequence
to

sequence

BERT [42] - - 0.654* - - 0.563*
BERT-Li-unified [23] 0.641 0.641 0.641 0.566 0.539 0.547
BERT-Li-unified-HNN 0.683 0.669 0.676 0.606 0.577 0.580
BERT-BiGRU-CRF [19] 0.657 0.668 0.662 0.595 0.558 0.569
BERT-BiGRU-CRF-HNN 0.685 0.681 0.683 0.601 0.577 0.585
BERT-IDCNN-CRF [38] 0.649 0.670 0.658 0.584 0.554 0.563
BERT-IDCNN-CRF-HNN 0.679 0.683 0.681 0.612 0.584 0.584

From Table 3, we observe that among the two different types of methods,
these span-based methods perform the worst. As they need to generate the start
and end positions of spans for different lengths, the longer the span length, the
more difficult it is to accurately capture the semantics contained in the span, and
the more ambiguous the positioning of start and end positions. In the sequence-to-
sequence based approach, we conduct experiments by adding the HNN framework
to different base models. The transition matrix in Li et al. [23] adopts the same
probability for different stance, and its output layer uses the sentiment consistency
component to control the consistency of the label sequence. For AURC task,
its performance is not ideal. However, the performance of Li-unified-HNN has
been significantly improved after leveraging the proposed HNN framework. In
fact, by adding the HNN framework to three different models, namely Li-unified,
BiGRU-CRF, and IDCNN-CRF, we observe that Li-unified-HNN, BiGRU-CRF-
HNN, and IDCNN-CRF-HNN have all been improved consistently in terms of F1
score by 0.35, 0.21, and 0.23 for in-domain scenario and by 0.33, 0.16, and 0.21
for cross-domain scenario respectively. In contrast, cross-domain for AURC is
obviously more difficult and challenging.

4.3.2. Comparison results of different methods for SECA.
In Li et al. [24], the original SECA (ori-SECA) task is defined as: given a

sentence and a emotion category, extract the corresponding emotional cause span.
However, in order to be consistent with the setting of the AURC task, according to
the given sentence, we need to extract the cause span and judge its corresponding
emotion category, namely variant SECA (var-SECA). We show the comparison
performance of SECA in Table 4, where the experiments of the ori-SECA part
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were selected from Li et al. [24].

Table 4: Performance comparison of different methods in SECA.

Input Model P R F1

sentence
emotion category

(ori-SECA)

Ghazi et al. [15] 0.666 0.593 0.628
BERT+Softmax [24] 0.838 0.876 0.856
BERT+GRU [24] 0.883 0.868 0.875
BERT+CRF [24] 0.866 0.890 0.878

sentence
(var-SECA)

BERT [42] 0.778 0.840 0.796±0.0357
BERT-Li-unified [23] 0.819 0.854 0.823±0.0591
BERT-Li-unified-HNN 0.849 0.903 0.870±0.0282
BERT-BiGRU-CRF [19] 0.799 0.879 0.827±0.0298
BERT-BiGRU-CRF-HNN 0.851 0.905 0.869±0.0386
BERT-IDCNN-CRF [38] 0.791 0.857 0.816±0.0399
BERT-IDCNN-CRF-HNN 0.862 0.880 0.864±0.0314

From the results in Table 4, it can be seen that after adding the HNN frame-
work, the performance of the sequence labeling model is significantly improved
(by about 0.53, 0.42, and 0.48, respectively). Comparing with the ori-SECA task
with a given emotion category, the F1 value is only 0.008-0.014 lower than the
former best results, even though the corresponding emotion category is not given
in var-SECA task. Clearly the var-SECA task presented in this paper is obviously
more challenging. Without a given emotion category, the performance of the two
tasks is still somewhat comparable. It should be noted that the former only con-
ducts experiments on 820 pieces of data with emotion cause (only including in-
stances with emotion category cause), while this research conducts experiments
on all 2414 pieces of data (including instances without emotion reasons span) ex-
periment. It is worth mentioning that although topic information is not included in
the SECA dataset, the proposed framework is highly competitive by considering
long-range cause span information. Overall, on both AURC and SECA datasets,
the consistent improvements against state-of-the-art models demonstrates the ef-
fectiveness and generality of the proposes HNN framework.

4.3.3. Ablation experiments of different approach for AURC-8.
In order to compare the impact of the divide-and-conquer and unified approach

in the HNN framework on the performance, we designed the following ablation
experiments for analysis, and the experimental results are shown in Table 5. [d&c]
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means that AUR is performed first, followed by AUC, and the two tasks are opti-
mized independently. [d&c part, -w/o unified] means to only use the divide-and-
conquer approach part to complete the AUR and AUC in HNN, without using
unified approach. The difference between the two contrasting methods is whether
the two subtasks are optimized independently or jointly. In the HNN framework,
the input of the unified part is the representation hBt with boundary information,
[xt for unified] means that the output xt of BERT is used directly as the input for
the unified part.

Table 5: Performance comparison of results without different components. The best results of
each basic model are highlighted in bold.

in-domain cross-domain
Model P R F1 P R F1
BERT-Li-unified [unified] 0.641 0.641 0.641 0.566 0.539 0.547
BERT-Li-unified [d&c] 0.631 0.631 0.631 0.585 0.539 0.549
BERT-Li-unified-HNN [d&c part, -w/o unified] 0.680 0.667 0.673 0.604 0.576 0.580
BERT-Li-unified-HNN [xt for unified] 0.670 0.660 0.662 0.613 0.562 0.574
BERT-Li-unified-HNN 0.683 0.669 0.676 0.606 0.577 0.580
BERT-BiGRU-CRF [unified] 0.657 0.668 0.662 0.595 0.558 0.569
BERT-BiGRU-CRF [d&c] 0.617 0.637 0.625 0.599 0.541 0.552
BERT-BiGRU-CRF-HNN [d&c part, -w/o unified] 0.686 0.681 0.682 0.603 0.579 0.582
BERT-BiGRU-CRF-HNN [xt for unified] 0.671 0.679 0.675 0.627 0.568 0.579
BERT-BiGRU-CRF-HNN 0.686 0.682 0.683 0.601 0.577 0.585
BERT-IDCNN-CRF [unified] 0.649 0.670 0.658 0.584 0.554 0.563
BERT-IDCNN-CRF [d&c] 0.623 0.630 0.627 0.595 0.554 0.564
BERT-IDCNN-CRF-HNN [d&c part, -w/o unified] 0.676 0.679 0.677 0.607 0.580 0.580
BERT-IDCNN-CRF-HNN [xt for unified] 0.659 0.685 0.670 0.596 0.565 0.574
BERT-IDCNN-CRF-HNN 0.679 0.683 0.681 0.612 0.584 0.584

In Table 5, we give a comparison of different working methods, from the re-
sults we can see that the fusion of different working methods is necessary. Com-
pared to the unified method, the divide-and-conquer approach performs poorly
in most model for different domain. Because there is error propagation between
the two subtasks of the divide-and-conquer approach. And [d&c part] can sig-
nificantly reduce the impact of error propagation by jointly optimizing the two
subtasks and thus significantly improve the performance of the model. Moreover,
from the comparison of (xt for unified) and *-HNN results, it can be seen that
the representation containing boundary information as input is more favorable for
the prediction of unified labels. We notice *-HNN achieves the best results for
both scenarios, as it can jointly optimize the two subtasks (AUR and AUC) and
integrates the results of the two approachs (divide-and-conquer and unified). In
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general, jointly optimizing these two subtasks, integrating boundary information
for unified, and fusing two different methods to improve the HNN framework from
different perspectives, have improved the performance of the proposed framework
to varying degrees.

4.3.4. Effectiveness of different attention scoring functions.
In the AURC layer, we use a bilinear attention mechanism to fuse the infor-

mation of different words. As shown in formula (7), the attention scores are cal-
culated differently. To verify the performance of different scoring functions, we
conduct comparative experiments on the AURC dataset. The experimental results
are shown in Table 6.

Table 6: Performance comparison of results with different attention scoring functions. The best
results of each basic model are highlighted in bold.

in-domain cross-domain
Model P R F1 P R F1
BERT-Li-unified-HNN [dot] 0.677 0.667 0.672 0.597 0.593 0.592
BERT-Li-unified-HNN [general] 0.682 0.666 0.674 0.603 0.574 0.583
BERT-Li-unified-HNN [perceptron] 0.674 0.663 0.665 0.615 0.598 0.604
BERT-Li-unified-HNN [bilinear] 0.683 0.669 0.676 0.606 0.577 0.580
BERT-BiGRU-CRF-HNN [dot] 0.654 0.667 0.660 0.604 0.599 0.600
BERT-BiGRU-CRF-HNN [general] 0.684 0.671 0.677 0.605 0.578 0.586
BERT-BiGRU-CRF-HNN [perceptron] 0.706 0.652 0.672 0.611 0.575 0.587
BERT-BiGRU-CRF-HNN [bilinear] 0.686 0.682 0.683 0.601 0.577 0.585
BERT-IDCNN-CRF-HNN [dot] 0.672 0.671 0.671 0.615 0.588 0.595
BERT-IDCNN-CRF-HNN [general] 0.706 0.671 0.686 0.598 0.572 0.572
BERT-IDCNN-CRF-HNN [perceptron] 0.672 0.675 0.673 0.599 0.590 0.593
BERT-IDCNN-CRF-HNN [bilinear] 0.679 0.683 0.681 0.612 0.584 0.584

According to the experimental results of Table 6, we observe that different
attention scoring functions have a relatiely small impact on the performance of the
HNN framework. During the experiments, we adopt the same hyperparameters
for different frameworks built with different attention scoring functions. This is
why there is no single scoring function that achieves optimal experimental results
across all datasets. Moreover, the experimental results show that none of the four
attention scoring functions has a significant performance advantage.
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4.3.5. The influence of different training methods for the subtask of divide-and-
conquer.

As mentioned in the previous, [d&c] methods are independent sequential method,
[d&c parts] are jointly trained and optimized. In Table 7, we explore the differ-
ences brought about by the two training methods. [d&c step1] represents the first
step in the independent sequential method for AUR, [d&c step2] means using
the topic-specific attentional mechanism to complete AUC. Similarly, [d&c parts
step1] represents the first layer in divide-and-conquer part of the framework, [d&c
parts step2] represents the second layer.

Table 7: The results of each subtask. The best scores in each subtask are shown in bold.

in-domain cross-domain
Task Model P R F1 P R F1

AUR

BERT-Li-unified [d&c step1] 0.769 0.770 0.770 0.744 0.714 0.716
BERT-Li-unified-HNN [d&c parts step1] 0.785 0.779 0.781 0.761 0.751 0.753
BERT-BiGRU-CRF [d&c step1] 0.766 0.776 0.769 0.751 0.714 0.715
BERT-BiGRU-CRF-HNN [d&c parts step1] 0.782 0.781 0.782 0.769 0.755 0.758
BERT-IDCNN-CRF [d&c step1] 0.766 0.770 0.768 0.756 0.731 0.734
BERT-IDCNN-CRF-HNN [d&c parts step1] 0.777 0.779 0.778 0.769 0.761 0.763

AUC

[d&c step2] 0.788 0.786 0.785 0.675 0.675 0.674
BERT-Li-unified-HNN [d&c parts step2] 0.789 0.789 0.789 0.655 0.651 0.645
BERT-BiGRU-CRF-HNN [d&c parts step2] 0.801 0.799 0.798 0.648 0.644 0.644
BERT-IDCNN-CRF-HNN [d&c parts step2] 0.791 0.790 0.790 0.672 0.666 0.658

From Table 7, we observe the divide-and-conquer part of the framework per-
forms better as it can jointly optimize the two subtasks comparing with indepen-
dent sequential method that optmizes the two subtasks in sequence, introducing
propogation errors. Since framework aims to optimize the overall AURC task,
each individual subtask may not be optimized individually, which leads to the sub-
task in the divide-and-conquer method performing the best in cross-domain AUC
task. But apart from that, the HNN framework achieves optimal performance on
other tasks. This is due to the fact that the two tasks share the underlying encoded
representation, and the two tasks can be jointly optimized. The AUR task and the
AUC task are simple, and the F1 is relatively high. The correlation between tasks
can be constructed to a certain extent through the HNN framework. Therefore, the
divide-and-conquer part exhibits a significant performance advantages. From the
performance of in-domain and cross-domain, cross-domain is clearly more chal-
lenging. In cross-domain, both AUR and AUC are affected by topic absence. In
particular, the performance of cross-domain is severely degraded, with the most
dropping by 15.4%. Therefore, in order to improve the performance of AURC

20



tasks in cross-domain, the optimization of AUC deserves further research.

4.3.6. Comparison results of different components.
Since the HNN framework has two attention components: stance attention

and token-level attention, in Figure 3, we present corresponding ablation experi-
ments based on different sequence labeling methods to verify whether they have
a positive impact on the whole framework. -w/o token-level attention means
to remove the token-level attention components in the HNN framework and use
a simple addition method instead. -w/o topic attention indicates that the topic-
specific attention mechanism is not used in the AUC task, and the hidden layer
representation at the last time in the BiGRU is used.
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0.665
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BERT BERT-Li-unified BERT-BiGRU-CRF BERT-IDCNN-CRF

-w/o token-level attention -w/o topic attention HNN

Figure 3: The results of three key components (in-domain).
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BERT BERT-Li-unified BERT-BiGRU-CRF BERT-IDCNN-CRF

-w/o token-level attention -w/o topic attention HNN

Figure 4: The results of three key components (cross-domain).

We observe from Figure 3 and Figure 4, in the in-domain, removing either
component caused the performance of the HNN framework to degrade. In the
cross-domain, since the topic of test set is unseen, removing the topic attention is
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not significantly affected, which is confirmed with the results of the AUC task in
Table 7. The results in Table 7 and Figure 4 show that, in the cross-domain, the
performance of the AUC task is crucial and is an important factor affecting the
AURC task. And token-level attention is particularly important in both domains.
From the results of -w/o token-level attention, it can be seen that it is necessary to
assign corresponding weights to each token in the information fusion. In the in-
domain part, since the dataset contains topic information, topic attention is more
important. On the other hand, in the cross-domain part, due to the lack of topic
information, topic attention is dispensable. Thus, the role of token-level attention
is highlighted. Overall, we can conclude that all the two key components bring
certain help and benefit to the overall HNN framework.

4.3.7. Visualization of token-level attention components
As can be seen from Figure 3 and Figure 4, the performance of the framework

has been improved to varying degrees after the addition of token-level attention
components. To further explain the effectiveness of token-level attention compo-
nents, we use visualization to analyze the function of the components in Figure 5
and Figure 6. Note that we show the stance parts (i.e. pro and con) that are uni-
fied labeled, and use a dark background to mark the boundaries. The words with
an orange background denotes the con argument unit. The words with a green
background denotes the pro argument unit.

token-level

attention weight

Unified

It is a rational truism that all potential negative outcomes deter some - there is no exception .

It is a rational truism that all potential negative outcomes deter some - there is no exception .

It is a rational truism that all potential negative outcomes deter some - there is no exception .

Divide-and-Conquer

Output (True)

Figure 5: The visualization of attention weight for case 1.

From the Figure 5, we observe that the divide-and-conquer approach does not
accurately identify the boundary of the argument unit. Nevertheless, the unified
approach can make up for the shortcomings of the divide-and-conquer approach.
Finally, the correct prediction results are obtained through the token-level atten-
tion component, indicating the effectiveness of the proposed framework.

Similarly, we can observe from the Figure 6 that although both the divide-and-
conquer and unified approach correctly predict the boundaries of the argument
unit, but the argument category of unified approach is wrong. In the process of
using token-level component fusion, the divide-and-conquer approach has a larger
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token-level

attention weight

Unified

Divide-and-Conquer The death penalty is an ineffective and counter productive way to punish terrorists .

The death penalty is an ineffective and counter productive way to punish terrorists .

The death penalty is an ineffective and counter productive way to punish terrorists .Output (True)

Figure 6: The visualization of attention weight for case 2.

weight, which guides the model to make correct predictions. By analyzing the
visualization results, we conclude that the token-level attention component plays
a critical integrating role, leading to overall better model performance.

4.3.8. Case studies
In this subsection, we select examples from test set to demonstrate the effec-

tiveness of the proposed framework in Table 8.

Table 8: Case Studies. The “sentence” column shows the output of the AURC task from the
different models, but note that we show the stance parts (i.e. PRO and CON) that are unified
labeled, and use a dark background to mark the boundaries. The words with an orange background
denotes the CON argument unit. The words with a green background denotes the PRO argument
unit.

Model Sentence

BERT-Li-unified
However , the babies seemingly have no right to protection or
life themselves because of the argument regarding when a fetus is
determined be human and have life .

error

BERT-Li-unified-HNN
However , the babies seemingly have no right to protection or
life themselves because of the argument regarding when a fetus is
determined be human and have life.

correct

BERT-BiGRU-CRF The death penalty is an ineffective and counter - productive way
to punish terrorists .

error

BERT-BiGRU-CRF-HNN The death penalty is an ineffective and counter - productive way
to punish terrorists .

correct

BERT-IDCNN-CRF

Supporters say that few innocent people are executed and DNA
testing will make convictions safer Since 1973 , over 130 people
have been released from death rows throughout the country due
to evidence of their wrongful convictions .

error

BERT-IDCNN-CRF-HNN

Supporters say that few innocent people are executed and DNA
testing will make convictions safer Since 1973 , over 130 people
have been released from death rows throughout the country due
to evidence of their wrongful convictions .

correct
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We observe that without the help of the HNN framework, the model may easily
make wrong decisions. On the other hand, using only the unified method does not
handle all cases well. Only when combining unified method with the divide-
and-conquer method, the overall model performance is significantly improved.
Using the HNN framework to a large extent solves these problems of inaccurate
boundary recognition, wrong classification of argument units, and simultaneous
occurrence of multiple different categories of argument units. Through analyzing
the case study results, we can conclude that both the divide-and-conquer approach
and token-level attention mechanisms play a corresponding auxiliary task roles
very well under the proposed HNN framework.

5. Conclusion

AURC is a critical and practical research topic in argument mining domain
which can help users identify fine-grained arguments and corresponding stances
simultaneously. This paper proposes a new hierarchical neural network (HNN)
framework that effectively integrates the advantages of two working methods,
namely divide-and-conquer approach and unified approach. In particular, the
proposed divide-and-conquer approach divides the overall AURC task into two
inherent subtasks, namely, AUR and AUC, and design new methods to tackle
them individually and assemble them for accurate prediction. Finally, we inte-
grate the probability distributions obtained by the proposed divide-and-conquer
approach and existing unified approach at the token-level through attention mech-
anism. Extensive experimental results on AURC-8 and SECA demonstrate the
effectiveness of the proposed HNN framework.

Theoretically, the HNN framework can be used for other sequence labeling
problems, such as NER, opinion target extraction and sentiment polarity predic-
tion, span-level emotion cause analysis. However, due to the characteristics of
the AURC task, the HNN framework cannot be perfectly adapted. For example,
the AURC task contains topic information, and the argument unit is too long, etc.
As such, when adapting our HNN framework to different problems, it needs to
be modified properly according to their characteristics. In fact, how to extend
the proposed generic framework for other NLP tasks is our future work. In ad-
dition, during the training process, argument spans for different texts need to be
extracted separately, and correspondingly the time complexity is high. Therefore,
how to optimize our model by taking the time complexity and training cost into
consideration is also the focus of the future research.
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