
KNOSYS: 108818

Knowledge-Based Systems xxx (xxxx) xxx

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Significance of activation functions in developing an online classifier
for semiconductor defect detection

Md Meftahul Ferdaus a, Bangjian Zhou a, Ji Wei Yoon a, Kain Lu Low b, Jieming Pan b,
Joydeep Ghosh b, Min Wu a, Xiaoli Li a, Aaron Voon-Yew Thean b, J. Senthilnath a,∗
a Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), 138632, Singapore
b Electrical and Computer Engineering, National University of Singapore, 117583, Singapore

a r t i c l e i n f o

Article history:

Received 24 September 2021

Received in revised form 9 April 2022

Accepted 12 April 2022

Available online xxxx

Keywords:

Leaky ReLU

Online learning

Defect detection

Prequential

Semiconductors

a b s t r a c t

In anomaly detection problems for advanced semiconductor devices, non-visual defects occur fre-

quently. Machine learning (ML) algorithms have the advantage of identifying such defects. However,

in this real-world problem, data comes sequentially in a streaming fashion, thus, we may not have

sufficient data to train an ML model in batch mode. In such a scenario, online ML models are useful to

detect defects immediately since they work in a single-pass mode. Besides, when data is collected from

more realistic non-stationary monitoring environments, online ML models with evolving architecture

are more practical. Thus, evolving and online ML models are developed in this work to detect

defects in technology computer-aided design (TCAD)-based digital twin model of advanced nano-scaled

semiconductor devices such as a fin field-effect transistor (FinFET) and a gate-all-around field-effect

transistor (GAA-FET). Activation functions (AFs) in deep neural networks (DNNs) and membership

functions (MFs) in neuro-fuzzy systems (NFSs) play an important role in the performance of those

ML models. This work focuses on analyzing the effects of various AFs/MFs in our developed online ML

models while detecting defects in real-world nano-scaled semiconductor devices, where significant

training samples are not available. From various semiconductor datasets having fewer samples, it has

been observed that the proposed evolving neuro-fuzzy system (ENFS) with Leaky-ReLU MF performs

better (improvement in the range of 1.9% to 30.8% considering overall classification accuracy) than

the other DNN or ENFS-based online ML models. Having an evolving architecture and online learning

mechanism, besides anomaly detection, the proposed model’s performance has also been evaluated for

handling large data streams problems with concept drift. The performance of the proposed method

has been compared with some recently developed baselines under the prequential test-then-train

protocol. The classification rates of the proposed method has an improvement in the range of 1.1%

to 65.9% than the existing methods. The code of this work has been made publicly available at

https://github.com/MdFerdaus/LREC.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Miniaturization and fast-paced recent developments in sen-

sors and actuators have enabled us to measure the states of

various tools or parts of a manufacturing process. Measuring

states from various points provide us with real-time information

about the health of the whole process. This information can then

be utilized to train a machine learning (ML) model to identify

∗ Corresponding author.

E-mail addresses: ferdaus_meftahul@i2r.a-star.edu.sg (M.M. Ferdaus),

Zhou_Bangjian@i2r.a-star.edu.sg (B. Zhou), Yoon_Ji_Wei@i2r.a-star.edu.sg

(J.W. Yoon), kainlulow@sjtu.edu.cn (K.L. Low), jieming.p@u.nus.edu (J. Pan),

elejg@nus.edu.sg (J. Ghosh), wumin@i2r.a-star.edu.sg (M. Wu),

xlli@i2r.a-star.edu.sg (X. Li), aaron.thean@nus.edu.sg (A.V.-Y. Thean),

J_Senthilnath@i2r.a-star.edu.sg (J. Senthilnath).

defects in a certain component [1]. Such anomaly detection pro-
cedure is important for the manufacturer to meet the consumers’
demand and supply constantly. Further, the ML-guided process
monitoring system can minimize the predictive maintenance cost
by lowering the labor cost and wastage of materials. However,
there exist numerous challenges in using ML to identify the
defects in advanced miniaturized devices [2]. Among a variety of
miniaturized devices, this work deals with the challenges of ana-
lyzing defects in some advanced semiconductor devices, namely,
a fin field-effect transistor (FinFET) and a gate-all-around field-
effect transistor (GAA-FET). Some challenges of using ML in these
devices are discussed in the following paragraph.

When the dimension of semiconductor devices scales down
at a nano-meter technology node and beyond, complexity in
both interconnection and transistor process escalates [3]. Thus,
chances of having non-visual defects in these devices increase.

https://doi.org/10.1016/j.knosys.2022.108818

0950-7051/© 2022 Elsevier B.V. All rights reserved.

KNOSYS: 108818

M.M. Ferdaus, B. Zhou, J.W. Yoon et al. Knowledge-Based Systems xxx (xxxx) xxx

Indeed, several tools are used to improve general failure analysis
methods, for example, nano-probing using scanning electron mi-
croscopy, conductive atomic force microscope, and transmission
electron microscopy (TEM). Nonetheless, most of these solutions
are time-consuming and hard to implement. In contrast to a
FinFET device, a futuristic FET called gate-all-around FET (GAA-
FET) device is expected to provide a better gate voltage-regulation
over the channel, consequently minimizes the leakage of cur-
rent that may occur due to several short channel effects [4]. In
GAA-FET, super-lattices consist of Si and SiGe layers. The lattice
mismatch between Si and SiGe induces strain in both layers
which may cause dislocation defects. It can also be considered
as a non-visual defect. It has been observed that faults occur
very rarely in the semiconductor. Therefore, it becomes tedious
to collect enough statistically-significant failing samples. In such
circumstances, an ML-guided defect detector could be an effective
replacement for TEM analysis-based solutions or an alternative to
domain experts’ review [5]. Since faults occur rarely, it causes an
imbalance in the number of samples at different classes. Deal-
ing with such a multi-class imbalanced classification problem is
really challenging for the ML models.

While handling defect identification problems in advanced
semiconductor devices, class imbalance dataset is not the only
challenge for ML models. In many cases, manufacturers desire
to detect the defect in an online fashion while data keeps com-
ing sequentially in a streaming fashion. The majority of the ML
models, operated in batch learning mode, are not compatible to
deal with such scenarios. Besides, the distribution of data may
change at a varying rate, consequently posing a challenge to
fixed architecture ML models. To overcome the above-mentioned
limitations, online ML models with evolving architecture are use-
ful [6,7]. These models’ ability to operate in a single-pass mode
supports them to deal with sequentially incoming data streams
effectively [8,9], where their evolving architecture helps to deal
with varying data distribution. Thus, we are focusing on de-
veloping novel evolving/online ML models to detect defects in
an online fashion, where we are emphasizing the utilization of
various AFs/MFs to detect defects in the advanced semiconductor
industry.

With the recent advancements in hardware and software
technology, researchers have implemented various ML models
[10–16] for different defect detection problems [17,18]. The ma-
jority of these models operate in batch learning mode. Unlike
those examples, online ML models based on deep neural net-
works (DNNs) and evolving neuro-fuzzy systems (ENFSs) are
proposed in this work since they can deal with streams of data
coming sequentially. To handle data streams in complex en-
vironments, an ensemble fuzzy classifier called parsimonious
ensemble (pENsemble) was developed in [19]. Their method
was equipped with a dynamic online feature selection mecha-
nism that can select or deselect the input features on the fly.
Besides, the ensemble pruning mechanism supports pENsem-
ble to reduce its computational complexity and to deal with
the rapidly altering environment. Researchers developed a deep
stacked stochastic configuration network (DSSCN) [20] for han-
dling non-stationary data streams in the lifelong learning envi-
ronment. Continuously generated data streams are handled in
DSSCN by its self-constructive architecture through automatic
extraction of both hidden units and layers. They have tested their
algorithm in a prequential test-then-train process. Inspired by
the better generalization power of the deep learning methods, a
deep evolving fuzzy neural network (DEVFNN) is developed for
handling non-stationary data streams [21]. Each layer of their
network is derived from Generic Classifier (gClass) [22]. A new
layer is added to deepen DEVFNN’s architecture when a real
drift is detected. Besides, it is equipped with a layer merging

mechanism, which supports reducing network complexity by
compromising the generalization performance negligibly. Again,
the number of rules in each layer is adjusted automatically from
the data streams. The performance of their algorithm was also
tested by following the test-then-train protocol.

Majority of above mentioned neuro-fuzzy systems are rooted
with either univariate Gaussian membership functions (MFs)
[23,24], or multivariate MFs [25–27]. In this work, besides using
these MFs, a Leaky ReLU MF-based novel ENFS is proposed. The
influence of these MFs on ENFS-based autonomous and online
classifiers has also been observed in this work while detecting
defects in advanced semiconductor devices. In addition, to under-
stand the impact of various AFs like ReLU, leaky ReLU, sigmoid,
and tanh, they have been used in DNN to develop new online
learning methods to detect defects in advanced semiconductor
devices.

2. Related work

Researchers have tried various ML techniques to detect defects
in semiconductor manufacturing. Some of them developed refer-
ence cycles for data comparison [28]. A standard cycle is created
from data to be considered clean, which has been used as a refer-
ence to compare with the defective cycles. Such a technique sup-
ports them in determining effectively the process parameters that
are causing the problems. Some researchers have tried to use such
a reference cycle to conduct cluster analysis [29]. Applying cluster
analysis, data are processed to detect and visualize defects. Var-
ious clustering algorithms such as k-means, k-medoids, CLARA,
agglomerative, and divisive approaches are employed to both
univariate and multivariate data to cluster the clean data with
the reference cycle, whereas the defective cycles are clustered
separately. Multi-Layer Perceptron (MLP) and Long Short-Term
Memory (LSTM) models are also used to identify defects in semi-
conductor manufacturing as a time-series forecasting [30]. They
have used the clustering technique to create labels for supervised
forecasters like MLP and LSTM. They trained their models with
clean data so that they can forecast clean data with lower residual
values. In such a setting, a higher residual value indicates de-
fective data. A conditional generative adversarial network-based
model is developed in [31] to detect and classify defects in the
semiconductor manufacturing process. In another work, a single
convolutional neural network (CNN) is utilized to identify and
classify defects in the wafer surface. However, these approaches
have utilized a lot of scanning electron microscope (SEM) im-
ages to train their model, which may not be available in many
real-world problems. Our work is focused on supervised learning-
based ML models to detect defects in semiconductor devices.
However, rather than focusing on differentiating the clean from
the defective data, we focus on developing a classifier to classify
various faults in semiconductor devices using tabular data. In
real-world problems, data comes sequentially, and there may
exist various drifts in the dataset. To deal with these issues, we
emphasize online learning-based evolving structured classifiers
over batch learning-based ML models as used in the literature to
detect defects.

In online learning algorithms, the models are updated from a
continuous streams of data, where multiple passes over data are
not performed. In data stream analysis, concept drift is commonly
observed phenomenon, which indicates the arbitrary change of
statistical behaviors of a target space over time [6]. The gener-
alized framework for handling concept drifts in machine learn-
ing has also been illustrated in [6]. Among various ML models,
evolving architecture-based online learning algorithms have been
successfully employed by many researchers [6,19,32–34], which
motivates us to further develop new evolving ML model. In our

3

KNOSYS: 108818

M.M. Ferdaus, B. Zhou, J.W. Yoon et al. Knowledge-Based Systems xxx (xxxx) xxx

proposed evolving neuro-fuzzy system, we have focused on re-
ducing the number of learning parameters through the utiliza-
tion of a Leaky-ReLU-based membership function. To sum up,
we have firstly used our proposed method to detect defect in
semiconductor, which has been later reformed into prequential
test-then-train protocol to deal with large data stream problems
with various concept drifts.

The main contributions in this work can be summarized as
follows:

• Unlike the commonly used batch-processed DNN, an online
learning-based DNN classifier is proposed in this paper. The
influence of various AFs such as ReLU, Leaky ReLU, Sigmoid,
and tanh in the online DNN model have been investigated
while detecting defects in advanced semiconductor devices
and/or semiconductor manufacturing process.

• Impact of various MFs such as univariate Gaussian function,
multivariate Gaussian function, and Leaky ReLU in ENFSs
has also been observed. The incorporation of the proposed
Leaky ReLU MF in neuro-fuzzy architecture has reduced
the number of learning parameters significantly. If n is the
number of input features and R denotes the number of rules,
then the total number of learning parameters in a univariate
Gaussian function-based ENFS is (R × n) + R + (n + 1) × R.
In the case of multivariate Gaussian function-based ENFS, it
is (R+ n)+ (n× n)× R+ (n+ 1)× R. In our proposed Leaky
ReLU-based ENFS, it has been reduced to only (n + 1) × R.
The reduction of learning parameters supports the proposed
ENFS to minimize the computational burden.

• Real-world datasets from our TCAD-based digital twin model
of nano-scaled FinFET and GAA-FET are considered. Some
challenging features associated with these datasets are as
follows: (1) less number of samples; (2) imbalance and mul-
ticlass (9 and 10 classes). Thus, these datasets are utilized to
evaluate the performance of our proposed online classifiers
along with some benchmark models.

• A popular evaluation mechanism for online and evolving
learning models in handling data streams namely prequen-
tial test-then-train protocol is used to evaluate the per-
formance of the proposed LREC. Under such settings, the
performance of LREC has been compared with recently de-
veloped baselines.

The remaining paper can be organized as follows: Section 3.1
refers to the problem state of the work. The proposed Leaky
ReLU MF-based ENFS named as Leaky ReLU-based Evolving Clas-
sifier (LREC) is explained along with its architecture in Section 3.
Section 4 explains the online learning policy of the proposed
LREC. All the semiconductor datasets, used to evaluate the online
classifiers, are detailed in Section 5. The performance of various
online classifiers in detecting defects of semiconductor devices is
reported and described in Section 6. Finally, the paper ends with
the concluding remarks in Section 8.

3. Leaky ReLU-based evolving classifier

The design of ENFS-based classifier involves a high number
of learning parameters due to the utilization of various Gaussian
MFs. Such feature may hamper their performance in detecting
defects online. With the motivation of using less learning param-
eters, the popular leaky ReLU is incorporated as an MF in our
proposed LREC. LREC is used to detect the location of defects in
advanced FET devices namely a FinFET and a GAA-FET device with
only a few samples extracted from the experimental analysis.
The detailed architecture of the LREC is shown in Fig. 3, where
the process of collecting the input data and passing it to LREC is
discussed in the Experiment Section.

3.1. Problem statement

In this work, we proposed an evolving classifier called LREC in

solving two different problems, such as (i) detection of anomaly

through a single-pass online learning mechanism; and (ii) han-

dling concept drift through the prequential test-then-train pro-

tocol. In single-pass settings, data comes in a sequential online

manner to train LREC in a single-pass fashion. It is tested after

training is finished and it can alter the architecture during the

training phase. To get a clearer overview, the single-pass-based

working mechanism of LREC is portrayed in Fig. 1. Unlike the

state of the arts evolving models, it requires less parameters,

which supports its real-world deployment in applications like

semiconductor defect detection. On the other hand, in a prequen-

tial test-then-train procedure, a model is tested first to evaluate

its generalization performance before it is being trained. Such

a mechanism is helpful in data streams by considering the fact

of the arrival of data streams without labels since the ground

truth may not be captured instantaneously. A clearer view of the

workflow in LREC, while operating in a prequential test-then-

train setting is shown in Fig. 2. Here, Ct = [X1, X2, . . . , Xp] ∈ �N×n

is representing unlabeled data streams with a size of N and input

dimension of P , Y ∈ �N is the true class labels for N unlabeled

data points.

3.2. LREC architecture

The proposed LREC is bottomed with Takagi–Sugeno (TS)-

fuzzy architecture. Therefore, the LREC structure consists of three

parts, namely, (1) fuzzification; (2) rule base; (3) defuzzifica-

tion. The incoming streams of crisp data are fuzzified in layer

1 (fuzzification layer). From previous research [32,35], it is ob-

served that the generation of linear equations in the consequent

part of the TS-fuzzy system supports hyper-plane-shaped clusters

(HPSCs) to develop an efficient TS-fuzzy model than the hyper-

spherical-shaped cluster-based models. The MF in PALM [32] can

accommodate the hyper-planes directly, which can be expressed

as exp

(
−Γ d(j)

max(d(j))

)
, where j is the index of the current rules,

Γ is a tuning parameter with a range of [1 − 100] [32,35] to

control the fuzziness in membership grades and d(j) is a distance

of the input at a certain time step to the jth hyper-plane. The Γ is

required to be varied with respect to the various dataset. To miti-

gate such shortcoming, the concept of leaky ReLU is incorporated

in LREC to accommodate the hyper-planes directly as follows:

fL1j = μj = f (x) =
{
Aωjx : ωjx < 0

ωjx : ωjx > 0
(1)

where A is a constant with small value (A < 0.1), x = xe ∈
�1×(n+1) is the extended input vector. At the kth time step, it can

be expressed as xke = [1, xk1, xk2, . . . , xkn], here n is the number of

input features and ωj ∈ �(n+1)×j stands for the weight vector of

the jth rule. This study focuses on type-1 TS-fuzzy architecture to

develop the LREC algorithm. The next layer of LREC is rule base.

The IF-THEN rule of the proposed learning algorithm is illustrated

as follows:

Rj : IF Xn is close to fL2j THEN yj = λjx
T
eωj (2)

where λj = (τj/
∑R

i=1 τi) is the normalized firing strength for

the jth rule, τj is the firing strength of the jth rule, which is

the Cartesian product of respective fuzzy sets of that rule. τj can

be expressed as τj = ∏n
i=1 μji, ωj is the vector of consequent

parameters called weight for the jth rule, yj is the consequent part

of the jth rule. Since the rule base is the layer after fuzzification,

4

KNOSYS: 108818

M.M. Ferdaus, B. Zhou, J.W. Yoon et al. Knowledge-Based Systems xxx (xxxx) xxx

Fig. 1. Work flow in single-pass online LREC.

Fig. 2. Work flow in LREC under prequential test-then-train procedure.

Fig. 3. Overall flow of LREC-based defect detection.

the output of this layer is indicating the consequent part. For a
certain rule, it can be expressed as follows:

fL2j = xTeωj (3)

The last layer is known as the defuzzification layer, where the
fuzzified output of the previous layer is defuzzified to the desired
crisp output. This crisp output is the weighted average of the

individual rules’ contribution, which is presented as follows:

fL3 = ŷ =
R∑

j=1

λjx
T
eωj (4)

The term λ in Eq. (4) is guaranteeing the partition of unity where

the sum of normalized membership degree is unity. Usually, in

5

KNOSYS: 108818

M.M. Ferdaus, B. Zhou, J.W. Yoon et al. Knowledge-Based Systems xxx (xxxx) xxx

a TS-fuzzy-based learning algorithm, both antecedent and con-
sequent parameters are to be learned. However, there are no
antecedent parameters like centers, widths in LREC. Thus, in this
work, we need to learn only the consequent parameters.

In this work, for all the evolving framework-based classifiers,
the true class labels are transformed to either 0 or 1. For instance,
a class label of 2 is converted as [0, 1]. Theoretically, the concept
of rule-based one versus rest fuzzy classifier [36] is inserted here
which provides more convenience in multi-class classification
problems. The final decision from the proposed classifier can be
expressed as follows:

OLR = argmax
c=1,...,M

(Oc
LR) (5)

where OLR is denoting the predicted class label, c = 1, 2, . . . ,M
is the number of classes. The desired class is predicted from the
maximal rule firing strength over all the rules. The online learning
mechanism of the proposed LREC’s consequent parameters along
with the evolving structure learning policy of LREC is discussed
in the next section.

4. Online Learning Mechanism in LREC

In this section, the online learning strategy to construct the
LREC autonomously is discussed. Here, data to train the model is
collected in a sequential manner, rather than a batch of data. In
some cases, new data may or may not contain novel information
than the previously existed ones. Hence, to accommodate the
variety of continuously non-stationary data during the training
phase, LREC can alter its structure by adding or merging the rules.

4.1. Mechanism of adding rules

In LREC, autonomous construction of fuzzy rules is realized
using self constructive clustering (SCC) [32,37–39]. In this mech-
anism, both the input and output coherence are calculated to
measure the significance of a rule. To calculate the coherence, the
correlation between the existing samples and the target concept
is analyzed. Let us assume that Hj ∈ �R×(1+n) is a hyper-plane
for the jth rule, Xt ∈ �n is the input vector, Tt ∈ �m is the
target vector, where n andm are the input and output dimensions
respectively, and t = 1, 2, . . . , n/m. Now the input and output
coherence of the LREC can be expressed as follows:

Ic(Hj, Xt) = ξ (Hj, Xt) (6)

Oc(Hj, Xt) = ξ (Xt , Tt) − ξ (Hj, Tt) (7)

where ξ () expresses the correlation function. In LREC, Maxi-
mal information Compression Index (MCI) [40] method-based
measurement of correlation is utilized in the SSC method as
follows:

ξ (Xt , Tt) = 1

2
(var(Xt) + var(Tt)

−
√
(var(Xt) + var(Tt))2 − 4var(Xt)(Tt)(1 − ρ(Xt , Tt)2)) (8)

ρ(Xt , Tt) = cov(Xt , Tt)√
var(Xt)var(Tt)

(9)

where var(Xt), var(Tt) express the variance of Xt and Tt respec-
tively, cov(Xt , Tt) presents the covariance between two variables
Xt and Tt , ρ(Xt , Tt) stands for Pearson correlation index of Xt and
Tt . In a similar way, the correlation ξ (Hj, Xt) and ξ (Hj, Tt) can
be measured using Eqs. (8) and (9). In addition, the MCI method
measures the compressed information when a newly observed
sample is ignored. The similarity between Hj and Xt is explored

directly while calculating Ic(Hj, Xt). On the other hand, Oc(Hj, Xt)
examines the dissimilarity between Hj and Xt in an indirect way
by considering the target vector as a reference.

The value of Ic and Oc should fulfill the following conditions
to append rules:

Ic(Hj, Xt) > b1 and Oc(Hj, Xt) < b2 (10)

where the ranges for the predetermined thresholds b1 and b2
for all three datasets used in this study are as follows: b1 ∈
[0.03, 10.0], and b2 ∈ [0.01, 1.0].
4.2. Mechanism of merging rules

For merging HPSCs, the angle between the hyper-planes is
measured in [41]. It is not sufficient to understand their rela-
tionship in the target-space since it cannot entail the spatial
proximity between HPSCs. From this gap, not only the angles
but also the minimum distance between clusters are measured in
LREC. By following the same approach in [25], the angle between
HPSCs are measured as follows:

θj,j+1 = arccos

(∣∣∣∣ ωT
j ωj+1

|ωj ‖ ωj+1|
∣∣∣∣
)

(11)

where the obtained angle θj,j+1 between jth and (j+1)th cluster is

ranged between 0 and π radian, ωj = [
b1,j, b2,j, . . . , bk,i

]
, ωj+1 =[

b1,j+1, b2,j+1, . . . , bk,j+1

]
. Now, the minimum distance between

the clusters is measured as follows:

dj,j+1 =
∣∣∣∣(a1 − a2).

(b1 × b2)

|b1 × b2|
∣∣∣∣ (12)

where a1, a2, b1, b2 are the parameters of the two considered
hyper-planes expressed as lR1 = a1 + xb1, and lR2 = a2 + xb2.
Now, the conditions to merge the hyper-planes can be expressed
as:

θj,j+1 ≤ c1 and dj,j+1 ≤ c2 (13)

where c1 ∈ [0.01, 0.1] and c2 ∈ [0.001, 0.1] are user-defined
parameters for all three datasets used in this work.

When merging two rules or clusters, the less dominant one
between them is deleted to maintain the structural simplicity
in LREC. On the other hand, the dominant rule with a higher
number of samples has a higher influence during the merging
scenario and presents the underlying data distribution. While two
HPSCs are merged, the weighted average strategy is employed for
simplicity as follows:

ωnew
j = ωold

j Nold
j + ωold

j+1N
old
j+1

Nold
j + Nold

j+1

(14)

Nnew
j = Nold

j + Nold
j+1 (15)

where ωold
j and ωold

j+1 are output weight vectors of the jth and

(j + 1)th rule respectively, and ωnew
j is expressing the output

weight vector of the merged rule, N is the number of samples,
also called as population in a HPSC or rule. When Nj > Nj+1, then
the jth rule is more influential than the (j + 1)th rule.

4.3. Mechanism of adapting weights

To adapt the weights of LREC, in this work, Fuzzily Weighted
Generalized Recursive Least Square (FWGRLS) method [25,32] has
been employed. The FWGRLS method-based loss function for the
jth rule of the LREC is expressed as follows:

Lj =(y − xeπj)Λj(y − xeπj)+
2βϕ(πj) + (π − πj)(Cjxe)

−1(π − πj) (16)

6

KNOSYS: 108818

M.M. Ferdaus, B. Zhou, J.W. Yoon et al. Knowledge-Based Systems xxx (xxxx) xxx

where Λj is a diagonal matrix with the diagonal element of the

jth rule, β is a regularization parameter, ϕ is a decaying factor, Cj

is the covariance matrix and πj is the local subsystem of the jth
rule. The overall cost function can be illustrated as follows:

L =
R∑

j=1

Lj (17)

The recursive calculation for a different element of the loss func-

tion in Eq. (16) can be presented as follows:

π k
j = π k−1

j − βCk
j ∇ϕπ k−1

j + Υ (k)(yk − xeπ
k
j) (18)

Ck
j = Ck−1

j − Υ kxeC
k−1
j (19)

Υ k = Ck−1
j xe

(
1

Λj

+ xeC
k−1
j xTe

)−1

(20)

with the initial conditions

π1(1) = 0 and C1(1) = ΩI. (21)

where Υ k is representing the Kalman gain, Ω = 105 is a large

positive constant, β is a regularization parameter. The quadratic

weight decay function is utilized in LREC, which can be expressed

as follows:

ϕ(π k−1
j) = 1

2
(π k−1

j)2 (22)

Its gradient can be presented as follows:

∇ϕ(π k−1
j) = π k−1

j (23)

Utilization of this function strengthens the generalization capabil-

ity of LREC by maintaining the dynamic of the weights into small

values [42]. To get a clearer view about the work flow in LREC,

the pseudocode of LREC is attached here as Algorithms 1, 2 and

3.

5. Experiments in detecting defects

In this work, to analyze the impact of various AFs/MFs in

our developed online DNN and ENFS, two real-world multi-class

datasets of advanced FET devices and a benchmark binary-class

semiconductor dataset from UCI machine learning repository [43]

are considered. Specification of these datasets such as number of

training and testing samples, number of features, and number of

classes is shown in Table 1. Major challenges associated with

two real-world datasets are (i) very less number of samples; and

(ii) higher number of defect classes. The process of extracting

the data and complexities associated with them to classify are

discussed in the subsections below. Also, classification of the

benchmark dataset is very challenging since it is a high dimen-

sional (590 input features) and highly imbalanced dataset. This

dataset contains 1567 observations taken from a wafer fabrication

production line, where each observation is a vector of 590 sensor

measurements along with one-hot encoded labels of pass and fail.

Between these two classes, 1463 examples pass the test with only

104 failed cases.

5.1. Datasets from advanced transistors

Bridging defects in a FinFET and dislocation defects in a GAA-

FET device are detected using online DNN and ENFS. These FETs

are modeled using TCAD simulation, from where different defect

data are collected. These TCAD models are compared with actual

device defects and corresponding current–voltage (I–V) curves,

thus, they are digital twin of actual FinFET and GAA-FET device.

Table 1
Specification of real-world and benchmark classification datasets.

Datasets #training samples #testing samples #features #classes

FinFETa 216 54 20 10

GAA-FETb 72 18 40 9

SECOM 1096 471 590 2

aBridge defect.
bDislocation defect.

In the TCAD simulation, patterning in the gate and chemical–

mechanical polishing are introduced as a source for the bridge

defect in FinFET based on the previous research in [44]. The planar

scanning transmission electron microscopy (STEM) image of an

actual bridge defect, its TCAD model, various location of defects

in FinFET is explained in details in [5]. Based on the location of the

defects, the whole region of the FinFET model is divided into 10

sub-regions. These sub-regions are considered as different classes

in the extracted data for the ML algorithms. Twenty different

electrical characteristics of the FinFET are considered as feature

set for the learning algorithms. A total of 270 samples with

various electrical features of FinFET are extracted from the I–V

curves of the TCAD simulation.

Besides FinFET, TCAD model of a three-stack GAA-FET struc-

ture with a fixed dimension and a single dislocation defect is

also considered. Within the distribution of defects in the channel

of the nanosheet stacks, 9 sub-regions of defects are considered.

Each sub-region is considered as a class for the learning algo-

rithms. Forty electrical features from the I–V curves of GAA-FET

with introduced defects are recorded where the impact of differ-

ent positions of dislocation defects in GAA-FET are analyzed. The

extracted GAA-FET dataset consists of 90 samples, each contains

40 features extracted from I–V curves to identify defects from all

9 sub-regions. These FinFET and GAA-FET datasets are passed to

LREC in a streaming fashion as shown in Fig. 3.

5.2. Class distribution in semiconductor defect datasets

To get a clearer idea about the challenges associated with the

data distributions of the three datasets utilized in this paper, the

t-SNE plots of their class distribution are pictured in Fig. 4. From

the class distribution of the FinFET dataset (with all 270 samples)

as shown in Fig. 4(a), some observations are as follows: (1) there

exists 10 fault classes, and the number of samples per class is not

equal. Out of 270 samples that are distributed among 10 classes,

both class 4 and class 9 contains 60 samples, whereas class 5 has

only 13 samples; (2) most of the classes are scattered in multiple

clusters; (3) samples from different classes are overlapping with

each other. For instance, most of the samples from class 6 are

overlapping with class 9. A similar phenomenon is also witnessed

among some samples of class 1 and class 4. On the other hand,

the GAA-FET dataset is comparatively smaller as it consists of only

90 samples with 9 dislocation defect classes. From Fig. 4(b), it is

clearly observed that the classes are not overlapping with each

other. However, samples from the same class are not clusters in

the same location. Other than the samples from class 6, samples

of other classes are scattered. In the SECOM dataset (https://

archive.ics.uci.edu/ml/datasets/SECOM), though it contains only 2

classes, the minority class inhabits only 14% of the total samples.

Besides, these minority samples are not clustered in a certain

place. Rather, they are scattered randomly and overlapping with

the majority class samples as shown in Fig. 4(c). Such behaviors

of the above-mentioned datasets pose challenges to the proposed

and benchmark online ML models.

7

KNOSYS: 108818

M.M. Ferdaus, B. Zhou, J.W. Yoon et al. Knowledge-Based Systems xxx (xxxx) xxx

Algorithm 1 LREC

1: Define: Training data (Xn, Tm)=(x1, ..., xn, t1, ..., tm)
2: Predefined thresholds b1, b2 and c1, c2
3: Step 1: Basic structure of LREC
4: procedure Fuzzification
5: for j = 1 to R do
6: Calculation of the leaky ReLU-based MF using Eq. (1)
7: end for
8: end procedure
9: procedure Rule base

10: for j = 1 to R do
11: Calculate consequent part for a rule using Eq. (3)
12: end for
13: Express the IF-THEN fuzzy rule utilizing Eq. (2)
14: end procedure
15: procedure Defuzzification
16: Calculate defuzzified crisp output using Eq. (4)
17: Compute the final decision of LREC using Eq. (5)
18: end procedure
19: Step 2
20: procedure Mechanism of Adding Rules
21: See algorithm 2
22: end procedure
23: procedure Mechanism of Merging Rules
24: See algorithm 3
25: end procedure
26: procedure Adaptation of output weights
27: for j = 1 to R do
28: Update output weights using FWGRLS as described from Eq. (18)-(20)
29: end for
30: end procedure

Algorithm 2 Mechanism of Adding Rules

procedure Mechanism of Adding Rules
2: for j = 1 to R do

Calculate input coherence using Eq. (6)
4: end for

for i = 1 to n do
6: Compute ξ (Xi, Tt) using Eq. (8)

for o = 1 to k do
8: Compute ξ (Hj, To) using Eq. (8)

end for
10: Calculate output coherence using Eq. (7)

end for
12: if Eq. (10) then

Create a new rule
14: else

Accommodated data points of a rule are updated as Nj∗ = Nj∗ + 1
16: Take the next sample and Go to Step 1

end if
18: end procedure

6. Demonstration of online single-pass LREC

An online DNN is implemented using Pytorch, where effect of
Sigmoid, tanh, ReLU and leaky ReLU AFs in the DNN to detect
defects in semiconductors are analyzed. Here, the DNN is a three
hidden layered feed-forward fully connected NN, where each
layer consists of 100 nodes. The DNN code has been written
using python 3.6 and PyTorch 1.10.0. Among different hyper-
parameters of DNN, learning rate and number of epochs have
been tuned to obtain better classification accuracy. For instance,
the learning rate for FinFET dataset is 1 × 10−4 for all four
activation functions. In this dataset, the number of epochs for

Sigmoid activation function is 3000, however, in remaining three
cases, it is 1500. While detecting defects in GAA-FET, the learning
rate of DNN is fixed at 1 × 10−5 and number of epochs is 5000,
except for tanh activation function with 1500 epochs. In SECOM
dataset, the learning rate and number of epochs are 1 × 10−3

and 10 respectively. Since it is an online DNN, the batch size is
1, the utilized optimizer is Adam. Besides, evolving and online
neuro-fuzzy systems with univariate [24] and multivariate Gaus-
sian MF [25] are considered for those defect detection problems.
Also, a popular AF in the deep learning domain called leaky
ReLU is proposed here as a MF for an ENFS called LREC. We
repeated the experiments 5 times for each methods with same

8

KNOSYS: 108818

M.M. Ferdaus, B. Zhou, J.W. Yoon et al. Knowledge-Based Systems xxx (xxxx) xxx

Algorithm 3 Mechanism of Merging Rules

procedure Mechanism of Merging Rules
for i = 1 to R do

3: for o = 1 to k do
Calculate angle between rules using Eq. (11)
Calculate minimum distance between rules using Eq. (12)

6: end for
if Eq. (13) then

Rules are merged
9: end if

end for
end procedure

Fig. 4. t-SNE plots of the class distribution in (a) FinFET, (b) GAA-FET, (c) SECOM.

hyper-parameters setting, and calculate the mean and standard-

deviation for the performances. All these ENFSs are developed in

MATLAB R2016b environment. The computational platform for all

Table 2
Overall classification accuracy in detecting defects in semiconductors (UV:

Uni-variate; MV: Multi-variate).

Online ML models AF/MF Overall accuracy

FinFETa GAA-FETb SECOM

DNN

ReLU 89.26±3.55 76.67±7.24 93.31±0

Leaky-ReLU 89.26±4.01 74.44±6.33 93.31±0

Sigmoid 86.67±0.83 84.44±4.64 93.31±0

tanh 87.41±4.01 77.78±3.93 93.31±0

ENFS

UV Gaussian 88.89±0 72.22±0 90.23±0

MV Gaussian 90.74±0 83.33±0 93.42±0
Leaky-ReLU 94.44±0 94.44±0 91.93±0

aBridge defect.
bDislocation defect.

Table 3
Average classification accuracy in detecting defects in semiconductors (UV:

Uni-variate; MV: Multi-variate).

Online ML models AF/MF Average accuracy

FinFETa GAA-FETb SECOM

DNN

ReLU 85.07±4.11 77.78±6.41 50.00±0

Leaky-ReLU 85.03±4.85 76.30±6.34 50.00±0

Sigmoid 80.83±0.37 86.30±4.65 50.00±0

tanh 83.93±4.71 79.26±3.31 50.00±0

ENFS

UV Gaussian 75.00±0 79.63±0 51.29±0

MV Gaussian 81.67±0 83.33±0 50.00±0

Leaky-ReLU 88.33±0 94.44±0 55.20±0
aBridge defect.
bDislocation defect.

the numerical experiments was an Intel(R) Core(TM) i7-8700 CPU
a 3.2 GHz dual processor and 32.0 GB installed memory.

The overall accuracy’s (testing) for all these algorithms with
three different datasets are shown in Table 2. The overall testing
accuracy indicates the ratio between the predicted and true class
labels during the testing phase. After obtaining such ratio for
individual each class, their average is calculated and tabulated in
Table 3. It has been observed from both Table 2 and Table 3
that online DNNs/ENFS with different AFs/MFs are performing
well and close to each other in detecting defects in both GAA-
FET and FinFET devices. Among various MF in ENFS, it is observed
that multi-variate Gaussian MF is performing better than the
univariate Gaussian MF since multi-variate Gaussian MF can deal
with no-axis parallel data distribution. However, the best results
are witnessed consistently from the proposed Leaky-ReLU MF-
based ENFS called LREC in most cases of all three semiconductor
defect datasets. One clear advantage of the LREC besides having
an autonomous architecture is the requirement of less adapting
parameters. In addition, LREC architecture is not multi-layered.
Such architectural simplicity supports them to perform better
with less data. Both in GAA-FET and FinFET dataset, though the
highest overall and average accuracy is witnessed from our pro-
posed LREC, still some samples are misclassified. The reason

9

KNOSYS: 108818

M.M. Ferdaus, B. Zhou, J.W. Yoon et al. Knowledge-Based Systems xxx (xxxx) xxx

Fig. 5. Learning with less data by showing average overall accuracy for FINFET

dataset.

behind that can be extracted from Fig. 4(a), and (b). In FinFET

dataset, overlaps among samples from class 6 and class 9, and

also in class 5 and class 10 cause some misclassification. Since

the GAAFET dataset has a very few samples to test the LREC,

and samples the scatter randomly as shown in Fig. 4(b), it is also

causing some misclassification.

6.1. Learning with less data

In this subsection, the significance of evolving shallow

architecture-based neuro-fyzzy systems, especially the leaky-

ReLU MF-based classifying defects with less data is analyzed.

Here, the number of training samples is varied from 10% to 80%

of the whole dataset with an increment of 10% for defects in both

the FinFET and GAA-FET devices. Besides, the number of samples

per class are not the same, thus, the imbalance factor is calculated

in both the training and testing phase using,

IBF = 1 − n

N
× min

c=1,...,n
Nc (24)

where n is the number of classes, N is the total number of samples

in training/testing dataset. The value of IBF closer to 1 indicates

a higher imbalance in the dataset. In the training and testing

phase of FinFET, the range of IBF are [0.51–0.69] and [0.5–0.73]

respectively. With the variations in the number of samples in

the training and testing phase of GAA-FET, the range of IBF are

[0.44–0.71] and [0.35–0.58] respectively. A very lower number

of samples per class with varying IBF pose challenges to online

ML models in detecting defects in both the FinFET and GAA-FET

device datasets.

As pointed out earlier, defects occur very rarely in a Fin-

FET device, which makes the collection of such defect data for

ML models challenging. To increase the number of samples of

FinFET’s bridge defect, more data are collected from FinFET’s

TCAD model. From 270 samples of the FinFET’s bridge defect,

a randomly selected varying percentage of total samples are

used to train various learning methods as shown in Fig. 5. In

this figure, the curves are representing the mean value of the

Fig. 6. Learning with less data by showing average overall accuracy for GAA-FET

dataset.

overall accuracy for 10 different runs. Since the FinFET dataset

has a comparatively higher number of samples (270), models

trained with only 27 randomly selected samples are showing

accuracies more than 70% in identifying the location of the bridge

defect while ENFS are used. To be specific, while the training

samples are varied from 10% to 80%, the ranges of mean overall

accuracy for different ENFS varies from 64.2% to 94.44%. Perfor-

mance among various ENFS and DNNs are very close to each

other. Some insights from these results are as follows: (1) multi-

variate Gaussian MF-based ENFSs have some advantages over the

univariate Gaussian MF-based ENFSs in capturing various data

distribution since multi-variate Gaussian MF can accommodate

non-axis parallel data distribution. It has been witnessed during

the experimentation with FinFET dataset in the learning with less

data scenario where better defect detection accuracy is observed

in all cases; (2) utilization of Leaky-ReLU MF in LREC provide com-

paratively better accuracy than both univariate and multi-variate

Gaussian MF-based evolving learning methods; (3) From Fig. 5,

the lower rate of reduction in overall accuracy with the contin-

uous reduction in the number of training samples indicates the

ability of the evolving or online learning algorithms to predict the

defects with less data.

A similar analysis for the GAA-FET’s dislocation defect dataset

is pictured in Fig. 6. In GAA-FET’s dislocation defect dataset, we

have only 90 samples with 40 different features and 9 classes.

Identifying the various location of defects from such a small

dataset is not easy. In contrast with online DNN, the proposed

method operates from scratch with one rule at the beginning.

Afterward, LREC alters its structure in terms of the number of

rules based on the incoming streams of data in a sequential man-

ner. In Tables 2 and 3, randomly selected 80% of the 90 samples

were used to conduct the classification analysis. To evaluate the

effectiveness of shallow evolving learning algorithms in learning

from less data, the number of samples in the training stage has

been reduced from 80% to 10% of total samples as shown in Fig. 6.

When the training samples are decreased from 80% to 60%, the

rate of reduction in accuracy is lower. Within the range between

10% and 40%, the number of samples per class has reduced to

10

KNOSYS: 108818

M.M. Ferdaus, B. Zhou, J.W. Yoon et al. Knowledge-Based Systems xxx (xxxx) xxx

a very lower value, which causes a reduction in classification
accuracy at the testing phase. Among all the ML models, Leaky-
RELU-based ENFS called LREC is performing best at most of the
testing ratios due to its simple and evolving structure with less
parameters.

While detecting a failure in highly imbalanced semiconductor
manufacturing SECOM dataset, the overall accuracy in online
DNN is better or comparable with their ENFS-based variants.
However, from the average accuracy, it has been witnessed that
all the DNNs have failed completely to classify the minority class.
Among the ENFS, the Leaky-ReLU MF-based one can classify few
samples for the minority class in the testing phase and performs
better than the remaining DNN and ENFS-based online ML mod-
els. Such ability of LREC is proving it as a robust classifier for
handling imbalance and multi-class real-world problems with
fewer samples.

The reported results in Table 2 are using testing datasets. We
repeated experiments 5 times for each DNN and ENFS method,
using different weight initialization. We observed that due to ran-
domness in initialization, the DNN models’ performance would
vary a bit, while the ENFS models would not. This shows the
ENFS models ability to quickly converge to the same state. On
the other hand, to verify the proposed classifier’s robustness in
training and testing sets, some results are reported here. In case
of GAA-FET dataset, the training and testing accuracy of LREC
are 97.22% and 94.44% respectively. In DNN with ReLU, these
values are 90.28% and 83.33% respectively, considering one of
the best results. The lower difference between the training and
testing accuracy is discarding the possibility of over-fitting or
under-fitting from these algorithms.

To get an idea about the structural and computational com-
plexity of different online ML models, the number of utilized
rules (in ENFS) or nodes (in DNN) for three different datasets are
summarized in Table 4. Since the DNN has a fixed architecture
with 3 hidden layers and 100 nodes in each layer, the total num-
ber of nodes is always 300. Among various ENFSs, we repeated
experiments for 5 times with different weight initialization for
each method. Since the initial rule is set to 1 in ENFSs, few initial
parameters would not affect the parameters of the final rules.
Uni-variate Gaussian MF-based one generates more rules than its
multi-variate Gaussian and Leaky ReLU MF-based ones. Both the
multi-variate Gaussian and Leaky ReLU MF-based ENFSs generate
only one rule for all the datasets. However, with the same number
of rules, LREC requires less number of learning parameters to
be tuned. Thus, it takes less training time than the multi-variate
Gaussian MF-based variant. For instance, while detecting bridge
defects in FinFET, multi-variate Gaussian MF-based ENFS requires
0.731 s to train, which is only 0.319 s in LREC.

6.2. Ablation study

In this work, we have incorporated the idea of leaky ReLU as
an MF in an ENFS. A clear advantage of leaky ReLU MF-based
ENFS over the univariate or multivariate Gaussian MF is the lower
number of learning parameters. Another recently developed ENFS
with less learning parameter is PALM [32], where hyper-plane MF
has been utilized. However, a tuning parameter called fuzziness
in membership grade in the hyper-plane MF needs to be altered
for different datasets. Besides, the MF has a dependency on true
class labels in calculating the distance. The limitation of depen-
dency on true labels can be mitigated by introducing a recurrent
connection from the network output to input to replace the true
class label in the distance calculation of PALM. However, these
solutions will also have the same MF.

To overcome these limitations, a leaky ReLU MF is introduced
in this work. Unlike the hyperplane MF-based ENFS, in LREC,

Table 4
Number of rules/nodes in detecting defects in semiconductors (UV: Uni-variate;

MV: Multi-variate).

Online ML models AF/MF #Rules/nodes

FinFETa GAA-FETb SECOM

DNN

ReLU 100 100 100

Leaky-ReLU 100 100 100

Sigmoid 100 100 100

tanh 100 100 100

ENFS

UV Gaussian 12±0 11±0 1±0

MV Gaussian 1±0 1±0 1±0

Leaky-ReLU 1±0 1±0 1±0

aBridge defect.
bDislocation defect.

we do not calculate the distance. Rather than hyper-plane, the
distance can be fed to a ReLU-based MF. However, the ReLU
MF-based ENFS is not implemented in this work since ReLU MF
yields zero values of μ, consequently the defuzzified crisp output
will be zero. In this work, we perform an ablation study among
three ENFS-based evolving classifiers namely PALM, rPALM, and
LREC. In this ablation study, the identification of bridge defect
in FinFET is analyzed, where the evolving classifiers are trained
with a various number of samples starting from 27 (10%) to 208
(80%) among 270 samples. By considering the mean of overall
mean accuracy at different training/testing ratios, more than 2.2%
better classification rate is witnessed in LREC than the PALM.
The performance of rPALM is very close to that of LREC, where
a fixed value of Γ is considered in rPALM at different training
scenarios. Some insights from this ablation study are as follows:
(1) in learning with less data, the performance of various ENFS-
based classifiers with less learning parameters are very close to
each other; (2) when the number of training samples increased
from 10% to 80% of the complete set, the classification rate of
LREC is more than 0.6% and 2% higher than rPALM and PALM
respectively.

6.3. Explainability in LREC

The majority of the ML models are considered as a black box
and difficult to interpret. However, an ENFS can be expressed as a
linguistic IF-THEN rule. For instance, first rule in detecting defect
of FinFET can be expressed as follows:

R1 : IF X is close to

(
[1, x1, x2, . . . , x20]

× [4.1827,−0.1291, 2.2296, . . . , 0.0355]T
)
, (25)

THEN y1 = 4.1827 − 0.0.1291x1 + 2.2296x2 + · · · + 0.0355x20

In Eq. (25), the antecedent part is same as in Eq. (1). The con-
sequent part is simply y1 = x1eω, where ω ∈ �(n+1)×1, n is the
number of input dimension. Besides rule-based representation,
the importance of various features has been ranked in LREC
based on their corresponding weights by following the approach
explained in [45]. For instance, in GAA-FET dataset, it has been
witnessed from the ranking of features that feature 25 and 38
are impacting negatively to the model’s classification accuracy
as shown in Fig. 7. However, due to their insignificant impact,
after removing those features, the overall accuracy is still 94.44%.
On the other hand, among 20 features of the FinFET dataset,
the top five important features are 13, 9, 8, 14, and 12 respec-
tively as pictured in Fig. 8. It is also observed that none of the
features of FinFET are impacting negatively. Thus, removing any
features with even a very small weight is also impacting the LREC
adversely and the classification rate is decreasing. Besides the IF-
THEN linguistic rule-based expression, LREC’s ability to analyze
important features is making it a more explainable model.

11

KNOSYS: 108818

M.M. Ferdaus, B. Zhou, J.W. Yoon et al. Knowledge-Based Systems xxx (xxxx) xxx

Fig. 7. Feature weights of various features in GAA-FET dataset.

Fig. 8. Feature weights of various features in FinFET dataset.

7. Experiments under prequential test-then-train protocol

Prequential test-then-train protocol is another popular evalu-
ation mechanism for data stream algorithms. Experiments of our
proposed LREC under such settings have been discussed in this
section.

7.1. Datasets for prequential classifier

The prequential LREC’s performance has been evaluated with
four popular data stream problems namely electricity-pricing,
hyperplane, SEA and weather (https://github.com/ContinualAL/
DEVFNN/tree/master/dataset). Electricity demand fluctuation in
the state of New South Wales (NSW), Australia is described in
the electricity pricing dataset by eight different input features.
This dataset shows non-stationary behavior due to the dynamic
market condition and economic affairs. It contains 45312 sam-
ples, which is partitioned into 91 mini batches. The hyperplane
dataset is obtained from an open source software to analyze
data streams known as Massive Online Analysis (MOA) [46]. It
is a dataset containing four input features, 120 K samples and
partitioned into 240 equal mini batches. SEA is a popular binary
classification problem that contains abrupt drift component due
to three dramatic changes in the class boundary. SEA dataset’s
modified version of Ditzler and Polikar [47] is utilized here, which
exhibits class imbalance and recurring drift behavior varying from
5% to 25% of the minority class. It consists of 100 K artificially
generated data samples that is divided into 200 equal batches.
The weather dataset used here is a daily weather conditions
records from Offutt air force base in Bellevue, Nebraska [47]. It is
a binary classification problem to predict the chances of occurring
rain on the next day using eight different input features. Weather
data, utilized here, contains 18159 samples that is partitioned

Table 5
Performance comparison in prequential test-then-train setting.

Datasets Algorithms CR Precision Recall #Rules

Electricity Pricing

HATa 57± 8.4 0.1 0.15 20

DENa 57± 8.6 0.08 0.16 16

PNNa 59± 3.4 0.35 0.66 78

DSSCNa 68± 13 0.72 0.62 3.58± 1.45

SDEVFNNa 70± 13 0.56 0.9 24

DEVFNNa 70± 13 0.75 0.78 4.24± 2.25

LREC 71.10± 10.14 0.80 0.74 9.77±6.02

Hyperplane

HATa 76.18± 7.82 0.69 0.96 12

DENa 91.14± 3.86 0.91 0.92 8

PNNa 85.55± 5.83 0.11 0.10 42

DSSCNa 91.25± 1.79 0.91 0.91 5.47± 3.23

SDEVFNNa 55.52± 14.2 0.53 0.99 4

DEVFNNa 91.57± 1.76 0.92 0.91 4.73± 1.36

LREC 92.14±1.79 0.92 0.92 1.30±0.59

SEAa

HATa 74.6± 10.1 0.79 0.86 10

DENa 62.9± 7.7 0.63 0.99 6

PNNa 83.2± 6.3 0.85 0.73 33

DSSCNa 91.5± 4.09 0.92 0.95 10.29± 4.09

SDEVFNNa 91.1± 6.05 0.9 0.95 9

DEVFNNa 91.7± 5 0.95 0.92 4.36± 1.08

LREC 92.88±5.58 0.95 0.93 4.72±2.25

Weather

HATa 67.36± 8.27 0.008 0.027 20

DENa 68.46± 5.16 0 0 10

PNNa 68.7± 1.18 0.3 0.93 78

DSSCNa 80± 2 0.71 0.59 5.08± 2.9

SDEVFNNa 68± 1.23 0.51 0.97 24

DEVFNNa 80± 3.75 0.90 0.83 4.7± 1.6

LREC 80.88±4.23 0.90 0.85 2.58±1.02

SEAg

HAT – – – –

DEN – – – –

PNN – – – –

DSSCN 87.96± 0.86 0.81 0.88 11.53± 4.40

SDEVFNN – – – –

DEVFNN 86.67± 0.77 0.81 0.84 5.18± 1.49

LREC 88.84±0.98 0.83 0.88 1±0.00

aReproduced from [21].

into 36 small batches. In all datasets, these mini batches are
passed to the learning algorithms in a streaming fashion without
changing the data order. The reported results for all these datasets
are the average value across all mini batches.

7.2. Evaluation metrics and baselines

The performance metrics used in this paper are as follows:
overall classification rate (CR), precision, recall and number of
fuzzy rules. Classification performance of our proposed LREC is
compared with some prominent and recently developed contin-
ual learning algorithms such as HAT [48], DEN [49], PNN [50],
DSSCN [20], static DEVFNN (SDEVFNN) [21] and DEVFNN [21].
Among these algorithms, HAT [48], DEN [49], PNN [50] are deep
architecture equipped with self constructive hidden nodes. How-
ever, they have a static number of layers. Unlike them, DSSCN [20]
and DEVFNN [21] have an adaptive network depth. However, due
to utilization of multivariate Gaussian MF, they require to adapt
the parameters associated with that MF.

7.3. Results and discussion

In this work, the results are listed and analyzed by comparing
the proposed model with baselines. In all datasets, small batches
are streamed to all the algorithms, where they were tested first
to evaluate their generalization performance before being trained.
The overall classification performance in terms of the mean and
standard deviation of the classification rate (CR), number of fuzzy
rules, mean of precision and recall are recorded in Table 5. High-
lighted bold values are indicating the best results. Among all the

12

KNOSYS: 108818

M.M. Ferdaus, B. Zhou, J.W. Yoon et al. Knowledge-Based Systems xxx (xxxx) xxx

Table 6
Sensitivity analysis for LREC considering rule growing thresholds.

Parameters CR #Rules Precision Recall

b1 b2

0.80 0.2 92.85 5.54 0.95 0.93

0.85 0.2 92.86 5.06 0.95 0.93

0.86 0.2 92.82 4.53 0.95 0.93

0.87 0.2 92.83 4.50 0.95 0.93

0.88 0.2 92.83 4.50 0.95 0.93

0.89 0.2 92.83 4.50 0.95 0.93

0.90 0.2 92.81 4.28 0.95 0.93

0.85 0.17 92.86 5.06 0.95 0.93

0.85 0.18 92.86 5.06 0.95 0.93

0.85 0.19 92.86 5.06 0.95 0.93

0.85 0.21 92.89 5.49 0.95 0.94

0.85 0.22 92.86 4.57 0.95 0.93

0.85 0.23 92.88 4.79 0.95 0.93

models, the better performance is witnessed from our proposed
LREC in most of the cases.

The summary of the recorded results in Table 5 can be stated
as follows: in an electricity-pricing dataset, worse results are
obtained from HAT, DEN, and PNN. Though these algorithms can
adapt their nodes, due to a static layer, they performed poorly in
dealing with non-stationary streams of mini-batches. Though the
CR is better in SDEVFNN, due to a static network, its performance
deteriorated as witnessed by the low precision value of 0.56.
Among six baselines, having fully adaptive nodes and layers,
DSSCN and DEVFNN perform better than others. However, the
best results are obtained from the proposed model. Besides hav-
ing a fully evolving architecture, the requirement of less learning
parameters in contrast with fully evolving baselines support it to
achieve such performance. To be specific, we have used leaky-
ReLU-based MF, which has no associated learning parameters,
thus, computational complexity is reduced. Having a static struc-
ture, SDEVFNN fails to deal with the drift that occurs in the
hyperplane dataset, thus, a lower CR and precision is witnessed.
Having a partial and fully evolving structure, other baselines’
performance is satisfactory in this dataset and the best result is
also witnessed from LREC. Similar findings have been observed in
other the two datasets. In short, to deal with this non-stationary
and imbalanced binary classification problem, our proposed LREC
performs better in terms of classification rate and precision with
a comparable recall value in a prequential test-then-protocol.
Requirement of less learning parameters along with its evolving
architecture support it to attain better performance than the
state-of-the-art baselines.

7.4. Robustness against parameter sensitivity

To evaluate the robustness of the proposed method against
variation in the rule-growing threshold, the SEA dataset with
abrupt drift has been considered. During experimentation, it has
been observed that for both b1 and b2, a lower value adds more
rules and vice-versa. To investigate this phenomenon, we ana-
lyzed the sensitivity of b1 and b2 using the SEA dataset with the
same settings as described in Section 7.1. Initially, we varied from
0.80 to 0.90 by keeping the b2 fixed at 0.2. Afterward, b2 is varied
between 0.17 to 0.23 with an increment of 0.01. In this case,
the value of b1 is maintained at 0.85. As a performance metric
to evaluate the sensitivity, we utilized CR, the number of rules,
precision and recall, which are recorded in Table 6 for the above-
described values of b1 and b2. All values are presented as the
mean of all the mini-batches. In all cases, the mean precision
is fixed at 0.95 and the mean recall range is from 0.93 to 0.94.
The mean values for the number of rules are varying from 4.28
to 5.54, whereas the overall classification rates mean values are

varying insignificantly between 92.81 to 92.89. Insignificant vari-

ations in different metrics against different values of rule-growing

thresholds are declaring LREC’s robustness parameter sensitivity.

8. Conclusions

Traditionally deployed ML-based defect detectors operate in

batch mode demanding a significant amount of labeled data and

having a static structure. Such features impede their real-time

deployment in the defect analysis of the nano-scaled transistors.

In such nano-scaled devices, faults are mostly non-visible, which

makes these faults very difficult for human experts to detect.

To mitigate all these limitations of defect analysis techniques, a

leaky-ReLU MF-based online ENFS called LREC is developed here,

and compared with various MF/AF-based online ENFS and DNN to

detect locations of the bridge defect in a FinFET and dislocation

defect in a GAA-FET device. Some desirable features of LREC

in detecting such defects are its online learning capability with

evolving structure, simplicity in structure in terms of fewer learn-

ing parameters through the utilization of leaky-ReLU MF. These

features support LREC to achieve a better classification rate than

benchmark online ENFSs and DNNs with less data as observed

experimentally in this work. Finally the proposed algorithm has

been evaluated by the popular prequential test-then-train mecha-

nism with four benchmark data stream problems. By maintaining

the same settings, its performance has been compared with six

popular data stream handling baselines. The best classification

performance is also witnessed from the proposed LREC due to the

above-mentioned benefits.

CRediT authorship contribution statement

Md Meftahul Ferdaus: Methodology, Software, Validation,

Formal analysis, Data curation, Writing – original draft, Visualiza-

tion. Bangjian Zhou: Validation, Data curation, Writing – review

& editing. Ji Wei Yoon: Formal analysis, Visualization, Writing –

review & editing. Kain Lu Low: Investigation, Writing – review &

editing. Jieming Pan: Investigation, Writing – review & editing.

Joydeep Ghosh: Visualization, Writing – review & editing. Min
Wu: Conceptualization, Resources, Writing – review & editing. Xi-
aoli Li: Conceptualization, Resources, Writing – review & editing,

Funding acquisition. Aaron Voon-Yew Thean: Resources, Writing

– review & editing, Project administration, Funding acquisition. J.
Senthilnath: Conceptualization, Supervision, Writing – original

draft, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared

to influence the work reported in this paper.

Acknowledgment

This study is supported by the Accelerated Materials Devel-

opment for Manufacturing Program at A*STAR via the AME Pro-

grammatic Fund by the Agency for Science, Technology and Re-

search under Grant No. A1898b0043.

References

[1] Y. Wang, Z. Wei, J. Yang, Feature trend extraction and adaptive density

peaks search for intelligent fault diagnosis of machines, IEEE Trans. Ind.

Inf. 15 (1) (2018) 105–115.

[2] J. Long, S. Zhang, C. Li, Evolving deep echo state networks for intelligent

fault diagnosis, IEEE Trans. Ind. Inf. 16 (7) (2019) 4928–4937.

13

KNOSYS: 108818

M.M. Ferdaus, B. Zhou, J.W. Yoon et al. Knowledge-Based Systems xxx (xxxx) xxx

[3] N. Loubet, T. Hook, P. Montanini, C.-W. Yeung, S. Kanakasabapathy, M.

Guillom, T. Yamashita, J. Zhang, X. Miao, J. Wang, et al., Stacked nanosheet

gate-all-around transistor to enable scaling beyond FinFET, in: 2017

Symposium on VLSI Technology, IEEE, 2017, pp. T230–T231.

[4] J. Pan, K.L. Low, J. Ghosh, S. Jayavelu, M.M. Ferdaus, S.Y. Lim, E. Zamburg, Y.

Li, B. Tang, X. Wang, et al., Transfer learning-based artificial intelligence-

integrated physical modeling to enable failure analysis for 3 nanometer

and smaller silicon-based CMOS transistors, ACS Appl. Nano Mater. 4 (7)

(2021) 6903–6915.

[5] C.-W. Teo, K.L. Low, V. Narang, A.V.-Y. Thean, TCAD-Enabled machine learn-

ing defect prediction to accelerate advanced semiconductor device failure

analysis, in: 2019 International Conference on Simulation of Semiconductor

Processes and Devices, SISPAD, IEEE, 2019, pp. 1–4.

[6] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, G. Zhang, Learning under concept

drift: A review, IEEE Trans. Knowl. Data Eng. 31 (12) (2018) 2346–2363.

[7] Y. Song, G. Zhang, H. Lu, J. Lu, A self-adaptive fuzzy network for prediction

in non-stationary environments, in: 2018 IEEE International Conference on

Fuzzy Systems, FUZZ-IEEE, IEEE, 2018, pp. 1–8.

[8] N. Anh, S. Suresh, M. Pratama, N. Srikanth, Interval prediction of wave

energy characteristics using meta-cognitive interval type-2 fuzzy inference

system, Knowl.-Based Syst. 169 (2019) 28–38.

[9] C. Za’in, M. Pratama, E. Pardede, Evolving large-scale data stream analytics

based on scalable PANFIS, Knowl.-Based Syst. 166 (2019) 186–197.

[10] T.T. Ademujimi, M.P. Brundage, V.V. Prabhu, A review of current machine

learning techniques used in manufacturing diagnosis, in: IFIP International

Conference on Advances in Production Management Systems, Springer,

2017, pp. 407–415.

[11] B. Li, T. Han, F. Kang, Fault diagnosis expert system of semiconductor

manufacturing equipment using a Bayesian network, Int. J. Comput. Integr.

Manuf. 26 (12) (2013) 1161–1171.

[12] C. Wang, F.R. Lizana, Z. Li, A.V. Peterchev, S.M. Goetz, Submodule short-

circuit fault diagnosis based on wavelet transform and support vector

machines for modular multilevel converter with series and parallel con-

nectivity, in: IECON 2017-43rd Annual Conference of the IEEE Industrial

Electronics Society, IEEE, 2017, pp. 3239–3244.

[13] K.B. Lee, S. Cheon, C.O. Kim, A convolutional neural network for fault

classification and diagnosis in semiconductor manufacturing processes,

IEEE Trans. Semicond. Manuf. 30 (2) (2017) 135–142.

[14] B. Das, J.V. Reddy, Fuzzy-logic-based fault classification scheme for digital

distance protection, IEEE Trans. Power Deliv. 20 (2) (2005) 609–616.

[15] T. Dam, M.M. Ferdaus, S.G. Anavatti, S. Jayavelu, H.A. Abbass, Does

adversarial oversampling help us? in: Proceedings of the 30th ACM

International Conference on Information & Knowledge Management, 2021,

pp. 2970–2973.

[16] B. Su, H. Chen, Z. Zhou, BAF-Detector: An efficient CNN-based detector for

photovoltaic cell defect detection, IEEE Trans. Ind. Electron. (2021).

[17] K. Su, J. Liu, H. Xiong, Hierarchical diagnosis of bearing faults using branch

convolutional neural network considering noise interference and variable

working conditions, Knowl.-Based Syst. 230 (2021) 107386.

[18] Z. Pan, Y. Wang, X. Yuan, C. Yang, W. Gui, A classification-driven

neuron-grouped SAE for feature representation and its application to fault

classification in chemical processes, Knowl.-Based Syst. 230 (2021) 107350.

[19] M. Pratama, W. Pedrycz, E. Lughofer, Evolving ensemble fuzzy classifier,

IEEE Trans. Fuzzy Syst. 26 (5) (2018) 2552–2567.

[20] M. Pratama, D. Wang, Deep stacked stochastic configuration networks for

lifelong learning of non-stationary data streams, Inform. Sci. 495 (2019)

150–174.

[21] M. Pratama, W. Pedrycz, G.I. Webb, An incremental construction of deep

neuro fuzzy system for continual learning of nonstationary data streams,

IEEE Trans. Fuzzy Syst. 28 (7) (2019) 1315–1328.

[22] M. Pratama, J. Lu, S. Anavatti, E. Lughofer, C.-P. Lim, An incremental meta-

cognitive-based scaffolding fuzzy neural network, Neurocomputing 171

(2016) 89–105.

[23] P. Angelov, D. Filev, Simpl_ets: A simplified method for learning evolving

takagi-sugeno fuzzy models, in: The 14th IEEE International Conference on

Fuzzy Systems, 2005. FUZZ’05, IEEE, 2005, pp. 1068–1073.

[24] P.P. Angelov, D.P. Filev, An approach to online identification of Takagi-

Sugeno fuzzy models, IEEE Trans. Syst. Man Cybern. B 34 (1) (2004)

484–498.

[25] M. Pratama, S.G. Anavatti, E. Lughofer, GENEFIS: Toward an effective

localist network, IEEE Trans. Fuzzy Syst. 22 (3) (2014) 547–562.

[26] C.-H. Tu, C. Li, Multitarget prediction using an aim-object-based asymmet-

ric neuro-fuzzy system: A novel approach, Neurocomputing 389 (2020)

155–169.

[27] M. Pratama, S.G. Anavatti, P.P. Angelov, E. Lughofer, PANFIS: A Novel

incremental learning machine, IEEE Trans. Neural Netw. Learn. Syst. 25

(1) (2013) 55–68.

[28] H. He, et al., Applications of Reference Cycle Building and K-Shape

Clustering for Anomaly Detection in the Semiconductor Manufacturing

Process (Ph.D. thesis), Massachusetts Institute of Technology, 2018.

[29] O. Makhlouk, Time Series Data Analytics: Clustering-Based Anomaly Detec-

tion Techniques for Quality Control in Semiconductor Manufacturing (Ph.D.

thesis), Massachusetts Institute of Technology, 2018.

[30] T. Chen, et al., Anomaly Detection in Semiconductor Manufacturing

Through Time Series Forecasting Using Neural Networks (Ph.D. thesis),

Massachusetts Institute of Technology, 2018.

[31] J. Kim, Y. Nam, M.-C. Kang, K. Kim, J. Hong, S. Lee, D.-N. Kim, Adversarial

defect detection in semiconductor manufacturing process, IEEE Trans.

Semicond. Manuf. 34 (3) (2021) 365–371.

[32] M.M. Ferdaus, M. Pratama, S.G. Anavatti, M.A. Garratt, PALM: AN incre-

mental construction of hyperplanes for data stream regression, IEEE Trans.

Fuzzy Syst. 27 (11) (2019) 2115–2129.

[33] E. Lughofer, J.-L. Bouchot, A. Shaker, On-line elimination of local

redundancies in evolving fuzzy systems, Evol. Syst. 2 (3) (2011) 165–187.

[34] J. Senthilnath, A. Kumar, A. Jain, K. Harikumar, M. Thapa, S. Suresh, G.

Anand, J.A. Benediktsson, BS-McL: Bilevel segmentation framework with

metacognitive learning for detection of the power lines in UAV imagery,

IEEE Trans. Geosci. Remote Sens. 60 (2022) 1–12.

[35] W. Zou, C. Li, N. Zhang, A TS fuzzy model identification approach based

on a modified inter type-2 FRCM algorithm, IEEE Trans. Fuzzy Syst. 26 (3)

(2017) 1104–1113.

[36] M. Pratama, S.G. Anavatti, M. Joo, E.D. Lughofer, pClass: an effective

classifier for streaming examples, IEEE Trans. Fuzzy Syst. 23 (2) (2014)

369–386.

[37] R.-F. Xu, S.-J. Lee, Dimensionality reduction by feature clustering for

regression problems, Inform. Sci. 299 (2015) 42–57.

[38] J.-Y. Jiang, R.-J. Liou, S.-J. Lee, A fuzzy self-constructing feature clustering

algorithm for text classification, IEEE Trans. Knowl. Data Eng. 23 (3) (2011)

335–349.

[39] M. Pratama, P.P. Angelov, E. Lughofer, M.J. Er, Parsimonious random vector

functional link network for data streams, Inform. Sci. 430 (2018) 519–537.

[40] P. Mitra, C. Murthy, S.K. Pal, Unsupervised feature selection using feature

similarity, IEEE Trans. Pattern Anal. Mach. Intell. 24 (3) (2002) 301–312.

[41] C.-H. Kim, M.-S. Kim, Incremental hyperplane-based fuzzy clustering for

system modeling, in: 33rd Annual Conference of the IEEE Industrial

Electronics Society, 2007. IECON 2007, IEEE, 2007, pp. 614–619.

[42] D.J. MacKay, BayesIan interpolation, Neural Comput. 4 (3) (1992) 415–447.

[43] C. Blake, UCI Repository of Machine Learning Databases, University of

California, Department of Information and Computer Science, 1998, http:

//www.ics.uci.edu/~{}mlearn/mlrepository.html.

[44] T.C. Wei, V. Narang, A. Thean, Electrical characterization of FEOL bridge

defects in advanced nanoscale devices using TCAD simulations, in: 2018

IEEE International Symposium on the Physical and Failure Analysis of

Integrated Circuits, IPFA, IEEE, 2018, pp. 1–4.

[45] M. Robnik-Šikonja, I. Kononenko, Theoretical and empirical analysis of

relieff and rrelieff, Mach. Learn. 53 (1–2) (2003) 23–69.

[46] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen, T. Seidl,

Moa: Massive online analysis, a framework for stream classification and

clustering, in: Proceedings of the First Workshop on Applications of Pattern

Analysis, PMLR, 2010, pp. 44–50.

[47] G. Ditzler, R. Polikar, Incremental learning of concept drift from streaming

imbalanced data, IEEE Trans. Knowl. Data Eng. 25 (10) (2012) 2283–2301.

[48] J. Serra, D. Suris, M. Miron, A. Karatzoglou, Overcoming catastrophic

forgetting with hard attention to the task, in: International Conference

on Machine Learning, PMLR, 2018, pp. 4548–4557.

[49] J. Yoon, E. Yang, J. Lee, S.J. Hwang, Lifelong learning with dynamically

expandable networks, 2017, arXiv preprint arXiv:1708.01547.

[50] A.A. Rusu, N.C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K.

Kavukcuoglu, R. Pascanu, R. Hadsell, Progressive neural networks, 2016,

arXiv preprint arXiv:1606.04671.

14

