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While high-throughput technologies are expected to play a critical role in clinical trans-

lational research for complex disease diagnosis, the ability to accurately and consistently
discriminate disease phenotypes by determining the gene and protein expression patterns
as signatures of different clinical conditions remains a challenge in translational bioinfor-
matics. In this study, we propose a novel feature selection algorithm: Multi-Resolution-
Test (MRT-test) that can produce significantly accurate and consistent phenotype dis-

crimination across a series of omics data. Our algorithm can capture those features

contributing to subtle data behaviors instead of selecting the features contributing to
global data behaviors, which seems to be essential in achieving clinical level diagnosis for

different expression data. Furthermore, as an effective biomarker discovery algorithm,
it can achieve linear separation for high-dimensional omics data with few biomarkers.
We apply our MRT-test to complex disease phenotype diagnosis by combining it with

state-of-the-art classifiers and attain exceptional diagnostic results, which suggests that

our method’s advantage in molecular diagnostics. Experimental evaluation showed that
MRT-test based diagnosis is able to generate consistent and robust clinical-level pheno-

type separation for various diseases.
In addition, based on the seed biomarkers detected by the MRT-test, we design a

novel network marker synthesis (NMS) algorithm to decipher the underlying molecular
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mechanisms of tumorigenesis from a systems viewpoint. Unlike existing top-down gene
network building approaches, our network marker synthesis method has a less depen-

dence on the global network and enables it to capture the gene regulators for different
subnetwork markers, which will provide biologically meaningful insights for understand-

ing the genetic basis of complex diseases.

Keywords: Biomarker; feature selection; subnetwork.

1. Introduction

As high-throughput methods in experimental biotechnology reach technological ma-

turity, genomic technologies such as gene expression array are expected to play a

critical role in clinical translational research for complex disease diagnosis. However,

there are stringent requirements in genomic medicine that have to be met. The abil-

ity to accurately and consistently discriminate disease phenotypes by determining

gene expression patterns as signatures of different clinical conditions (e.g., three

pathological stages of a tumor) is of particular importance. This has remained a

challenge in translational bioinformatics due to the special characteristics of gene

expression data. A gene expression dataset can be represented as a p × n matrix,

where each column represents a gene (variable) and each row represents a sample

(observation)a. The number of variables (genes) is typically much greater than the

number of observations, i.e. n � p, even though only a small portion of the genes

actually contribute biologically meaningful data variations for disease detection.

Traditional pattern recognition methods, designed for low or medium dimensional-

ities of input data (smaller n that is more compatible with p), fail to achieve the

requirements of clinical-level diagnosis.

Furthermore, gene expression data are notoriously noisy due to profiling vari-

ations, experimental design artifacts, and technical biases. In fact, normalization

techniques are even ineffective in removing the ‘systems noise’ completely. They

may also introduce false positives into the data1. Thus, translational bioinformatics

methods for effective disease biomarker discovery and robust phenotype diagno-

sis from gene expression data must overcome the high dimensionality, information

redundancy, and built-in noises, because they usually have caused traditional clas-

sification methods (e.g., discriminant analysis) to lose discriminative power.

The existing methods of biomarker discovery can be categorized into two groups,

namely, gene-set methods and network methods. The gene-set methods identify a

set of significant genes, i.e., gene markers from gene expression profiles using com-

plicated biomarker capturing approaches (e.g., filter-wrapper methods) or feature

selection methods to discriminate different disease phenotypes. Although widely

employed, as a result of the gene expression data challenges mentioned above, the

gene lists obtained from different gene expression studies can differ widely and share

few common genes2. As such, there is no guarantee that good diagnosis achieved

aIt is different from the traditional notation where each row is a variable (e.g., a gene) and each

column is a sample for the convenience of algorithm description.
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from one dataset can be generalized to another. In fact, the phenotype diagnos-

tic performance from almost all gene-set methods lack stability and demonstrates

strong dependence on input data. A method may work quite well for one dataset

but fail badly on another.

Alternatively, the network methods2 don’t view a biomarker as an individual

genes. Instead, they view each biomarker as a small network, i.e., a subnetwork by

incorporating protein-protein interaction (PPI) or even pathway information with

the expression profiles. They employ subnetwork identification algorithms such as

jActiveModule3, PNA4, and COSINE5 to look for a set of subnetwork markers,

which are usually orthogonal to each other, from expression data.

Although such a systems approach claimed in-depth insights into the underlying

biological processes of complex diseases, they still have hard time to improve disease

diagnostic accuracy not to mention to attain rivaling clinical phenotype discrimina-

tion. Especially, a noisy global protein-protein interaction (PPI) network may lead

to subnetwork markers to include some unrelated “false positive” genes, which will

decrease the discriminative power of the network markers and lead to poor diag-

nosis, because these methods usually search subnetwork markers from the global

PPI network in a top-down fashion. Moreover, the subnetwork markers are usually

orthogonal to each other and no information is available about gene regulators con-

necting them. However, those information can be essential to fully understand the

dynamics of a disease from a systems viewpoint.

In this work, we develop a de novo feature selection method: Multi-Resolution-

Test (MRT-test) to identify meaningful biomarkers from expression data. The MRT-

test is based on our previous studies in local and global feature selection6,7. We have

found that our MRT-test is an exceptional way to extract subtle data characteristics

in high dimensional omics data by capturing the local features of data in addition

to removing system noise. Alternatively, as a novel disease biomarker discovery

algorithm, our proposed MRT-test is particularly useful (as compared to existing

methods) as it is able to identify meaningful biomarkers and demonstrate the linear

separability of high-dimensional expression data.

We demonstrate that, by integrating our MRT-test with the state-of-the-art

classifiers (e.g., SVM), we are able to achieve consistent clinical-level diagnosis ac-

curacy across a series of gene expression data, whereas existing methods typically

can only work well in one or two omics data. It is noted that we mainly use gene ex-

pression data in this study, though we also demonstrate our method’s effectiveness

in proteomics data. Furthermore, we propose a MRT-test based network marker

discovery method: ‘network marker synthesis’ (NMS ) to seek network markers by

’growing’ the ’seed’ gene markers from the MRT-test. As a bottom-up network ap-

proach, it has less dependence on the global network for its more targeted search and

enables the identification of gene regulators for the subnetwork markers to reveal

underlying tumorigenesis, in addition to demonstrate rivaling clinical phenotype

diagnosis, because of its more targeted search initialized by our MRT-test identified

gene markers.
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2. Methods

We provide some background on feature selection in section 2.1 before we introduce

our Multi-Resolution-Test (MRT-test) method in section 2.2.

2.1. Background on feature selection

The proposed MRT-test extends our previous work in local and global feature se-

lection to input-space feature selection6,7. We first categorize feature selection as

either subspace or input-space feature selection before introducing the MRT-test.

The former seeks to find meaningful feature combinations in a low dimensional sub-

space induced by a linear or nonlinear transform (e.g., PCA). The latter selects

a feature subset in the same space as input data through conducting a statistical

test (e.g., t-test) or building different feature filtering models according to different

selection criteria (e.g., filter-wrapper methods). Due to the high dimensionality of

gene expression data, input-space feature selection methods are often used for its

efficiency and simplicity. The two-sample t-test and its variants are probably the

most popular input-space methods in gene expression analysis. However, similar to

other input-space approaches, they have the following limitations.

First, these methods usually assume input data ’clean’ or ’nearly clean’ and ig-

nore necessary de-noising in feature selection. Such an assumption may not be ap-

propriate because the noises in gene expression data can be non-linear. This means

that they are more than white noises or non-differential ones, and they can cause

statistical tests (e.g., the t-test and even its more sophisticated extensions) to lose

robustness. For example, the noises would behave as ‘outliers’ by participating in

t-score calculations for each gene, and cause the sample means from the two groups

of a gene (e.g., cancer vs. control) to be very close, which usually results in a zero or

an approximately zero t-score. As such, the t-test ’s robustness may be significantly

decreased, leading to biased feature selection, i.e., “pseudo-significant” genes are

selected while “truly-important” genes are filtered. This may inevitably limit the

subsequent classifier’s phenotype discrimination, generalization, and stability.

Second, these methods are single resolution approaches, where all features are

indistinguishably displayed in one resolution despite the nature of their frequencies.

As such, the high frequency features will have a high likelihood to be picked up in

feature selection than those low frequency ones. The high (low) frequency features

refer to those features which appears the more (less) often in the input space re-

spectively. Furthermore, we refer to the high frequency and low frequency features

in the input space as global features and local features, which describe global/local

data characteristics and capture general/subtle data behaviors, respectively. The

local features can be viewed as signals occurring at a short time interval (e.g., tran-

sient signals with sharp peaks), while the global features can be viewed as signals

observed often in a long time interval.

For example, a gene whose expression plot curve is similar to those of most

other genes is a global feature. On the other hand, a gene with several exceptional
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local “high peaks” on control, which are rarely found on most other genes, would

be a local feature. The local features are key to discriminating samples sharing

similar global characteristics but with different local characteristics to achieve high

diagnosis accuracy in translational bioinformatics. For example, Different subtypes

of tumors may share similar global characteristics but different local characteristics

in their expression data according to their different pathological states.

However, the local features are hard to extract by traditional feature selection

methods, where each feature is an indecomposable information unit, because the

global features may always have a high likelihood to be selected for their high-

frequency. As a result, there are redundant global characteristics involved in dis-

ease phenotype discrimination because global feature dominated data will enter the

subsequent classifier (e.g., SVM) used for diagnosis. However, the redundant global

features may overshadow the subsequent classifier’s training phrase and lead to a

decision rule only favoring those global features. As such, the resulting classifier

would fail to diagnose the samples with similar global characteristics but different

local characteristics.

To some degree, the redundant global features act as ‘external noise’ along

with the built-in noise to affect the classifier’s discrimination and generalization

capabilities, and increase the risk of mis-diagnosis and over-fitting. For this reason,

such classifiers may demonstrate large oscillations in performance for different data,

i.e., it may fit some data well but poorly on others, due to the global features’

unpredictable contributions to phenotype discrimination. In this study, we present a

novel feature selection model: Multi-Resolution-Test (MRT-test) designed to extract

local features, conduct de-noising, and avoid redundant global features so as to

enhance biomarker discovery by detecting subtle changes in expression of the few

genes causing disease, and achieve rivaling clinical phenotype diagnosis.

2.1.1. Multi-Resolution-Test ( MRT-test)

Unlike traditional feature selection methods, the MRT-test makes local feature ex-

traction and de-nosing possible by incorporating a screening mechanism to separate

the global and local features via discrete wavelet transform (DWT)8 based multi-

resolution analysis. It is noted that we view each entry of a gene in the DWT as a

sampling point at a specific time point, and the entries belonging to different types

(e.g., cancer type) are points sampled at different time intervals.

For example, given a gene from an omics data set with 40 cancer and 50 control

samples, we view the 40 entries from the cancer type and 50 entries from the control

type as the sampling points from time intervals 1 and 2 respectively. The reason for

this assumption is that we implicitly view gene expression data as a kind of special

time series data, where different types of observations are samples from different

biological time intervals. For example, three pathological stages of a certain tumor

correspond to three different biological time intervals.

The MRT-test can be sketched as following steps. At first, a discrete wavelet
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transform (DWT) with a transform level L is applied to input data X column-wise

to decompose it hierarchically as L detail coefficient matrices: D1, D2, · · ·DL, and

an approximation matrix AL. It is noted that we assume input expression data X

have n columns of genes and p rows of samples in our context. Since DWT is done on

a set of dyadic grid points hierarchically, the dimensionalities of the approximation

and detail coefficient matrices shrink dyadically level by level.

For example, given input data with 100 samples across 1024 genes under the

DWT with a transform level L = 4, D1 is a 100×512 matrix and D2 is 100×256

matrix. Similarly, D4 and A4 both are 100×64 matrices. That is, given input expres-

sion data with p samples and n genes X = [x1, x2, . . . xn],xj ∈ <p, a L-level DWT is

applied to such data set gene by gene to obtain L number of detailed coefficient ma-

trices Dj ∈ <pj×n(j = 1, 2, · · ·L) and an approximation matrix AL ∈ <pL×n, i.e.,

such a transform can be summarized as T = {D1, D2, · · ·DL, AL}, where pj ∼ p/2j ,
j = 1, 2, · · · , L.

The approximation matrix and coarse level detail coefficient matrices (e.g.,

DL−1, DL) capture the global data characteristics, because they contain contribu-

tions from the features disclose data behaviors usually often observed in ’long-time

windows’. Similarly, the fine-level detail coefficient matrices (e.g., D1, D2), capture

the subtle (latent) data characteristics, because they contain contributions from

those features describing less-often data behaviors observed in ‘short-time windows’.

In fact, these fine-level detail matrices are components to reflect data derivatives in

different time windows. Furthermore, most system noise is hidden in these compo-

nents for its heterogeneity with respect to the ’true’ signals. In summary, the first

step separates the global characteristics, subtle data characteristics, and noise in

different resolutions.

Second, we retrieve the most important subtle data behaviors and remove noise

by reconstructing the fine-level detail coefficient matrices before or at a presetting

cutoff level τ (e.g., τ=3). Such construction consist of two steps:

1) We apply principal component analysis (PCA) to each of the detail coefficient

matrices D1, D2 · · ·Dτ to obtain its principal component (PC) matrix U and score

matrix S.

2) We employ the first loading vector (1st PC), the 1st column in the PC ma-

trix U, to reconstruct each coefficient matrix Dj , j = 1, 2, · · · τ, to retrieve the

most important subtle data behaviors described by this fine-level detail coefficient

matrix. We have to point it out that such the first principal component based re-

construction is actually a de-nosing process also. This is because only the maximum

variance direction (the 1st PC direction) is employed in reconstructing each targeted

fine-level coefficient matrix and those less important and noise-contained principal

components are dropped in reconstruction.

In fact, we have found that the first PC direction counts quite a large percent-

age of data variance (e.g., 60%) for each fine-level detail coefficient matrix in a

gene/protein expression array data. Moreover, as we pointed out before, the system
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noise is usually transformed to those fine-level detail coefficient matrices (e.g., D1)

for its heterogeneity by the DWT. Thus, using the 1st PC in the fine-level coeffi-

cient matrix reconstruction would guarantee the maximum de-noising and the most

significant subtle data behavior retrieval.

Alternatively, the coarse level detail coefficient matrices after the cutoff τ :

Dτ+1, Dτ+1 · · ·DL and approximation coefficient matrix AL are kept intact to re-

trieve these global data characteristics. Since the local data characteristics extrac-

tion and system noise removal are achieved through decomposing features in the

multi-resolution data approach, we avoid the global feature dominance problem

faced by the traditional feature selection methods, which would contribute to the

following phenotype diagnosis. It is worth pointing out that, although theoretically

feasible, using several leading loading vectors instead of the 1st PC in the detail

coefficient matrix reconstruction may not achieve desirable de-noising, especially

under a ‘large’ τ value (e.g., τ = 16).

Third, a corresponding inverse DWT is applied to the current coefficient matrices

and the approximation matrix to calculate a meta-profile X∗, which is a same

dimensional synthesis of the original data but catch subtle data characteristics and

has less memory storage because less important principal components are dropped

in our detail coefficient matrix reconstruction. Moreover, the meta-feature of each

feature (e.g., gene), i.e., the expression values of the feature in X∗, has values in a

relatively smaller range than that of the original feature due to the leading PC based

detail coefficient matrix reconstruction. For the same reason, the data variances of

the meta-profile X∗ are smaller than those of the original omics data X.

Finally, we employ t-statistic and F-statistic to score each feature, i.e., gene,

for the binary class and multi-class cases respectively. The genes with the most

statistically significant scores will be chosen as gene markers. It is noteworthy that

de-noising and local feature extraction process in steps 2 and 3 make the phenotype

distributions in the meta-profile X∗ fit better into the normal distribution than

those of the original data X, which theoretically contributes to the effectiveness of

the MRT-test. The detailed MRT-test algorithm is presented as follows.

Algorithm 1 Multi-Resolution-Test (MRT-test)

(1) Wavelet multi-resolution analysis. Given an expression dataset with p ob-

servations and n variables X = [x1, x2, . . . xn], xj ∈ <p, n � p, a L-

level DWT is applied each column to obtain L detailed coefficient matrices

Dj ∈ <pj×n, (j = 1, 2 · · ·L) and an approximation matrix AL ∈ <pL×n, i.e.,

T = {D1, D2, . . . DL, AL}, where pj ∼ p/2j , j = 1, 2 · · ·L.

(2) De-noising and local feature selection. A level threshold 1 ≤ τ < L − 1, is

selected to conduct de-noising and local feature extraction.

(a) Case 1: 1 ≤ j ≤ τ
i. Apply principal component analysis for each matrix Dj to obtain its princi-

pal component (PC) matrix U = [u1, u2, . . . up], ui ∈ Dj ∈ <p×1, and cor-



October 9, 2013 9:48 WSPC/INSTRUCTION FILE JBCB

8 Henry Han, Xiao-Li Li, See-Kiong Ng, and Zhou Ji

responding score matrix S = [s1, s2, . . . , sp]
T , sk ∈ <nj , (k = 1, 2, . . . , p).

ii. Reconstruct each matrix Dj by using the first loading vector u1 in the PC

matrix as Dj ← (1/pj)Dj(
−→
1 )pj + u1 × sT1 , where (

−→
1 )pj ∈ <pj×1, with all

entries being ’1’s.

(b) Case 2 : j > τ , keep all matrices Dτ+1,Dτ+2, · · ·DL intact.

(3) Meta-profile synthesis. Conduct the corresponding inverse DWT using the up-

dated coefficient matrices T = {D1, D2, . . . DL, AL} to reconstruct X∗ ∈ <p×n,
which is a same-dimensional de-noised data with local feature extracted.

(4) Meta-profile hypothesis testing.

(a) For a binary class input data, calculate a t-statistic (t = |x̄ −
ȳ|/

√
s2x/nx + s2y/ny) for each gene/feature in the meta-profile X∗, where

x̄ and ȳ are the sample means, s2x and s2y are the sample variances, and

nx and ny are the numbers of samples in the control and disease classes

respectively.

(b) For the multiclass input data with k > 2 types, calculate an F -statistic

for each gene as F = (
∑k
j nj(x

∗
j − x∗)2/(k − 1))/(

∑k
j=1(nj − 1)s2j/(nT −

k)),where nj is the sample size, parameters, and x∗j and s2j are the sample

mean and sample variance for the j-th class. x∗=
∑k
j=1

∑nj

i=1 x
∗
ij/nT is the

overall sample mean where x∗ij is the expression value of i-th observation

for the class j and nT =
∑T
j=1 nj is the total sample size for the k groups.

(c) Select a feature set S that includes statistically significant genes by picking

genes with the smallest p-values (or the largest testing statistic) from t-

distribution or F -distribution with a pre-specified significant value α (e.g.,

α = 0.05 ). These genes in S are different from the original ones because

they went through de-noising and local feature extraction.

We uniformly conduct a 12-level DWT with a ‘db8 ’ wavelet for input data by setting

the level threshold τ = 4 in the MRT-test due to its good performance. It is noted

that we require the wavelet ψ employed in the DWT to be orthogonal and have a

compact support such as Daubechies wavelets for the sake of subtle data behavior

capturing.

In fact, we suggest an empirical threshold: 3 ≤ τ ≤ dL/2e. A threshold (say, τ =

1) that is too low may affect the quality of de-noising as some noise may still enter

the meta-profile through a fine coefficient matrix (e.g., D2) without reconstruction,

which can cause our method to fail to extract some local features. On the other

hand, using a threshold (say, τ > dL/2e ) that is too high may miss some global

features for the first load vector based coefficient reconstruction. In this paper, we

choose the wavelet ‘db8 ’ as it is not only orthogonal but also smooth for capturing

subtle data behavior in DWT.
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3. Results

We have performed comprehensive experiments to evaluate our proposed MRT-test

based techniques for four different tasks, namely, biomarker discovery (Section 3.2),

phenotype diagnosis for binary and multiclass data (Section 3.3), comparison with

the state-of-the-art diagnostic methods (Section 3.4), as well as a MRT-test induced

network marker identification (Section 3.4), in addition to applying the MRT-test

to proteomics data (section 3.5).

3.1. Data sets

We employ six binary and two multiclass benchmark gene expression array data

in our experiment. We say these data are ‘heterogeneous’ because they were pro-

duced from different profiling technologies, experiments, and processed by different

normalization methods. We summarize the data sets in a little detailed way.

Stroma data consist of 47 samples from two subtypes of breast cancers: 13

inflammatory breast cancers (’ibc’) and 34 non-inflammatory breast cancers (’non-

ibc’ ) across 18995 selected genes9. Inflammatory breast cancer is a relatively rare

but very aggressive disease that cancer cells block lymph vessels in the skin of

breast. Compared with other types of breast cancer, it progresses rather rapidly

and is very hard to diagnosis, though a PET or CT scan may help diagnosis. It has

a low prognosis ratio (e.g., 34% 5-year relative survival). A molecular diagnosis via

gene expression array is essential to early discovery of such cancer and its prognosis.

Colon data may be one of earliest benchmark data in translational bioinformat-

ics that consist of 22 control and 40 cancer samples across 2000 selected genes10.

Since it is a data published in early years (1999), we can view the oligonucleotide

array technology used by this data set is different from current oligonucleotide array

technologies. However, it can be a good candidate to validate the effectiveness of

our MRT-test algorithm across different types of data.

Medulloblastoma data consist of 25 classic and 9 desmoplastic tumor samples

across 5893 genes that represent two subtypes of medulloblastomas, an early child-

hood carcinoma whose pathogenesis is not well understood yet11. Similar to the

Colon data, both Prostate12 and Breast13 data are widely used benchmark data

but generated by early oligonucleotide array technologies. The former consists of 59

normal controls and 77 prostate cancers across 12625 selected genes, and the latter

consists of 46 tumor samples with metastasis in 5 years and another 51 tumor sam-

ples without metastasis in 5 years across 24188 probes. It is noted that the Breast

data set is also well-known for its low diagnosis ratio (classification accuracy) for

different classifiers2,7.

Different from the previous carcinoma expression data, Smoke data consist of

the gene expression of 34 current smoking subjects and 23 never-smoking subjects

by high-density gene expression arrays14. Alternatively, as its three-class extension,

SMOKE data includes the 18 former smokers in addition to 34 current smokers

and 23 non-smokers14. Although such data demonstrated how smoking altered the
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transcriptome, and why former smokers had risk to develop lung cancer even long

after they quitted smoking, it was important but still unexplored yet to distinguish

current smokers, former smokers and non-smokers from their expression data from

a translational bioinformatics approach.

As a widely used tumor data, CNS ( central nervous system) data set consists of

10 medulloblastomas (‘Md ’), 10 malignant gliomas (‘Mg ’), 10 rhabdoids (‘Rhab’), 4

normal human cerebells (‘Ncer ’), and 8 supratentorial PNETs (‘PNET ’) across 5669

selected genes15. Although previous work showed medulloblastomas were molecu-

larly distinct with the other brain tumors15, it is quite challenging to separate all

the five brain tumors with each other completely. Tables 1 sketch information about

these ‘heterogeneous’ expression data. In addition to these eight major omics data

sets, we also include a gene expression array data: wang-breast, which consist of

163 breast cancer patients with ER≥10 fmol per mg protein and 53 breast can-

cer patients with ER < 10 fmol per mg protein across 2000 selected genes in this

study16.

Table 1. Benchmark gene expression array data

Data #Gene #Sample

Stroma 18995
13 inflammatory breast cancer (’ibc’) +

34 non-inflammatory breast cancer (’non-ibc’ )

Colon 2000 22 controls+ 40 colon cancers

Medulloblastoma 5893 25 classic + 9 desmoplastic

Prostate 12625 59 controls + 77 prostate cancers

Smoke 7939 34 ’smoking’ +23 ’non-smoking’

Breast 24188
46 patients with metastasis in 5 years +

51 without metastasis in 5 years

SMOKE 7939
18 ’smoked’ + 34 ’smoking’ +

23 ‘non-smoking’

CNS 5669
10 Md + 10 Mg + 10 Rhab +

4 Ncer + 8 PNET

3.2. Identify biomarkers by Multi-Resolution-Test (MRT-test)

As a local feature selection algorithm with a de-noising scheme, the MRT-test is

also a biomarker discovery algorithm that is effective in discovering specific genes

as biomarkers that are able to disclose subtle data behaviors in addition to gen-

eral data behaviors. We systemically demonstrate effective biomarker identification

by the MRT-test for binary-class and multiclass data. Unlike other biomarker dis-

covery methods, the proposed MRT-test can completely separate phenotypes of

high-dimensional array with few top-ranked genes. In contrast with general as-

sumption that high-dimensional gene expression arrays are non-separable nonlinear
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data, Our results strongly demonstrate they are actually linearly separable data

through concrete examples.

3.2.1. Biomarker discovery for binary-class data

We firstly compare 3 top-ranked genes (biomarkers) from the MRT-test with those

from the t-test as well as 3 randomly picked genes for Stroma data set, a binary-class

array data with 13 ’ibc’ and 34 ’non-ibc’ samples. Figure 1 separates Stroma data’s

47 samples with 3 randomly selected genes, the top 3 ranked genes from t-test and

from MRT-test. We choose two different cutoff values τ = 3, 4 for the MRT-test in

our experiment to fully explore its biomarker discovery mechanism.

Each blue (yellow) dot in Figure 1 represents an ‘ibc’ (‘non-ibc’) sample. The

x, y, and z axes represent expression values of the 1st, 2nd, and 3rd gene marker

respectively. The top 3 genes from the t-test showed some degree of phenotypic sep-

aration than those randomly selected ones, which indicates the t-test demonstrating

some degree phenotype discrimination ability. However, it is still unable to separate

the two types of phenotype samples clearly. This implies that while the t-test can

be used for feature selection, it is ineffective as a biomarker discovery algorithm for

separating phenotypes.

In contrast, the two sets of top-ranked three genes from the MRT-test both

demonstrated clear spatial separations for the 13 ‘ibc’ and 34 ‘non-ibc’ samples. It

is noted that the samples sharing the same phenotype are clustered automatically

in an independent group with a well-built spatial boundary that separates the two

different phenotypes.

On closer investigation, three sub-clusters can be further identified for the ‘non-

ibc’ samples, which may indicate different pathological stages of ‘non-ibc’ breast

cancer. Such ‘self-clustering ’ of the samples from the different phenotypic classes

(or even subclasses) strongly suggests that the MRT-test is a much more effective

biomarker discovery algorithm that can detect discriminative gene markers.

It is worth noting that the top-ranked gene markers detected by our MRT-test

also demonstrated significant biological relevance with breast cancer. ‘GOLGB1 ’,

the top-ranked gene both with τ = 3 and 4, has been reported as a gene that

is strongly correlated to the inflammatory carcinoma of breast917. It also interacts

with gene ‘BRMS1 ’, a breast cancer metastasis suppressor, and gene ’ACBD3’ that

plays an important role in asymmetric cell division and breast cancer18.

The second and third top-ranked gene markers from our MRT-test (τ = 3) are

‘CCNT2 ’ and ‘CBY1 ’, both of which were also reported to have tissue expression

in breast tumors. In addition, the ‘CCNT2 ’ gene regulates ‘CDK9 ’, which was re-

ported to be closely related to the breast cancer in Johnston et al ’s work19. ‘CBY1 ’,

the 3rd top-ranked gene, can inhibit wingless pathway by binding to beta-catenin,

which is a transcriptional activator and oncoprotein involved in the development of

breast tumor and other cancers20.

In addition to sharing the first top-ranked gene, the third top-ranked gene ’CBY ’
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Fig. 1. Separating 13 ‘ibc’ and 34 ‘non-ibc’ samples with three genes selected by random gene
selection, t-test, and MRT-test. The MRT-test demonstrates clear phenotype separation

from the MRT-test at τ=4 is also the third top-ranked gene at τ = 3, which suggests

the reproducibility of our MRT-test. The second top-ranked from the MRT-test at

τ = 4 is ‘TOX3’. As a previously identified biomarker for breast cancers, Easton et

al. suggested that mutations from the ‘TOX3 ’ gene are associated with an increased

risk of breast cancers21.

It is noted that we also compared our MRT-test with other feature selection

methods such as permutation t-test (pt-test), Bayesian t-test (bt-test), and Mann-

Whitney tests (u-test) by finding the three top-ranked genes according to their

p-values. We have found all these methods have achieved almost same level per-

formance as the t-test. That is, they are unable to achieve a perfect phenotype

separation like the MRT-test, though they demonstrate better phenotype separa-

tion than the random gene selection. Such a result suggests these methods are just

general feature selection methods instead of a biomarker discovery algorithm like

our MRT-test. Furthermore, we have to point out that the reason we use the three

top ranked genes for biomarker discovery is just to demonstrate the gene markers

identified by our MRT-test can separate the phenotype linearly from a 3D visual-

ization viewpoint. In fact, more top ranked genes (e.g., top 20 scored genes) can be

invited in biomarker discovery.

3.2.2. Compare top-ten ranked genes from the MRT-test and t-test.

Table 2 shows the top 10 genes ranked by the MRT-test (τ = 3) and t-test .

Interestingly, the p-values obtained from the MRT-test for each gene are much
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Table 2. Top 10 genes ranked by the MRT-test (τ = 3) and t-test

MRT-test t-test

Rank Gene p-value Gene p-value

1 ’GOLGB1’ 4.4183e-017 ’USP46’ 4.8681e-005

2 ’CCNT2’ 4.9947e-015 ’ARFRP1’ 5.0277e-005

3 ’CBY1’ 1.4475e-014 ’INPP5E’ 5.0920e-005

4 ’EIF4A2’ 7.9884e-014 ’GOLGB1’ 1.1635e-004

5 ’TBL1X’ 8.0746e-013 ’MAGED2’ 1.1651e-004

6 ’DIDO1’ 8.4294e-013 ’DKFZP686A01247’ 1.6098e-004

7 ’ABAT’ 1.3722e-012 ’DNAJB9’ 1.7203e-004

8 ’LOC400451’ 1.4843e-012 ’TTC3’ 1.7507e-004

9 ’COPB1’ 1.5404e-012 ’DZIP3’ 1.7597e-004

10 ’SPI1’ 3.7805e-012 ’DNAJB9’ 1.9878e-004

smaller than those of in the t-test, which statistically indicates the better sensitivity

of our MRT-test, which will be further validated in the next section.

In addition to the top three genes, other genes identified by the MRT-test were

reported to be related to breast cancer. For example, EIF4A2 was inversely ex-

pressed in breast cancer22; TBL1X was reported over-expressed in breast cancer23;

DIDO1 (Death inducer-obliterator) was related to expression level control of breast

cancer24; ABAT and SPI1 were associated with the prognosis of breast cancer25.

However, there are 5 genes among the total 9 genes (one is duplicate) in the t-test ’s

gene list are not reported to be related to breast cancer in current available litera-

ture such as USP46, ARFRP1, TTC3, DKFZP686A01247, and DZIP3, which may

suggest the ad-hoc of the t-test. The top-10 genes ranked by the MRT-test at τ = 4

can be found in Table S1 in the supplemental materials, which can be found at

https://sites.google.com/site/heyaumsystembiology/.

3.2.3. MRT-test for Colon, Breast, Medulloblastoma, and Wang-breast data.

Gene expression array technologies have seen great progresses in recent years,

which may contribute to enhancing biomarker’s capability in phenotype separa-

tion. However, the biomarkers identified by our MRT-test (τ = 4) demonstrate

exceptional phenotype separation capability for different array data produced by

different time and experiments. Figure 2 demonstrates phenotype separation by us-

ing the three gene markers identified by the MRT-test for four data sets: Colon,

Breast, Medulloblastoma, and Wang-breast data, published in 1999, 2002, 2003, and

2005 respectively10,13,11,16.

It is noted that the Colon data has been widely used in secondary data analysis.

However, there was no method able to separate 22 controls and 40 cancers com-

pletely. Our MRT-test firstly achieved this by only using three gene markers, which
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may indicate that our MRT-test is independent of data sets. It not only works for

the Stroma data, which is a relatively new array data published in 2008, but also

old array data like the Colon data.

Although the Breast data set that consisting of 46 ‘metastasis’ and 51 ‘without

metastasis’ samples is well-known for its poor diagnostic accuracy from previous

studies2, all 97 samples are well separated spatially by our method: there were

no mixed samples and the resulting two distinct groups are clearly separated by an

easily identified boundary (NW plot in Figure 2). This indicates that this previously

thought of a ‘hard ’ high-dimensional data set is actually linearly separable using

our biomarkers detected by the MRT-test. The similar linearly separable scenario is

demonstrated for the Wang-breast data with 216 breast cancer samples by the SE

plot in Figure 2.

Furthermore, the SW plot in Figure 2 shows the complete separation of 25

classic and 9 desmoplastic samples in the Medulloblastoma data by three MRT-test

identified gene markers, where two obvious clusters can be easily identified. To our

best knowledge, there were no clustering or biomarker discovery methods able to

group the 25 classic and 9 desmoplastic samples into two well-formed independent

clusters. This again illustrates that the MRT-test is able to accurately detect novel

biomarkers which are difficult to be identified by existing methods.

In fact, previous studies showed that a distinct desmoplastic class could not be

discovered by using traditional clustering methods such as hierarchical clustering

or self-organizing maps11. In other words, there was no way to group all 9 desmo-

plastic samples into a cluster which is also an “evidence” to support that such data

are nonlinear data with the least hope to achieve rival clinical diagnosis. Brunet

et al employed a quite complicate nonnegative matrix factorization (NMF) based

consensus clustering, which is a high-complexity algorithm, and only grouped seven

desmoplastic samples into a cluster, where two desmoplastic samples were still scat-

tered into the group of the classic samples11.

3.2.4. Biomarker discovery for multiclass array data

Our MRT-test also demonstrates a similar phenotype separation for multiclass array

data SMOKE and CNS. It is noted that relatively few multiclass biomarker discov-

ery algorithms are available for multi-class data due to the complexity of multiclass

classification itself and corresponding low detection ratios. However, multiclass array

data are quite common due to several subtypes of a tumor or different pathological

states of a disease. Since gene expression data usually follow or approximately follow

a normal distribution after normalization, it is reasonable to use a one-way ANOVA

to identify the most significant genes as potential biomarkers for a multiclass data

set. Thus, we compare our MRT-test with one-way ANOVA, which can be viewed

as an extension of the t-test in multiclass scenarios, for multiclass expression data

biomarker discovery.

Figure 3 employs the 3 top-ranked genes from ANOVA (one-way ANOVA) and
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Fig. 2. Separating phenotypes for four benchmark high-dimensional arrays by the MRT-test.

the MRT-test (τ=4) to separate SMOKE data that consists of 18 previous smokers

(‘smoked ’), 34 current smokers (‘smoking ’), and 23 non-smokers (‘non-smoking ’)14,

as well as the CNS data that consists of 10 medulloblastomas (‘md ’), 10 malignant

gliomas (‘mg ’), 10 rhabdoids (‘Rhab’), 4 normal human cere-bells (‘Ncer ’), and 8

supratentorial PNETS (‘PNET ’) across 5669 genes15.

The NW plot in Figure 3 shows there are no obvious separations for samples

from different phenotypes for the SMOKE data under ANOVA. However, the NE

plot in Figure 3 demonstrates that three independent clusters: ’smoked’, ’smoking’,

and ’non-smoking’, can be easily identified from our MRT-test. It is interesting to

see that the ’smoked’ cluster seems to have much closer distance to the ’smoking ’

cluster than the ’non-smoking’ cluster, which seems to be consistent to the previous

results that former smokers had risk to develop lung cancer as current smokers14.

Similarly, the SW plot in Figure 3 shows that only four ‘Ncer ’ samples were

separated from the other 38 CNS samples using gene markers from the ANOVA.

However, once again, the SE plot in Figure 3 demonstrates clear phenotypic sepa-

rations were achieved by using the gene markers: ’APC’, DCTN1’, ’APBA2’ from

our MRT-test in these multiclass scenarios.

The three selected gene markers are well-known oncogenes related to medul-

loblastoma, glioma, and neuron diseases, where ’APC’ and ’APBA2’ mutations were

reported to play an important role in medulloblastoma26; DCTN1 was reported as-

sociated with neuron diseases and glioma respectively 27. It is also interesting to see

that these medulloblastoma samples are spatially much closer to the those malignant
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glioma samples than others (See SE plot in Figure 3). Actually, these two diseases

have very similar or same symptoms such that medulloblastoma was confused as

glioma for years before their different pathologies were found in28.
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Fig. 3. Separating multiclass SMOKE data (18 previous smokers, 34 current smokers and 23

nonsmokers) and CNS data (10 ‘md ’, 10 ‘mg’, 10 ‘Rhab’, 4 ‘Ncer ’, and 8 ‘PNET ’ samples) by
using the top 3 ranked genes from ANOVA and MRT-test.

It is worth pointing out that our phenotypic separation on the CNS data is

superior to that by Pomeroy et al’s approach15, which employed PCA analysis for

the 50 genes ranked by SNR (signal-to-noise) ratios. However, compared with our

complete separation of five classes by using only three gene markers, Pomeroy et

al’s approach has one ’Mg’ out of its group and makes eight ’PET ’ samples spread

too much such that they can be somewhat mixed with ’Md’ and ’Mg’ samples. In

summary, the experimental results across six data sets clearly demonstrate that our

MRT-test is a powerful biomarker discovery algorithm that is able to demonstrate

linear separability in gene expression array data that other methods have failed to

do so.

3.3. MRT-test phenotype diagnosis

It is desirable to validate these biomarkers identified by the MRT-test from a di-

agnostic viewpoint under data cross-validation and further explore the MRT-test ’s

discriminative power for a number of genes identified by the MRT-test. Thus, we ex-
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amine the MRT-test phenotype diagnosis by combining it with the state-of-the-art

classifiers such as support vector machines (SVM) and linear discriminant analysis

(LDA), in addition to comparing the MRT-test with different variants of the t-test

and one-way ANOVA. We skip the detail descriptions about SVM and LDA. More

detailed information about these two classifiers can be found in7,29.

3.3.1. Binary phenotype diagnosis.

We employ a support vector machine (SVM) with a ‘linear ’ kernel under standard

5-fold cross-validation (5-fold CV) to evaluate several sets of top-ranked genes from

the MRT-test for binary class data. It is noted that each gene set identified by

the MRT-test are de-noised and local feature extracted. Figure 4 shows the SVM’s

diagnostic performance in terms of accuracies (diagnostic ratios), sensitivities, speci-

ficities, and positive prediction rates for six binary data sets using the 3, 10, 50, 100,

200, 500, and 1000 top-ranked genes from the MRT-test. Each data set in Figure 4

is represented by its first letter, where ‘S’ and ‘S1’ represent the Stroma and Smoke

data respectively. The reason for us to select a relatively large gene set (e.g., a set

with 100, 200, or even 500 top-ranked genes) for phenotype diagnosis is that we

plan to demonstrate the proposed MRT-test is not only a good biomarker discovery

algorithm but also an exceptional feature selection algorithm, which will bring rival-

ing clinical performances for high dimensional omics data. We briefly sketch these

diagnostic performance measures for the convenience of description as follows.

The diagnostic accuracy is the ratio of the correctly classified test samples over

total test samples. The sensitivity, specificity, and positive predication ratio are de-

fined as the ratios: TP/(TP+FN), TN/(TN+FP), and TP/(FP+TP) respectively.

The TP(TN) is the number of positive (negative) targets correctly diagnosed, and

FP (FN) is the number of negative (positive) targets incorrectly diagnosed by the

classifier (e.g., SVM). A positive (negative) target is a sample with ‘+1’ (‘-1’) label,

which usually represents ’cancer’ (’control’) or a subtype of tumors respectively.

Figure 4 shows that clinical level prediction ratios with only a few genes are

consistently achieved for most data sets. For example, the three top-ranked gene

markers for the Smoke, Colon, Medulloblastoma, and Breast data achieve 100%,

96.93%, 96.68%, and 99% diagnostic accuracies respectively under the 5-fold CV.

Although the three top-ranked gene markers for the Stroma data only achieve ˜92%

diagnostic accuracy, it is probably because the relatively too close distance between

two boundary samples, i.e. support vectors, and corresponding numerical artifacts

in the optimal SVM hyper-plane construction cause the classifier not to be able

to determine a specific sample’s class type. This can be used to explain why the

diagnostic accuracies of some data are not perfect 100%, even if their three selected

gene markers can separate two different phenotypes spatially. However, the SVM

classifier attains 100% accuracy on the Stroma data by using the 10 top-ranked

genes. The same level performance remains for the 50,100, and 200 top-ranked gene

scenarios.
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Interestingly, the SVM classifier demonstrates an ‘early-arrival ’ in phenotype

diagnosis for almost all data, i.e., only a few genes are needed to achieve nearly per-

fect sensitivity and specificity. It suggests that using more genes as biomarkers may

not necessarily enhance diagnostic performance, because more less-discriminative

genes may be included in training data that leads to lower the classifier ’s perfor-

mance. For example, the SVM attained slightly low 97.78% accuracy (sensitivity:

100%, specificity: 90%) for the 500 and 1000 top-ranked genes. However, such ’early-

arrival’ in diagnosis is consistent with the biomarker separation results presented

in the previous section.

Although our SVM did not achieve as a ‘good’ performance on the Prostate

data under the 3, 10, and 50 top-ranked genes, it still achieved a 97.78% (sensitivity:

98.65%, specificity: 96.52%) accuracy for the 100 top-ranked genes and 100% for the

200 or more genes, which indicates that more biomarkers are needed to distinguish

different phenotypes for this dataset. It can be viewed as a special case of the

’early arrival’ mechanism. Although we did not include Wang-breast data in our

experiment for it is not the original data but a data set already going through a

previous feature selection, it is worthwhile to report that the SVM classifier can

reach 98.60% (sensitivity: 98.77%, specificity:98.00), 99.07% (sensitivity: 98.77%,

specificity:100.00%), and 99.53% (sensitivity: 99.38%, specificity: 100%) accuracies

under the 3, 10, and 50 top-ranked genes from our MRT-test. However, the SVM

classifier can only achieve ˜85% accuracy for this data set under the same cross

validation without feature selection.

3.3.2. Compare the MRT-test with the other feature selection methods.

Just as we pointed out that our MRT-test is a novel feature selection algorithm

besides a biomarker discovery method. It is necessary to compare the MRT-test

with other similar feature selection methods to further demonstrate its superiority.

We select five input-space feature selection methods as the comparison peers, which

include t-test, Bayesian t-test (’bt-test ’)34, and permuted t-test (’pt-test ’)35, ROC

curve area (‘roc’)36, and Mann-Whitney tests (’u-test ’)37. We employ the MRT-test

and the five peers to select two gene sets: one with with 100 top-ranked genes,

another with 200 top-ranked genes for each data. Then, we run the SVM classifier

with a linear kernel for all these data sets under 5-fold cross validation to compare

their diagnostic accuracies.

Figure 5 shows the SVM classifier ’s diagnostic accuracies for the two gene sets

selected by six feature selection methods respectively under the 5-fold CV for six

binary data sets. It is clear that the SVM classifier demonstrates consistently lead-

ing performance for all gene sets from the MRT-test than those from the others.

Interestingly, the SVM classifier shows relatively low accuracies and high-level os-

cillations for the gene sets from the five comparison peers, which seems to indicate

the unpredictable impacts of these methods on diagnosis.

For example, the SVM classifier achieves 98.46% diagnostic accuracy for the
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Fig. 4. The SVM diagnostic performance under the 3, 10, 50, 100, 200, 500, and 1000 genes

selected by the MRT-test in terms of diagnostic accuracies, sensitivities, specificities, and positive
prediction rates under the 5-fold CV. each data set is represented by its first letter, where ‘S ’ and

‘S1 ’ represent the Stroma and Smoke data respectively

Colon data for the gene set with 100 top-ranked genes from the MRT-test. But it

only attains 82.82%, 87.56%, 72.56%, 79.23%, and 79.74% for the same-size gene sets

from t-test, bt-test, roc, and pt-test respectively. Furthermore, the same classifier

only attains 85.64% diagnostic accuracy on the 200 top-ranked genes from the bt-

test, which is lower than the 87.56% accuracy obtained on the 100 top-ranked genes.

In fact, relatively low and oscillated accuracies are observed for those genes from

the other methods on different data sets. It is also worthwhile to point out that

similar scenarios are observed even when more genes are selected (e.g., 500 and

1000 genes).

It is clear that the MRT-test is corresponding to the rival clinical diagnosis on

these binary data, where Bayesian t-test (’bt-test’ ) and t-test are corresponding

second-level diagnosis, the roc and u-test are corresponding to the third-level di-

agnosis, and the permutation t-test (pt-test) seems to have the worst performance

from a diagnostic viewpoint. The results suggest that the MRT-test ’s capability

in selecting unique and discriminative local features enhances robust and accurate

binary phenotype diagnosis.
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Fig. 5. Comparisons of the MRT-test and other five feature selection methods on six binary data
by using 100 and 200 top-ranked genes through a SVM classifier under 5-fold CV

3.3.3. Multiclass phenotype diagnosis

Multiclass phenotype diagnosis has been a challenging problem in translational

bioinformatics for its usually low accuracies due to the complexity of multiclass

data classification itself. We employ the two multiclass data sets: SMOKE (three-

class) and CNS (five-class) data in our experiment to demonstrate the MRT-test ’s

superiority in multiclass phenotype diagnosis.

We use ‘one-against-one’ SVM to handle multiclass phenotype diagnosis because

its proven advantage over ‘one-against-all ’ and ‘directed acyclic’ SVM30, in addi-

tion to taking advantage of linear discriminant analysis (LDA)’s build-in multiclass

handle mechanism. Moreover, we combine the MRT-test with the ‘one-against-one’

SVM and LDA to get corresponding MRT-SVM and MRT-LDA algorithms, where

input data consist of the top-ranked genes from the MRT-test. Similarly, we inte-

grate one-way ANOVA with the two classifiers to get corresponding ANOVA-SVM

and ANOVA-LDA algorithms, where input data consist of top-ranked genes from

the one-way ANOVA. They act as the comparison algorithms for our MRT-SVM

and MRT-LDA in multiclass phenotype diagnosis. To be consistent with the previ-

ous section, we still employ the same ’linear’ kernel for the ‘one-against-one’ SVM

and conduct 5-fold cross validation for each data.

Figure 6 compares the performance of the MRT-SVM and MRT-LDA with

the ANOVA-SVM and ANOVA-LDA classifiers in terms of diagnostic accuracy,

sensitivity, and specificity for a sequence of 3, 10, 50, 100, 200, 500, 1000 and 2000
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top-ranked genes from the ANOVA and MRT-test respectively for the SMOKE and

CNS data. It is interesting to see that the ‘early-arrival ’ phenomenon can still be

obervsed for the MRT-SVM and MRT-LDA classifiers in addition to their rival

clinical diagnosis, For example, the MRT-LDA achieved 93.06% accuracy with the

3 top-ranked genes from the MRT-test on the CNS data, whereas ANOVA-LDA

only manages a low 64.72% accuracy with the 3 top-ranked genes from the ANOVA.

Similarly, the MRT-SVM achieved 98.75% accuracy on the SMOKE data with

only 10 MRT-test selected genes, which seems to be consistent with the previous

biomarker discovery results, whereas the ANOVA-SVM only achieved a low 63.83%

accuracy with the 10 ANOVA selected genes. The results show that the MRT-test

is also more effective in choosing distinguishing biomarkers for multiclass pheno-

type diagnosis. Furthermore, we observe that the MRT-test well demonstrates the

advantages of effective feature-selection in multiclass phenotype classification, since

the original ‘one-against-one’ SVM and LDA algorithms without any feature selec-

tion can only achieve 63.83% and 54.67% on the SMOKE data, and 90.56% and

88.06% accuracies on the CNS data respectively.
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Fig. 6. The diagnostic performance of classifiers on a sequence of top-ranked genes from the MRT-
test and ANOVA from the SMOKE and CNS data

3.3.4. Comparison with other state-of-the-art algorithms

We further compared our MRT-test based methods: MRT-SVM and MRT-LDA

with six other state-of-the-art classifiers for total eight gene expression array data,
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where the MRT-SVM employs the standard SVM and ‘one-against-one’ SVM for

each binary and multiclass data respectively.

The six comparison classifiers consist of two PCA-induced classifiers: PCA-

induced linear discriminant analysis (PCA-LDA) and PCA-induced support vector

machines (PCA-SVM)6, two partial least square (PLS) based regression methods:

PLS-based linear logistic regression (PLS-LLD)31, a PLS-based ridge penalized lo-

gistic regression (RPLS )32, and an ensemble learning method: a decision tree with

bootstrap aggregation (DS-TREE )33. It is worthwhile to point out that, like PCA,

PLS is also a subspace feature selection algorithms that seek the meaningful fea-

ture combinations in a low dimensional space. Due to different ‘early-arrivals’ of the

MRT-SVM and MRT-LDA for different data sets, we compared the performance

for the top-ten ranked genes for all the seven datasets and the top-100 ranked genes

for the Prostate data.

Figure 7 compares the performance of the MRT-test based methods with the

other methods in terms of diagnostic accuracies under the 5-fold CV. It indicated

that our MRT-test based methods outperformed the others in terms of accuracies

and stability. For example, MRT-SVM and MRT-LDA achieved both 100% accura-

cies for the binary smoke data, and 97.50% and 98.75% accuracies for the three-class

SMOKE data respectively, whereas the best performance from the other peers are

only 91.67% and 82.70%. It seems that the MRT-SVM achieved the best diagnostic

performance on all data, and the MRT-LDA algorithm achieved second-best perfor-

mance on all seven datasets except Prostate data, on which it appeared to encounter

down-fitting. Moreover, the SVM, PCA-SVM and PCA-LDA classifiers appeared

to achieve same level diagnostics that may suggest PCA may not contribute to

enhancement of diagnostics statistically for SVM. It also seems that the PLS-LLD

algorithm outperformances all the other five classifiers except the MRT-SVM and

MRT-LDA for the eight data sets, in addition that the decision tree method has

the worst performance.

Unlike the other methods demonstrating large oscillations in performance, our

MRT-test based methods again demonstrated consistency in attaining high-level

phenotype discrimination in ’hetergeneous’ binary and multi-class expression data.

This suggests that our proposed techniques may be robust enough for clinical tests.

3.4. Network marker synthesis (NMS): seeking meaningful

network markers from the MRT-test

It is natural to extend the biomarkers obtained from the MRT-test to corresponding

network markers to enhance its reproducibility by capturing more meaningful gene

markers, because some statistically expressed genes in array data may not be the

“real” gene markers in clinical tests and vice versa. We propose a network marker

synthesis (NMS), a bottom-up network marker construction algorithm, by growing

from the MRT-test identified seed gene markers into network-based biomarkers

through protein-protein networks (PPI).
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Fig. 7. Comparing MRT-SVM/LDA with the other state-of-the-arts on eight data sets.

Compared with the existing top-down subnetwork marker construction meth-

ods (e.g., jActiveModule, PNA)34, our NMS method has a more targeted search

and less dependence on the global network because it starts from meaningful gene

markers identified by the MRT-test. Moreover, NMS outputs a small scale net-

work consisting of several subnetwork markers connected by bridge genes instead

of orthogonal subnetworks. Thus, it can identify the gene regulators for subnetwork

markers, which can be a key issue to understand the network dynamics related to

a complex disease. The basic idea of our NMS can be sketched as following steps.

(1) Starting from few gene markers from our MRT-test to induce corresponding

subnetworks with differentially expressed genes by checking a global PPI net-

work, which is the human PPI network from BioGrid 3.1.77, which has 39,331

protein-protein interactions between 10,271 proteins (genes)38.

(2) Identifying top bridge genes linking the subnetworks and top connection genes

that are elements in each subnetwork with direct-interaction with the selected

bridge genes by some thresholds.

(3) Collecting semi-gene cliques containing the selected bridge genes and connection

genes by searching the global PPI network.

(4) Union all subnetworks by removing overlapped genes and interactions.

We define the five key concepts in our algorithm as follows before we present our

network marker synthesis (NMS) method in algorithm 2.

(1). Global PPI networks and total gene lists. The global PPI network Gppi =

(Vppi, Eppi) is a graph where Vppi denotes a set of proteins/genes (nodes) and Eppi
represent a set of edges (interactions) between the proteins in Vppi. Gppi in our

context refers to the human PPI network from BioGrid 3.1.7738. The total gene list

T (T ⊆ Vppi ) includes all genes in the input expression profile X.

(2). Gene cliques and semi-gene cliques. A gene clique C is a fully connected

subnetwork C = (V,E), where all the gene gi ∈ V, gj ∈ V, (gi, gj) ∈ E, i.e., each

node in a gene clique C has a maximal degree |V | − 1. A semi-gene clique is a

subnetwork where each gene has a degree at least |V | − 2. Clearly, a gene clique is
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always a semi-gene clique but not vice versa. It is noted that we require the smallest

clique at least has three nodes, i.e., |V | ≥ 3, in our algorithm.

(3). Bridging genes. A bridging/bridge gene b ∈ T is a gene which connects

two or more subnetworks by interacting with at least one gene in each subnetwork.

For example, the bridging gene b connecting two subnetworks S1 = (V1, E1) and

S2 = (V2, E2) means ∃ v1 ∈ V1, v2 ∈ V2 such that (b, v1) /∈ E1 and (b, v2) /∈ E2.

It is noted a bridging gene can be a gene that does not belong to any subnetworks

according to our definition. A bridging gene usually has a large degrees (e.g., 355),

i.e., it interacts with quite a lot genes in the whole network. As such, the few top

bridging genes are actually regulators of the network marker inferred by our NMS

method.

(4). Connection genes. Given a bridging gene b and a subnetwork S1 = (V1, E1),

a connection gene c is the gene in S1 (or V1) that interacts with a bridging gene b

directly, i.e., (b, c) ∈ E1. As an interface in each subnetwork that interacts with the

bridging gene, a connection gene plays an essential role along the bridging genes

to create other subnetworks that interact with the subnetwork markers induced by

the original gene markers.

(5). Bridge hubs. Given a bridge gene b, a bridge hub Hb is the union of the

genes in all the semi-gene cliques containing b, i.e., Hb = ∪eC(b,e), where C(b,e) is a

semi-gene clique created with a bridge gene b and connection gene e.

Note that the top bridging genes are the regulators of the identified subnetwork

markers, while the connection genes act as a local interface to process signals from

a regulator. A bridge hub collects almost all qualified genes in the total gene list

T interacting with the regulator and related connection genes, and works as an

inferred subnetwork marker.

To grow gene markers into subnetwork markers, we use the MRT-test identi-

fied gene markers GM = {g1, g2, . . . gk} to induce their corresponding subnetworks

S1, S2, . . . , Sk by collecting all the genes in T interacting with the gene markers in

GM by querying the global network Gppi, i.e., Si = ∪vj , (vj , gi) ∈ Eppi, vj ∈ T,

gi ∈ GM . Genes with p-values (from MRT-test) less than a cutoff α (e.g., 0.001)

are kept for each subnetwork.

The subnetworks are further sorted by their cardinalities–the ‘orphan’ sub-

networks with only one entry are removed. Next, the bridging genes for the top

K subnetworks with the largest cardinalities (K ≤ k) are identified and further

sorted according to their PPI numbers. We choose a set of top bridging genes

b1, b2, . . . , bM with the largest PPI numbers as ‘real ’ bridging genes, and identify

their corresponding connection genes c
(i)
1 , c

(i)
2 , . . . c

(i)
l with respect to each subnet-

work Si,i = 1, 2, . . .K. We also compute the bridge hub Hb for each bridge gene

bi collecting all semi-gene cliques via searching Gppi. Finally, we collect all subnet-

work markers by taking the set-union for all bridge hubs and the K subnetworks.

Algorithm 2 below provides the detailed procedure for our NMS algorithm.
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Algorithm 2 network marker synthesis (NMS)

Input:

1. Identified k gene markers: GM = {g1, g2, . . . , gk}, from the MRT-test

2. Global network Gppi = (Vppi, Eppi), gene expression data X, and

p-value cutoff: α

Output: Identified network markers

(1) for each gene marker gi, i = 1, 2 · · · k

(a) Create subnetwork Si for gi by collecting its PPIs, i.e., (vj , gi)∈ Eppi,

vj ∈ T, gi ∈ GM , where each subnetwork Si is a subgraph induced by genes

gi, i = 1, 2 · · · k.
(b) Remove the gene set Sαi where each gene has p-value ≥ α : Si = Si − Sαi .

(2) Sort all subnetworks by its cardinality such that Si be the subnetwork with the

i-th largest cardinality and drop the subnetworks with cardinality 1 to get K

major subnetworks, K ≤ k. S = {S1, S2, . . . , SK}, K ≤ k.
(3) Identify the bridging gene list B = {b1, b2, . . . , bn} for the top N subnetworks

in S (N < K ≤ k) by searching the global network Gppi = (Vppi, Eppi). The

bridging gene list is sorted according to each gene’s PPI number, which is the

degree of the gene node in the global network, such that has the i-th larget PPI

numbers among all genes in the bridging gene list (i = 1, 2 · · ·n). Update the

list by the top M (M < n) bridging genes B = {b1, b2, · · · bM}.
(4) for each bridging gene bj , j = 1, 2, . . . ,M.

(a) Identify its connection gene set for Si, i = 1, 2, . . . ,K.

(b) Compute its bridge hub by collecting all semi-gene cliques.

5) Union all bridge hubs and major subnetworks (∪jHbj ) ∪i Sij )

To avoid the runtime complexities caused by the possible need to traverse the entire

global PPI to seek semi-gene cliques given that there are up to K(K − 1)/2 bridge

hubs to be calculated, we suggest keeping the number of major subnetworks K ≤ 5

to avoid overheads, which can be achieved by using few gene markers or dropping the

induced subnetworks with few genes. Furthermore, the p-value cutoff in NMS can

be adapted for different needs. A large p-value cutoff or even no p-value restriction

(α = 1.0) on subnetwork genes are acceptable, if we aim to decrease or remove the

potential correlation between expression data and the final subnetwork markers.

On the other hand, a small p-value cutoff (e.g. α=0.001) can also be set to seek out

differentially expressed genes in network marker identification.

In our implementation, we compute the bridging gene list from the top 2 (N = 2)

induced subnetworks and select the top 3 bridging genes (M = 3) to avoid high

runtime complexities and obtain more ‘general ’ bridging genes with large PPIs.

Similarly, we select at most two connection genes for each bridging gene in a sub-

network by dropping those with fewer PPIs. For computing the bridge hubs, we
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greedily collect the semi-gene cliques with the richest interactions for each bridging

gene.

3.4.1. Network markers inference for Stroma data.

Figure 8 shows the network markers inferred from our NMS algorithm, where TP53,

HDAC1, and BRCA1 (within rectangles) are the bridging genes identified, all of

which are famous tumor genes related to general cancer (e.g., TP53) or widely

known breast cancer marker (e.g., BRCA1)39,40. As highly connected genes in-

teracting with other genes, these bridging genes have 322, 297, and 172 unique

interactions in the global PPI network respectively.

The bridging genes act as network regulators that enable and facilitate com-

munication between different subnetworks. It is interesting to note that induced

subnetworks (from our three seed gene markers) are orthogonal, and they and the

other genes located in subnetworks (induced by semi-gene cliques) communicate

with each other via the bridging genes.

In fact, all the three bridge genes are well-known breast cancer associated genes

or oncogenes: HDAC1 has been reported as an important indicator in malignant

human breast prognosis in previous RT-PCR analysis39, BRCA1 is a key gene asso-

ciated with breast cancer and its mutation usually increases breast cancer risk, and

TP53 is a well-known oncogene that mutates in most types of human cancers2,39,40.

Furthermore, UBE2I & RB1, UBE2I & CDK9, and BRMS1 & RB1 are identified as

the connection genes between the bridging genes BRCA1, TP53, and HDAC1, and

the two subnetworks induced by GOLGB1 and CCNT2 respectively (e.g., UBE2I

and RB1 are two different connection genes for BRCA1 with respect to the two in-

duced subnetworks). CTNNB1 is identified as the connection gene between HDAC1

and the subnetwork induced by CBY1.

There are seven bridge hubs generated by collecting the semi-gene cliques for

the bridging and connection genes. For example, the bridge hub induced by BRCA1

and the connection gene UBE2I has five other genes: AR, TP53, JUN, PIAS1, and

SUMO1. Some genes in these bridge hubs demonstrate high relevance with respect

to breast cancer. For instance, Smith et al have reported that JUN over-expressed in

some breast cancer cells may result in the production of tumorigenic, invasive, and

hormone-resistant phenotypes39. Park et al also reported that SUMO1 negatively

regulated BRCA1-mediated transcription40,41. Gonzalez et al reported that AR-

positive tumors had a significant longer overall survival than those with AR-negative

breast carcinomas in their tumor analysis of androgen receptors (AR)42,43.

Finally, we employed the network markers consisting of 32 genes to conduct

classification under a 5-fold CV using a SVM classifier with a linear kernel and

achieved diagnostic accuracy 97.78% with 100% sensitivity and 90% specificity. It

is noted that the best diagnostic result among other classifiers’ performance under

the same cross validation condition is achieved by the PLS-LLD algorithm with

diagnostic accuracy 93.78% by using the whole data sets, which still fall behind
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Fig. 8. Network markers identified for Stroma data, where the ‘BRCA1’, ‘TP53’, and ‘HDAC1’

are bridging genes.

our network marker methods’ result. The superiority demonstrated by our network

markers is due to the good gene markers identified by the MRT-test and more

targeted search based on the gene markers in the network marker synthesis (NMS).

Similarly, we identified the network markers for the CNS data15 by using the

top 10 gene markers from the MRT-test. Among them, four gene markers APC,

DCTN1, APBA2, and JMJD1C led to non-trivial subnetworks with 46, 9, 6, and

3 genes respectively, after collecting interactions among the total 5569 genes in the

input data using the p-value cutoff α=0.001. Again, APC and APBA2 mutations

have been reported to play an important role in medulloblastoma26; DCTN1 and

JMJD1C were reported associated with neuron diseases and glioma respectively28.

The details of the bridging gene information of this network marker can be found

in the supplemental materials.

4. Discussion

In this work, we have presented a novel feature selection and biomarker discovery

algorithm MRT-test and investigate its application in effective phenotype diagno-

sis. The MRT-test is designed to be able to detect subtle data behaviors so that

phenotype samples with similar global features but different local features can be

effectively detected, which is essential for the rival-clinical diagnosis in transla-

tional bioinformatics. We demonstrated that our MRT-test can separate different

phenotypes from high-dimensional omics profiles, including those challenging gene
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expression datasets that were previously thought to be non-separable based on other

existing methods. Our proposed MRT-test not only provides an effective biomarker

discovery approach, but also demonstrated that high-dimensional gene/protein ex-

pression data’s linear separability, which provides a strong support for employing

effective biomarker patterns in complex disease diagnosis in translational bioinfor-

matics.

Although our MRT-test can achieve almost perfect phenotype separation by

using only three top selected gene markers for almost all data in our experiment,

the three top-ranked gene markers from the MRT-test for the Prostate data, an old

gene expression array data published in 200212, can not achieve a perfect phenotype

separation as the other data when we only use the first-PC in MRT-test to conduct

the detail coefficient matrix reconstruction, which seems to be consistent to its late

arrival performance in classification. However, such case may suggest us that more

PCs should be used in the detail coefficient matrix reconstruction process for the

MRT-test for some omics data.

By integrating our MRT-test with the state-of-the-art classifiers, we showed

that we can achieve consistent clinical-level diagnosis accuracy across a series of

omics data in disease phenotype discrimination by comparing our methods with

the state-of-the-arts. It is noted that the rivaling-clinical diagnosis performance is

due to the novelty of our techniques proposed in our unique MRT-test. Our results

are obtained from different omics data under rigorous cross validation, which pre-

vents any possibility of overfitting because overfitting may only produce deceptive

diagnostic performance for one or two data but it has no way to generalize the

similar performance to the other data, not to mention a series of heterogeneous

gene/protein expression array data.

We also proposed a bottom-up network marker identification (NMS) algorithm

by starting from the MRT-test identified biomarkers to identify corresponding net-

work markers. Unlike the existing top-down subnetwork marker identification al-

gorithms, our NMS algorithm has less dependence on the global network due to

its more targeted search, and enables to identify regulatory genes for its special

network marker building technique, which can lead to useful insights about the

complex diseases. Alternatively, we have to point out that our NMS is an algorithm

that relies on the MRT-test, which is theoretically not as rigorous or independent

as the existing subnetwork marker identification algorithms such as jActiveModule,

COSINE, and PNA3,4,5.

Although our methods achieved exceptional diagnostic performance and

biomarker discovery for benchmark omics data, we are collaborating pathologists to

apply our algorithms to different individual data sets because the current results are

from secondary data analysis for public data, in addition to further extending our

NMS method to proteomics data. Although it is still not theoretically clear how

multi-resolution corresponds to underling biological or phenotype behaviors, our

work suggests the multi-resolution analysis approach is an effective way to separate

the true signals from red herrings, which obviously contributes to high performance
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diagnosis in translational bioinformatics. As for future work, we are interested in

integrating gene expression, protein expression, microRNA expression, and RNA-

Seq data44 by using TCGA data45 to infer consensus network markers by extending

our MRT-test and network marker synthesis algorithms, in addition to investigating

how the ordering of samples in an omics data set will our MRT-test results.
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