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ABSTRACT

Anomaly detection techniques are very crucial in multiple

business applications, such as cyber security, manufactur-

ing and finance. However, developing anomaly detection

methods for high-dimensional data with high speed and good

performance is still a challenge. Generative Adversarial

Networks (GANs) are able to model the complex high-

dimensional data, but they still require large computation

in inference stage. This paper proposes an efficient method,

known as Mahalanobis Distance-based Adversarial Network

(MDAN), for anomaly detection. The proposed MDAN

models the data using generative adversarial network (GAN)

and detects anomalies by using the Mahalanobis distance.

The proposed MDAN outperforms conventional GAN-based

methods considerably and has a higher inference speed, when

applied to several tabular and image datasets.

Index Terms— Anomaly Detection, Mahalanobis Dis-

tance, Generative Adversarial Network

1. INTRODUCTION

Anomaly detection refers to the identification of rare obser-

vations which have significant difference from majority data.

Due to its practicality, anomaly detection techniques are im-

portant in various applications, such as cyber-intrusion detec-

tion [1], industrial damage detection [2], fraud detection [3],

unusual urban traffic flow detection [4], medical anomaly de-

tection, and video surveillance [5]. All these applications are

required to determine whether a new sample belongs to the

same existing distribution of normal data, or should be con-

sidered an anomaly. This problem cannot be solved by tradi-

tional supervised classification methods, because the amount

of anomalies is insufficient to be effectively modeled and new

emerging anomalies will appear. Therefore, the anomaly de-

tection is usually considered to be an unsupervised one-class

classification problem, which is solved by training the model

based solely on the normal samples.
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The existing anomaly detection models can be categorized

into three categories according to anomaly score calculation

method: 1) boundary-based methods; 2) density-based meth-

ods; and 3) reconstruction-based methods. Boundary-based

methods attempt to learn a classification boundary around

the normal data, such as one class support vector machine

(OC-SVM) [6]. Density-based methods utilize the relation

between a sample and its neighbors. A sample is identified

as an anomaly if its density is relatively lower than that of

its neighbors or it needs more steps to separate from group.

The third class of methods utilizes reconstruction error to

determine whether a sample is anomalous. For example,

auto-encoder (AE) [7] trains a network to reconstruct normal

data and identifies anomalies if samples can not be recon-

structed well. Deep Autoencoding Gaussian Mixture Model

(DAGMM) [8] is another representative method.

Recently, the generative adversarial network (GAN),

which is a well-studied deep learning framework, has been

used for anomaly detection [5]. For example, [9] proposed

a standard GAN-based method for anomaly detection on eye

images. However, this method requires a computationally-

expensive inference procedure to recover latent space fea-

tures for each testing sample. The authors in [10] proposed

an adversarially-learned anomaly detection (ALAD) method

based on bi-directional GANs [11, 12]. ALAD trains an en-

coder network to recover latent space features, and thus its

inference procedure is much more efficient than [9].

In this work, we propose a Mahalanobis Distance-based

Adversarial Network (MDAN) for anomaly detection. Sim-

ilar to ALAD [10], we also use an encoder to learn the la-

tent low-dimensional features for the input data. We further

simplify ALAD’s bi-directional GAN structure and design

new loss functions during the training process. In the infer-

ence phase, we directly measure the Mahalanobis distance of

learned low-dimensional features to the normal distribution as

anomaly score. As such, MDAN can boost the performance

for anomaly detection, and also improve the efficiency in both

training and inference stages. Experimental results on high-

dimensional tabular and image datasets also demonstrate that

our proposed MDAN approach is efficient and effective.
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Fig. 1. (a) Structure of ALAD and (b) Training structure of MDAN.

2. METHOD

In this section, we first briefly elaborate the overall idea of

GAN-based anomaly detection. We then present our pro-

posed MDAN method. After that, we introduce the GAN

architecture in MDAN for training in Section 2.2 and the

anomaly inference in Section 2.3.

2.1. GAN and BiGAN

The standard GAN consists of two models, namely genera-

tor and discriminator. The generator aims to model the data

distribution by mapping a random sample from latent space

to the input data space. The discriminator aims to distinguish

the real input data and fake data generated by the generator.

Let’s denote the generator and discriminator as G and D, the

distributions for latent space and input data space as pz and

pdata. The adversarial learning process will learn both the

generator G and discriminator D simultaneously through a

min-max game below.

min
G

max
D

Ex∼pdata
[logD(x)]

+ Ez∼pz
[log(1−D(G(z))] (1)

BiGAN [11] and AliGAN [12] provide an additional en-

coder to invert data space to latent space. Hence, we can

leverage such an architecture to extract feature and reduce di-

mensionality for the input data. We denote the encoder as E.

Then, the generator G, discriminator D and encoder E can be

similarly learned by optimizing the objective function below.

min
G,E

max
D

Ex∼pdata
[logD(x,E(x))]

+ Ez∼pz [log(1−D(G(z), z)] (2)

Recently, GANs have been employed for anomaly de-

tection and achieved notable results [13]. For example,

AnoGAN [9] uses the standard GAN for anomaly detection,

while ALAD [10] detects anomalies based on BiGAN.

2.2. GAN architecture in MDAN

In this paper, we also leverage BiGAN for anomaly detec-

tion. Figure 1(a) shows the structure of the existing ALAD

method, while Figure 1(b) shows the structure of our pro-

posed MDAN. As shown in Figure 1(a), ALAD utilizes two

additional discriminators Dxx and Dzz . In particular, the ad-

versarial loss of generator from the discriminators Dxx and

Dzz is considered as the cycle consistency loss in ALAD to

stabilize the training.

In MDAN, we removed these two discriminators Dxx and

Dzz to speed up the training process. Correspondingly, we

also need to update the the cycle consistency loss to stabi-

lize the training. The generator G should invert encoder E
theoretically (i.e., G(E(x)) ≈ x). However, the real situa-

tion is that the model often does not coverage to the saddle

point when training in practice. To address this issue, we use

the reconstruction errors for both x and z in MDAN as the

the cycle consistency loss, which are calculated using mean

square error in Equations 3 and 4.

lossrecx = mean((x−G(E(x)))2) (3)

lossrecz = mean((z − E(G(z)))2) (4)

As such, our generator loss is then updated in Equation 5

by including the above reconstruction losses.

lossgen = lossadv + lossrecx + lossrecz , (5)

where the adversarial loss lossadv of generator from the

discriminator Dxz is calculated by using cross entropy in

Equation 6.

lossadv =
1

N

N∑
n=1

−log(D(G(zn), zn)). (6)

The above encoder E, generator G and the discriminator

D can be trained using Adam in two stages. First, we train the

 



discriminator to distinguish the true samples from the gen-

erated fake samples. Second, we train the encoder and the

generator so as to fool the discriminator with its generated

samples. As the learned encoder E can invert the generator G
and thus E(x) can serve as a useful feature representation for

input sample x. Next, we will show the anomaly inference in

MDAN based on E(x).

2.3. Anomaly detection in MDAN

ALAD utilizes the discriminator Dxx to calculate the anomaly

score, which also requires encoder and generator to help. We

found that the discriminator Dzz in ALAD can also be used

to calculate the anomaly score. The input of Dzz is either ran-

dom variable from standard normal distribution or E(G(z))
during training. It makes the output of encoder E obey nor-

mal distribution approximately.

To further speed up the inference procedure, we propose

to leverage only the encoder for anomaly detection. In par-

ticular, we calculate the Mahalanobis distance of E(x) to

the multivariate normal distribution as the anomaly score as

shown in Figure 2.

Fig. 2. Inference structure of MDAN.

The Mahalanobis distance is a measure of the distance

between a point and a distribution. It can be formulated as:

D(z) =
√
(z − μ)TS−1(z − μ) (7)

where S is the covariance matrix and μ is mean of the multi-

variate normal distribution. In this case, we use multivariable

standard normal distribution N(0, 1) to generate random sam-

ple z when training the model. Here, S will become an iden-

tity matrix and μ will be a zero matrix. So the Mahalanobis

distance becomes:

D(z) =
√
zT z (8)

Concretely, having trained a model on the normal data to pro-

vide E, G and D, we define an anomaly score function based

on the Mahalanobis distance and standard normal distribu-

tion:

D(z) =
√

E(x)TE(x) (9)

The E(x) of normal data should obey the normal distribu-

tion and its Mahalanobis distance is supposed to be small. If

E(x) does not obey the normal distribution, its Mahalanobis

distance should be larger than the normal ones, and thus it can

be detected as an anomaly.

3. EXPERIMENTS

3.1. Experimental setup

We evaluate the proposed MDAN on public tabular and image

datasets. For the tabular data, we adopt the widely used KDD-

Cup99 10% dataset [14] which is a network intrusion dataset.

For image datasets, we leverage the SVHN dataset [15] con-

taining numbers from 0 to 9, and the CIFAR-10 dataset [16]

that have 6 kinds of animals and 4 kinds of transportation.

Figure 3 and Figure 4 show some samples of these two image

datasets. To quantify the performance of the model, we use

the criteria of Precision, Recall, and F1 score for the KDD99

dataset and the criterion of area under ROC (AUROC) for

the image datasets. This setting is the same as [10] for fair

comparison. Experiments are conducted with Tensorflow run-

ning on GPU. The machine for experiments is a workstation

with Intel Core i9-7920X CPU, 128G memory, 4TB SSD and

Nvidia GeForce GTX 1080Ti.

Fig. 3. Sample data in SVHN.

Table 1. Statistics of the public benchmark datasets

Dataset Features Total Instance

KDD99 121 494021

SVHN 3072 99289

CIFAR-10 3072 60000

To verify the performance of the proposed approach,

we have compared the performance of the proposed method

with the following reference algorithms: One Class Sup-

port Vector Machine (OC-SVM) [6], Isolation Forest (IF)

[17], Deep Structured Energy Based Model (DSEBM) [18],

Deep Autoencoding Gaussian Mixture Model (DAGMM) [8],
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Fig. 4. Sample data in CIFAR-10.

AnoGAN [9], and Adversarially Learned Anomaly Detection

(ALAD) [10].

3.2. Result and Discussion

We report results in Table 2 on the tabular data and Table 3

on the image data. It can be found that our method is com-

petitive with baseline methods. Results for other methods ex-

cept MDAN on KDD99, SVHN and CIFAR-10 were obtained

from [10]. Results for MDAN on KDD99 are averaged over

10 runs and results for MDAN on SVHN and CIFAR-10 are

averages over all tasks over 3 runs, which is the same as [10].

Table 2. Performance on the tabular dataset
Dataset Model Precision Recall F1 score

KDD99

OC-SVM 0.7457 0.8523 0.7954

IF 0.9216 0.9373 0.9294

DSEBM-r 0.8521 0.6472 0.7328

DSEBM-e 0.8619 0.6446 0.7399

DAGMM 0.9297 0.9442 0.9369

AnoGAN 0.8786 0.8297 0.8865

ALAD 0.9427 0.9577 0.9501

MDAN 0.9472 0.9623 0.9547

As show in Table 2 and Table 3, the proposed MDAN

outperforms all other methods on the KDDCup99 10% and

SVHN datasets. And MDAN is quite competitive on the

CIFAR-10 dataset. Specifically, on the SVHN dataset, GAN-

based methods including AnoGAN, ALAD and MDAN

perform better than other methods, which indicates the ef-

fectiveness of GAN-based solutions for anomaly detection.

Moreover, MDAN significantly improves on AUROC by

around 7.51% compared with the second best method, i.e.,

ALAD. On the CIFAR-10 dataset, the performance of MDAN

is close to ALAD and better than other methods. Besides, the

variance of MDAN is the lowest, which means MDAN is

more stable.

The performance of ALAD is quite competitive and sim-

ilar to MDAN. So we also compare the speed of these two

Table 3. Performance on the image datasets

Dataset Model AUROC

SVHN

OC-SVM 0.5027± 0.0132
IF 0.5163± 0.0120

DSEBM-r 0.5290± 0.0129
DSEBM-e 0.5240± 0.0067
AnoGAN 0.5410± 0.0193

ALAD 0.5753± 0.0268
MDAN 0.6185± 0.0516

CIFAR-10

OC-SVM 0.5843± 0.0956
IF 0.6025± 0.1040

DSEBM-r 0.6071± 0.1007
DSEBM-e 0.5956± 0.1151
AnoGAN 0.5949± 0.1076

ALAD 0.6072± 0.1201
MDAN 0.6035± 0.0512

Table 4. Training and inference time comparison

Dataset Model
Training

(second per epoch)

Inference

(second)

KDD99
ALAD 64.74 7.52

MDAN 29.12 2.47

SVHN
ALAD 10.27 6.63

MDAN 6.11 2.23

CIFAR-10
ALAD 13.64 3.30

MDAN 5.34 1.16

methods. Table 4 presents the training time and inference

time of MDAN and ALAD on different datasets over 10 runs.

Training time is measured per epoch on the entire training

data and inference time is counted on the entire test data. We

can find that MDAN trains model 2 times faster than ALAD,

because ALAD has three discriminators and MDAN only has

one. During testing, MDAN maps high-dimensional data to

low-dimensional features using encoder and detects anoma-

lies by the simplified Mahalanobis distance. While, ALAD

uses a discriminator to extract features from the output of

encoder and generator and calculates reconstruction error in

feature space. Compared to ALAD, MDAN reduces the com-

putation of the inference procedure and speeds up around 3

times.

4. CONCLUSION

In this paper, we proposed a Mahalanobis distance-based ad-

versarial network method MDAN for anomaly detection. It

utilizes BiGAN to train the encoder for feature extraction and

dimension reduction. Then, it detects anomalies by calculat-

ing the Mahalanobis distance of the encoder’s output to the

normal distribution. The experiment on both tabular data and

image data shows that MDAN is both efficient and effective,

when compared to conventional GAN-based methods.
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