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A major goal of personalized anti-cancer therapy is to increase the drug e®ects while reducing
the side e®ects as much as possible. A novel therapeutic strategy called synthetic lethality (SL)

provides a great opportunity to achieve this goal. SL arises if mutations of both genes lead to cell

death while mutation of either single gene does not. Hence, the SL partner of a gene mutated
only in cancer cells could be a promising drug target, and the identi¯cation of SL pairs of genes is

of great signi¯cance in pharmaceutical industry. In this paper, we propose a hybridized method

to predict SL pairs of genes. We combine a data-driven model with knowledge of signalling

pathways to simulate the in°uence of single gene knock-down and double genes knock-down to
cell death. A pair of genes is considered as an SL candidate when double knock-down increases

the probability of cell death signi¯cantly, but single knock-down does not. The single gene

knock-down is con¯rmed according to the human essential genes database. Our validation

against literatures shows that the predicted SL candidates agree well with wet-lab experiments.
A few novel reliable SL candidates are also predicted by our model.

Keywords: Synthetic lethality; signaling pathways; data-driven.

1. Introduction

A major challenge to establish treatments for human cancer is how to kill cancer

cells speci¯cally, but spare normal cells. Among the developed anti-cancer
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therapies, the lack of selectivity of the drugs is likely to lead to the elimination of

both the tumour and the healthy cells, thus causing various side e®ects. To

improve the classic cytotoxic therapies, a novel anti-cancer strategy named syn-

thetic lethality (SL)1 has been introduced and has shown great potential to in-

crease the selectivity of the drugs. Two genes have SL relationship when the

combination of mutations is able to kill a cell, whereas the mutation by one gene

cannot. Since a lot more genetic mutations exist in tumour cells than in normal

cells, the identi¯cation of the SL pair of genes could play an important role in

pharmaceutical industry when one of the genes is a cancer-speci¯c mutated gene.

The drug that targets the partner gene is thus able to give rise to SL and kill the

tumour cells selectively.

However, the majority of the established SL identi¯cation techniques, such as

RNA interference (RNAi),2 are faced with multiple issues like the design of an

e®ective small interfering RNA (siRNA) sequence and the stability across di®erent

platforms or cancer subtypes. Moreover, while the underlying mechanisms that lead

to SL are crucial for developing reliable anti-cancer therapies, they can hardly be

re°ected by the screening-based methods. Wu et al.3 proposed a meta-analysis data-

mining method that was able to predict SL based on genomic and proteomic fea-

tures, Güell et al.4 also proposed a computational method to screen synthetic lethal

reaction pairs from the perspective of metabolism, however, their results mainly

focused on yeast. Another computational method was developed by Heiskanen and

Aittokallio,5 which infers human SL from yeast SL based on the conserved features

between the two species. However, key features that are speci¯c to human were

likely to be lost.

In this paper, we propose a computational method to predict SL pairs of genes

by combining a data-driven model6,7 with knowledge of the underlying mechan-

isms (e.g. signaling pathways information). The data-driven model is used to

construct a function that describes the relationship between the activities of sig-

naling proteins and the probability of cell death. Then the single gene knock-down

and the double gene knock-down are simulated by taking into account the path-

way information as well (e.g. what downstream proteins should be a®ected by the

knock-down events). A predicted probability of cell death is calculated after gene

knock-down. A pair of genes is considered as an SL candidate when the predicted

probability of cell death after double genes knock-down is highly increased com-

pared with real data, while the predictions after the knock-down of either single

gene are not. We use human essential genes to validate the simulation of single

gene knock-down. The Syn-Lethality database,8 which consists of 113 SL pairs

manually collected from literatures of wet-lab experiments, is employed to eval-

uate the SL predictions of our model. The two SL pairs of genes that coexist in the

Syn-Lethality database and in the employed data set are successfully identi¯ed.

Explanations of the mechanisms of the novel predicted SL pairs of genes are also

presented.

F. Zhang et al.

1541002-2



2. Methods

2.1. Data

We downloaded the time-series signaling data for proteins from the work of Lee

et al.9 This signaling data set contains the phosphorylation levels of 32 signaling

proteins at 5 time points, as well as the cell fates (e.g., apoptosis, proliferation)

measured using °ow cytometry at the corresponding time points. In addition, the

signaling data contains six treatments (i.e. six groups), which were designed on

breast cancer cells (e.g. cell line BT20). We chose the control group (treated with

DMSO) data since the other ¯ve groups had been treated by di®erent drugs which

may introduce unpredictable biases to our model. For each signalling protein, the

values of its phosphorylation levels from all the biological experiments were nor-

malized into an open interval between 0 and 1. Suppose max and min represent the

maximum and minimum measurements of a protein, respectively, then for every

biological measurement (denoted as mea) of this protein, the normalized value is

ðmea�min � 0:99Þ=ðmax � 1:01�min � 0:99Þ. Finally, we approximately estimated

the probability of cell death as the proportion of dead cells under each treatment.

2.2. Pathways

Pathway information was extracted from GeneGO database.10 Classic signaling

pathways about the regulation of cell fates (e.g. apoptosis and proliferation) were

extracted and combined into a network as shown in Fig. 1. Here, we constructed a

generic pathway where only the proteins with phosphorylation measurements

available in the data set and their direct interaction neighbors were retained. In this

generic pathway, there are 59 signaling proteins and three cell fates (i.e. apoptosis,

proliferation, cell cycle). And among the 59 proteins, 28 had measurements in the

data set we downloaded, i.e. SMAC, 4EBP1, Beclin1, H2AX, ERK, S6, S6K, Cabl,

Casp6, Casp9, CDC25, Chk1, p27, PUMA, Wee1, HSP27, AKT, JNK, p38, BIM,

BID, DAPK1, CYCLIND1, STAT3, p53, Casp8, EGFR and HER2 (green nodes in

Fig. 1).

2.3. Data-driven model

We ¯rst constructed a mathematical model in Eq. (1)7 to relate the cell signals

to the cell fates. At each time point, P is the probability of cell death, xi

(where i ¼ 1; . . . ; 28) represents the activity (e.g. phosphorylation level) of the ith

signaling protein, �i indicates the in°uence of the corresponding protein to the cell

death (as such, it is not propagation through the network, but rather direct re-

gression to the target node, i.e. apoptosis) and " is a small constant representing

random error.

P ¼ e�0 �
Yn
i¼1

x�i

i þ ": ð1Þ
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Next, we built the functions in Eq. (2)7 to describe the relationship between a

signaling protein and all its measured upstream nodes in Fig. 1. For each signalling

protein (e.g. the ith protein), we selected it as the dependent variable in Eq. (2) and

all its measured upstream nodes as independent variables, with �ij representing the

contribution of the jth measured upstream node to the node i and all the � para-

meters forming a matrix M. To identify the upstream nodes of the node i, we

considered not only its direct parent nodes, but also the measured proteins that had

at least one path leading to the node i. For example, from Fig. 1, we can see that

SMAC has two direct parent nodes (JNK and BAX, but only JNK has measure-

ments), and since there is a path BIM-BAX-SMAC and BIM has measurements,

both JNK and BIM will be considered as the measured upstream nodes of SMAC.

xi ¼ e�i0 �
Y
j

x
�ij

j þ "i: ð2Þ

Then the parameters in Eqs. (1) and (2) (e.g. �i and �ij) were learnt using partial

least squares regression (PLSR) method as in our previous work7 based on the data

set (Algorithms 1 and 2).

2.4. Gene knock-down simulation

Suppose that the signalling protein u is a measured upstream node of protein v in our

generic pathway, and u is knocked down (e.g. mutated or blocked). The signals

received by v are thus changed under the assumption that all the other upstream

nodes of v remain unchanged. For example, v will be downregulated or upregulated

after the removal of u when u activates or inhibits v, respectively. Assuming that u is

knocked down, we next estimate the changes of its measured downstream nodes and

the corresponding probability of cell death, based on our data-driven models in

Eqs. (1) and (2).

Algorithm 1. Learning parameters of Eq. (1).

INPUT: Time-series signalling protein data X(t×n) and cell death data Pt×1,
where t is the number of measurements and n = 28.

OUTPUT: The vector A : (α0, α1, ..., αn) with n + 1 elements.

//Take the logarithm of Equation (1).

ln(P − ε) = α0 + n
i=1 αi · ln(xi);

Independent variables ← signalling proteins;

Dependent variables ← cell death;

Use partial least squares regression (PLSR) method (e.g., the plsregress func-
tion in MATLAB) to do the regression and learn the parameters (α0, α1, ..., αn);

Return The vector A.

Predicting essential genes and SL
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Algorithm 2. Learning parameters of Eq. (2).

INPUT: Time-series signalling protein data X(t×n); adjacency matrix
AD(N×N), where N = 59 is the number of nodes in the pathways and Nij = 1
if there is an edge leading from node Nj to Ni (i.e., Nj is a direct parent node
of Ni).

OUTPUT: The matrix M(n×n) where each element mij is the parameter λij .

//Extract measured upstream nodes.

for each signalling protein i do

//Extract direct parent nodes of protein i.

rowAD(i) ← i-th row of matrix AD;

for each parent node j (j = i) in rowAD(i) do

if the j-th parent node has measurements and mij = 0 do

mij ← 1;

elseif the j-th parent node has no measurements and mij = 0 do

//Extract direct parent nodes of protein j.

rowAD(j) ← j-th row of matrix AD;

rowAD(i) ← union(rowAD(i), rowAD(j));

end for when the i-th row of M is conserved or reach the maximum

steps of loops;

end for

//Calculate λij .

for each signalling protein i do

//Extract measured upstream nodes of protein i.

rowM(i) ← i-th row of matrix M ;

//Take the logarithm of Equation (2)

ln(xi − εi) = λi0 + j λij · ln(xj);

Independent variables ← proteins with nonzero values in rowM(i);

Dependent variables ← protein i;

Use PLSR to learn the parameters λij as in Algorithm 1;

mij ← λij ;

end for

Return The matrix M .
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For the knock-down of a single gene (gene and protein are used interchangeably in

this paper), we removed not only its contribution to the cell death, but also its

in°uence on all its downstream nodes. For example, the jth node in the pathway was

knocked down, and the e®ect of its knock-down on cell death was estimated as

follows. First, we removed the in°uence of the jth protein to all its measured

downstream nodes by setting the jth column in Matrix M to be 0 (�ij ¼ 0, for all i)

and recalculated the activity levels of its downstream nodes. Second, we set �j ¼ 0 to

remove the contribution of the jth protein to cell death. Then we estimated the

probability of cell death by substituting the updated protein data and vector ð�0;

�1; . . . ; �nÞ into Eq. (1). Fourth, we employed the Kullback–Leibler divergence (the

relative entropy, given in Eq. (3)) to estimate how much the cell death predictions

di®er from biological experimental measurements, where t is the number of predic-

tions (or measurements). In information theory, the Kullback–Leibler divergence is a

measure of the di®erence between two probability distributions. Algorithm 3 gives

the pseudocode of the process. We de¯ned the divergence as the \single knock-down

score" of the jth protein. If the single knock-down score was equal to zero, there was

no increment of cell death due to knock-down event. Therefore, the bigger the single

knock-down score is, the greater the cell death is promoted.

DKLðPredictedjjMeasuredÞ ¼
X

t

PredictedðtÞ ln PredictedðtÞ
MeasuredðtÞ

� �
: ð3Þ

Similarly, we can infer the e®ect on cell death when we knocked down a pair of

genes. For each protein, we extracted the set of its downstream nodes. Given a pair of

proteins to be knocked down, we ¯rst computed the union set of their downstream

nodes and recalculated the activity levels for the nodes in this union set by modifying

the parameters in Eq. (2) to be 0. Then, we estimated the probability of cell death by

feeding the updated activity levels and vector ð�0; �1; . . . ; �nÞ to Eq. (1), and simi-

larly used Eq. (3) to de¯ne the \double knock-down score" to measure the e®ect of

the knock-down of a pair of genes.

2.5. Prediction of SL

For a protein pair ðu; vÞ, let dðu; vÞ denotes its double knock-down score. sðuÞ and
sðvÞ are the single knock-down scores for u and v, respectively. Our assumption was

that a protein pair ðu; vÞ with large dðu; vÞ and low sðuÞ and sðvÞ tended to be a SL

pair. Hence, we de¯ned the SL score for the protein pair ðu; vÞ as in Eq. (4), to

quantify their mutual dependence on knock-down events. For example, if u and v are

independent, then knocking down u does not give any in°uence on knock-down of v

and vice versa, so their SL score is zero. The log-ratio term (lnð dðu;vÞ
sðuÞ�sðvÞÞ) helps to

identify the pairs whose double knock-down score increases signi¯cantly compared

with single knock-down score. However, large log-ratio is insu±cient to clarify the

discovery of an SL candidate since an SL candidate should have a large double

knock-down score in the ¯rst place. Therefore, by timing the double knock-down

Predicting essential genes and SL
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score(dðu; vÞ), the pairs with large log-ratio but small double knock-down score

(such that the SL score is small) are ¯ltered out to reduce the false positive. The

larger the SL score is, the more likely the pair is considered as SL candidate in this

paper.

SLðu; vÞ ¼ dðu; vÞ ln dðu; vÞ
sðuÞ � sðvÞ

� �
: ð4Þ

Algorithm 3. Single gene knock-down simulation.

INPUT: Time-series signalling protein data X(t×n) and cell death data Pt×1;
the vector A and the matrix M .

OUTPUT: Single knock-down score for each gene.

for each signalling protein j do

X ← X ;

M ← M ;

//Extract measured downstream nodes of protein j.

colM(j) ← the j-th column of matrix M ;

for each downstream node i in colM(j) do

mij ← 0;

//Extract measured upstream nodes of protein i.

rowM (i) ← the i-th row of the matrix M ;

Recalculate the activity levels of protein i by substituting the matrix X

and rowM (i) into Equation (2);

Update the i-th column of X using the recalculate activity levels of

protein i;

end for

A ← A;

αj ← 0;

Recalculate the probability of cell death by substituting the matrix X and

the vector A into Equation (1);

Use Equation (3) to calculate the Kullback Leibler divergence between the

predicted and measured cell death as the knock-down score of protein j;

end for

Return List of single knock-down scores for all genes.

F. Zhang et al.
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3. Results

3.1. Single knock-down and essential genes prediction

To evaluate the performance of single gene knock-down simulation, 28 measured

signaling proteins were ranked according to their single knock-down scores. Out of

these 28 proteins, 15 proteins had single knock-down scores larger than 0. Table 1

shows the top-¯ve proteins (i.e. AKT, p53, CHK1, S6K and CYCLIND1), whose

removal brings the highest impact on the probability of cell death.

AKT, which is also known as Protein kinase B (PKB), plays an important role in

many regulation processes such as proliferation, apoptosis, cell cycle and metabo-

lism. From Fig. 1, we can see that the activation of mTOR by AKT contributes to

cell proliferation. AKT regulates also cell apoptosis via several pathways such as

AKT-Caps9, and controls cell cycle by phosphorylating its substrates including

GSK3.11 The tumor suppressor p53 is able to induce cell cycle arrest, initiate DNA

repair process when DNA is damaged and activate cell apoptosis if DNA is irrep-

arable. Therefore, it is crucial in multiple cellular mechanisms.12–14 CHK1, which is

also referred to as checkpoint kinase 1, responds to checkpoint-mediated cell cycle

arrest and DNA damage.15 S6K (Ribosomal protein S6 kinase beta-1), which

responds to mTOR and growth factors, is responsible for regulating protein syn-

thesis, cell growth and cell proliferation.16 CYCLIND1, acting as the regulator of

cyclin-dependent kinase (CDK), belongs to a family whose members have a signif-

icant periodicity in their abundance over cell cycle.17 Moreover, all these ¯ve genes

were identi¯ed as human essential genes in Online GEne Essentiality database

(OGEE).18

3.2. Double knock-down and SL prediction

We performed double knock-down simulation over all the 378 protein pairs (i.e. 28
2

� �
as we had 28 measured signaling proteins). 252 of them had double knock-down

scores larger than 0, indicating that the double knock-down event tended to increase

the probability of cell death.

SL scores were calculated based on Eq. (4). Table 2 gives the top 20 pairs of SL

candidates after ranking based on the SL scores. A recent work has investigated the

Table 1. Rank of the single knock-down simulation. For example, AKT
was in the top of the list since knock-down of AKT gave rise to the

biggest growth of the probability of cell death according to Eq. (3).

Protein Gene Single knock-down score Rank

AKT ENSG00000142208 0.037 1

p53 ENSG00000141510 0.031 2

CHK1 ENSG00000149554 0.021 3
S6K ENSG00000108443 0.016 4

CYCLIND1 ENSG00000110092 0.015 5

Predicting essential genes and SL
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SL interactions in the signalling pathways related to DNA damage and checkpoint

control.19 Two pairs, ðp53;CHK1Þ, as well as ðp53;Wee1Þ were reported as SL pairs

in their work, and these two pairs are ranked the seventh and the eleventh by our

method. As reported by Kaelin2 and Le Meur et al.,20 three types of mechanisms were

proposed, from the perspectives of signalling pathways, that could be the candidate

explanations of SL interactions in human cancers. First, two proteins that coexist in

a linear essential pathway are likely to have SL interaction, such as ðAKT ; BIDÞ in
the cascade AKT-BID-BAX-Casp9 and ðAKT ;BIMÞ in the pathway AKT-

FOXO3A-BIM-BAX-Casp9 (Fig. 1). The mutation of the ¯rst protein (e.g. AKT)

would decrease the signals transmitted in the pathway whereas the mutation of both

destroys the pathway. Second, two proteins from two parallel essential pathways

could be SL partners when they are backups of each other. For example, ðp53;CablÞ
is predicted since p53 and Cabl are in two parallel essential pathways, i.e. ATM-

CHK1-p53-PUMA-BAX and ATM-Cabl-BAX, respectively. Another example is

ðp53;Wee1Þ, where p53 is in the pathway BRCA1-p53-CDK1 and Wee1 is in the

pathway BRCA1-Wee1-CDK1. Third, two components have the same essential

function or they both contribute to the construction of an essential protein com-

plexes. Moveover, according to the Syn-Lethality database,8 only two SL pairs of

proteins reported in the literatures have measurements in the data set9 i.e. ðp53;
CHK1Þ and ðp53;Wee1Þ, and both of them have been successfully predicted by our

method.

Table 2. Rank of the SL candidates. For

example, the pair of AKT and BID was
in the top of the list since it had the

highest SL score based on Eq. (4).

Protein pairs SL score Rank

AKT BID 2.053 1

AKT Cabl 2.029 2

AKT BIM 2.021 3
AKT CYCLIN 1.983 4

AKT Casp9 1.978 5

p53 BID 1.976 6
p53 CHK1 1.971 7

AKT Wee1 1.969 8

p53 BIM 1.954 9

p53 Cabl 1.933 10
p53 Wee1 1.914 11

p53 Casp8 1.907 12

AKT Casp6 1.902 13

AKT Casp8 1.899 14
p53 S6K 1.897 15

p53 Casp9 1.889 16

p53 CYCLIN 1.874 17
AKT S6K 1.860 18

p53 Casp6 1.841 19

CHK1 CYCLIN 1.807 20
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4. Discussion and Conclusion

Anti-cancer therapy based on SL strategy shows great potential for its capability of

treating the cancer and the normal cells di®erently. Finding SL pairs of genes pro-

vides great opportunities for drug target identi¯cation if one of the genes in the pair

has been mutated in the cancer cells. However, due to the high cost of the screening

technology, highly reliable results generated from wet-lab experiments are growing

slowly. Therefore, we proposed a computational method which hybridizes a data-

driven model with knowledge of signalling pathways to predict potential SL pairs of

genes. We ¯rst related the activities of signalling proteins to the probability of cell

death using a mathematical function. Second, we identi¯ed the relationship between

each protein and all its measured upstream nodes based on both the biological

experimental data and the signalling pathways. Next we simulated the single knock-

down of each measured protein and the double knock-down of all possible pairs of

proteins, to estimate the signi¯cance of knock-down events to cell death. We then

de¯ned the SL score to do virtual screening for the candidates of SL pairs of genes.

The single knock-down simulations were con¯rmed according to the human essential

genes. And the double knock-down simulations gave both wet-lab con¯rmed results

and novel predictions which are suggested to be reliable by evidence from literatures.

In spite of promising performance of our proposed method, limitations have been

noticed which point to our future work. First, due to the lack of information, un-

derlying mechanisms are insu±ciently considered. For example, the interaction types

(e.g. phosphorylation and transcription regulation) in Fig. 1 are unclear. Also the

interaction between two proteins could be activation in one cell type while inhibition

under other circumstance due to di®erent genetic contexts. Second, some well-

established network models such as Boolean network and ODE-based model should

be involved to gain better performance and mechanistic understanding. And we

believe that by employing these models, our method will be improved.
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