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Protein-protein interaction (PPI) networks play an important role in studying the functional roles of pro-
teins, including their association with diseases. However, protein interaction networks are not sufficient
without the support of additional biological knowledge for proteins such as their molecular functions and
biological processes. To complement and enrich PPI networks, we propose to exploit biological properties
of individual proteins. More specifically, we integrate keywords describing protein properties into the PPI
network, and construct a novel PPI-Keywords (PPIK) network consisting of both proteins and keywords as
two different types of nodes. As disease proteins tend to have a similar topological characteristics on the
PPIK network, we further propose to represent proteins withmetagraphs. Different from a traditional net-
work motif or subgraph, a metagraph can capture a particular topological arrangement involving the
interactions/associations between both proteins and keywords. Based on the novel metagraph represen-
tations for proteins, we further build classifiers for disease protein classification through supervised
learning. Our experiments on three different PPI databases demonstrate that the proposed method con-
sistently improves disease protein prediction across various classifiers, by 15.3% in AUC on average. It
outperforms the baselines including the diffusion-based methods (e.g., RWR) and the module-based
methods by 13.8–32.9% for overall disease protein prediction. For predicting breast cancer genes, it out-
performs RWR, PRINCE and the module-based baselines by 6.6–14.2%. Finally, our predictions also turn
out to have better correlations with literature findings from PubMed.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Studying disease-causing genes and their protein products is
critical to the diagnosis and treatment of serious diseases such as
cancer and diabetes. Despite recent advances in identifying the
functions of genes and proteins [1–6], it still remains a challenging
research issue to understand their interactions and pathways in
the context of many diseases.

In order to decipher how proteins work together, protein-protein
interaction (PPI) networks [7–9] have been widely exploited. Sev-
eral studies [10,11] have demonstrated that the locality of a pro-
tein in a PPI network is not random. Rather, proteins with the
same phenotype or function tend to exhibit common topological
characteristics in a PPI network, including the degree, coreness,
and closeness. Given such characteristics, PPI networks could be
instrumental towards predicting the associations between proteins
and diseases [12].
In this paper, we study the problem of disease protein predic-
tion1 exploiting network-based representations. Network-based
approaches in this area generally fall into one of the three categories:
linkage, module and diffusion-based methods [13]. Linkage methods
are based on the assumption that the direct neighbors of a disease
protein in a PPI network tend to be associated with the same disease.
In particular, they focus on genomic linkage intervals [14–16]. If the
protein products of the genes in a disease linkage interval interact
with a known disease protein, then they become disease candidates.
Module-based methods hypothesize that proteins within the same
topological or functional module on a network are more likely to
associate with the same disease [17,10,18]. In particular, there exist
various approaches based on network clustering [19,20], k-cores
[21], graphlets [22], network motifs [23,24] and frequent subgraph
mining [25]. Finally, diffusion-based methods anchor on known
disease proteins as seeds, which diffuse along PPI network through
random walks [26–30].
-protein
re used
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However, PPI networks are often noisy and incomplete [31,32].
Apart from capitalizing on these networks, most of the above
methods do not consider the properties of proteins themselves,
such as their Gene Ontology (GO) annotations like biological pro-
cesses, molecular functions, cellular components, etc. For example,
it is known that only the proteins which are localized at the same
subcellular compartments can interact with each other [33,34].
Thus, we propose to use keywords from the Universal Protein
Resource (UniProt) database [35] to enrich the PPI network. The
keywords cover various biological aspects of the proteins, as sum-
marized in Table 1. A previous study [36] reveals the relationship
between these keywords and intrinsic disorders: some keywords
for cellular components, domains, technical terms, developmental
processes, and coding sequence diversities indicate strong positive
or negative correlations with long intrinsically disordered regions.
Furthermore, it is known that intrinsically disordered proteins are
associated with many diseases [37]. Additionally, several investi-
gations [38–40] consider the role of post-translational modifica-
tions (PTM) in disease and functional complexes. Based on these
findings, we integrate the keywords of Uniprot database directly
into the PPI networks. With this integration we are able to capture
the network characteristics between proteins and keywords as
well. The concept of integrating additional biological knowledge
into a PPI network has been studied in recent years [41–46]. In par-
ticular, towards identifying disease-causing genes, Lage et al. have
studied the computational integration of phenotype similarities to
a PPI network in a pioneering work [47]. Another study [48] has
generated a human disease network and disease gene network
based on disease phoneme and genome associations. Moreover,
Lee et al. [49] have improved the performance of genome-wide
association studies in prioritizing candidate disease genes, through
constructing a functional network for human genes based on vari-
ous biological aspects such as mRNA coexpression, protein-protein
interactions, and protein complex. Furthermore, a three-level net-
work based on phenotype, protein complex and PPI network [50],
as well as a heterogeneous network consisting of both interaction
and ontology data, have been studied [51].

To the best of our knowledge, our work is the first attempt to
integrate the PPI network with the keywords in Uniprot database
and form a heterogeneous network for disease protein prediction.
We call our heterogeneous network a PPI-Keyword (PPIK) network,
which contains network structures accounts for not only protein
interactions with one another but also their functional and struc-
tural similarities. Based on the PPIK network, we propose to
address the problem of disease protein classification, hinging on
the notion of metagraphs [52]. Different from a traditional network
motif or subgraph, a metagraph is a graph structure capturing a
particular topology of both proteins and keywords on the PPIK
network. In other words, each metagraph describes a particular
heteronomous biological arrangement between one or more pro-
teins and keywords. Each protein can be subsequently represented
as a series of metagraphs that describe its interactions with other
Table 1
A summary of keywords from the UniProt database.

Keyword category Examples

Biological Process Apoptosis, Cell cycle, cAMP biosynthesis
Cellular component Golgi apparatus, Vacuole, Cytoplasm
Coding sequence

diversity
Polymorphisms, RNA-editing, alternative splicing

Domain SH2 domain, Kelch repeat, Transmembrane
Ligand cAMP, S-adenosyl-L-methionine, cGMP
Molecular function RNA-binding, Protein kinase inhibitor, Chromatin

regulator
Post-translational

modification
Phosphorylation, Ubiquitination, Acetylation

Technical term Allosteric enzyme, Transposable element
proteins and associations with keywords. The key intuition is that
proteins with similar functional roles, such as their disease-causing
property, tend to have similar metagraph representations, i.e., they
tend to interact with other proteins and associate with certain key-
words in a similar arrangement on the PPIK network. Thus, we fur-
ther build a classifier for disease proteins based on their metagraph
representations. Finally, we conduct comprehensive experiments
on three PPI databases, namely IntAct [53], STRING [54] and NCBI
[55], and demonstrate the superior predictive power of our pro-
posed metagraph-based prediction model.
2. Materials and methods

In this section, we describe the proposed method. We start with
some preliminaries in Section 2.1, including the problem statement
as well as the motivations of our approach. Next, we introduce the
proposed PPIK network and metagraph representations, the basis
of our method in Sections 2.2 and 2.3, respectively. Lastly, we pre-
sent a general framework of our method in Section 2.4.
2.1. Preliminaries

2.1.1. Problem statement
The problem of disease protein classification aims to identify

humandisease proteins in a given protein database. Let P be the pro-
tein space, and C ¼ fdisease;non-diseaseg be the set of classes.
Assume we have a training set Ptrain and test set Ptest such that
P ¼ Ptrain [ Ptest and Ptrain \ Ptest ¼ £. The goal is to learn a classifier
b : P ! C based on Ptrain. Ultimately, for any protein in the test set
p 2 Ptest, we can predict its class to be bðpÞ with minimal prediction
errors.

There have been numerous efforts in designing and learning dif-
ferent classifiers, with considerable success. All these classifiers
generally assume a vector representation /ðpÞ for each protein
p 2 P. In this work, the main focus is proposing a novel representa-
tion /ð�Þ for proteins to consistently improve classifiers across the
spectrum of classifiers, rather than developing a new classification
model.
2.1.2. Motivations
First, while protein-protein interaction (PPI) networks have

offered some insight into how proteins work with one another,
most existing PPI networks are noisy and incomplete [31,32].
Interestingly, an individual protein also exhibits a number of bio-
logical properties that may reveal how it works, ranging from
molecular function and biological process to cellular component
and protein domain. Previous work shows that disease proteins
are likely to share common properties in Gene Ontology annota-
tions [41,56]. Furthermore, proteins with the same protein domain
as a disease protein could be associated with the disease as well
[57,56]. Therefore, these properties can also be associated with dif-
ferent proteins together, to complement and enhance the existing
PPI networks which only encode protein-protein interactions.

Second, disease proteins tend to have similar topological
arrangements in a PPI network. This hypothesis has been validated
to some extent by previous module-based methods such as clus-
tering [19,20], k-cores [21], graphlets [22], network motifs
[23,24] and frequent subgraph mining [25]. However, the chal-
lenge here is how we can leverage the topological arrangements
of proteins in the context of not only the interactions between pro-
teins but also their relevance based on other biological properties.

The two motivations inspire the proposed PPI-Keyword net-
work in Section 2.2 and metagraph representation in Section 2.3,
respectively.
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2.2. PPI-Keyword network

To exploit the biological properties of individual proteins, we
leverage the keywords associated with each protein from the
Universal Protein Resource (UniProt) database [35]. These key-
words describe the various biological mechanisms of the proteins,
as summarized in Table 1. We enrich the PPI network with such
biological keywords, to construct a PPI-Keyword (PPIK) network.
Note that we only use the exact keywords, without considering
the semantic similarity or overlap between keywords, since we
find out that only 0.1% of the keyword pairs are similar.

Formally, a PPIK network is modeled by an undirected graph
G ¼ ðV ; E; ‘Þ, such that V is the set of nodes, E is the set of edges,
and ‘ is the label function on V. In particular, each node can be either
a protein or a keyword. They can be differentiated by the label func-
tion ‘ : V ! fprotein; keywordg. Furthermore, an edge can connect
either two proteins, or a protein and a keyword. The former repre-
sents the mapped interactions between the two proteins, whereas
the latter represents the association between the protein and key-
word. Fig. 1 shows a part of the constructed PPIK network based
on the UniProt and IntAct [53] databases. Note that the color
scheme of the nodes essentially serves as the label function.

The PPIK network integrates keywords that describe biological
mechanisms of proteins into the traditional PPI network. This inte-
gration complements the original noisy and incomplete network.
On the one hand, protein-keyword associations could reinforce use-
ful protein-protein interactions. On the other hand, proteins with
no direct interactions can now become related through keywords.
2.3. Metagraph representations

On the PPIK network, proteins with similar roles (e.g., their
disease-causing functions) tend to have similar topological charac-
teristics. To model topological similarities, previous module-based
methods resort to structures such as network motifs [23,24] and
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Fig. 1. Part of the PPIK network based on UniProt and IntAct databases.
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k-cores [21]. However, on a PPIK network, both proteins and
keywords exist, and traditional structures do not differentiate
between different labels of nodes. Fortunately, the recent
emergence of metagraphs [52] has enabled the representation of
common structures on a heterogeneous graph, where nodes with
different labels connect with each other.

In the PPIK network as shown in Fig. 1, we observe multiple
subgraphs with a common structure, which are illustrated in
Fig. 2. More specifically, Fig. 2(a) showcases two 3-node subgraphs
of the PPIK network, both with a common structure ‘‘protein-key
word-protein”. Likewise, Fig. 2(b) illustrates two 4-node subgraphs
with a common structure consisting of a triangle of three proteins
and one keyword. We call such common structures metagraphs,
and the corresponding subgraphs are their instances, i.e, meta-
graph instances.

Formally, a graph S ¼ ðVS; ES; ‘Þ is a subgraph of graph
G ¼ ðV ; E; ‘Þ iff VS #V and ES # E. A graph M ¼ ðVM ; EM ; ‘MÞ is a
metagraph for some label function ‘M , where each node is defined
by its label and its value is immaterial. We say that S is an instance
of M iff there exists a bijection x between the nodes of S and M
such that

� 8v 2 Vs; ‘ðvÞ ¼ ‘MðxðvÞÞ, and
� 8v ;u 2 Vs; ðv ;uÞ 2 ES holds iff ðxðvÞ;xðuÞÞ 2 EM holds.

As a metagraph defines a specific topological arrangement of
proteins and keywords, two proteins associated with the same
metagraph tend to have similar functional roles. Therefore, we
can use metagraphs to construct the vector representation of pro-
teins. Let M , fM1;M2; . . . ;MjMjg denote the set of metagraphs on
the PPIK network. Let IðMiÞ be the set of instances of Mi 2 M. A
protein p can be represented by a vector mp of length jMj, where
the i-th element is the number of instances of Mi containing the
protein p. That is,
mp½i� , jfS 2 IðMiÞ : p 2 VSgj: ð1Þ

Furthermore, the same metagraph can have multiple subgraph
instances of different ‘‘utilities”. That is, a protein appearing in a
subgraph together with a disease protein is more likely to be a dis-
ease protein, which implies that such subgraphs have a higher util-
ity towards identifying disease proteins. As shown in Fig. 3, some
subgraphs contain disease proteins and some do not, based on bio-
logical knowledge from a disease database. To quantify such utili-
ties, for each metagraph we compute the fraction of its subgraph
instances containing any of the known disease proteins. The label
Membrane

A1 P15762

1 Membrane

P60411

P15151

Q60409

Protein

Keyword

 Example of 4-node metagraph
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function u : P ! fdisease;non-diseaseg differentiates known dis-
ease proteins from other proteins. Formally, let dp be a vector of
length jMj, where the i-th element is defined as follows:

dp½i� , jfS 2 IðMiÞ : p 2 VS ^ ð9v 2 Vs : v – p ^uðvÞ ¼ diseaseÞgj
mp½i� :

ð2Þ
mp and dp are jMj-dimensional representations of protein p

based on metagraphs. In addition, keywords describing each pro-
tein naturally become part of its vector representation. Given a
set of keywords K, let kp be a vector of length jKj, where the i-th
element is 1 iff the i-th keyword is associated with protein p. Thus,
/ðpÞ, the overall vector representation of protein p is a vector with
(2jMj þ K) dimensions, which is the concatenation of the above
representations as shown in Eq. (3).

/ðpÞ , ½mp;dp;kp�: ð3Þ
2.4. General framework

Based on the proposed PPIK network and metagraph represen-
tations, we describe an overall framework to learn a classifier for
disease protein prediction. In particular, the framework consists
of three main steps, as summarized in Fig. 4.

First, from the PPIK network, we mine the collection of meta-
graphs M. This is an active research area and many off-the-shelf
solutions exist. Therefore, we apply an existing state-of-the-art
approach GRAMI [58] for this step. In particular, we only consider
metagraphs up to 5 nodes, which is a good balance between effi-
ciency and accuracy.

Second, we derive the metagraph representations for proteins
based on the mined metagraphs M. We employ the SymISO
algorithm [52] to compute the set of instances IðMiÞ for each
Fig. 4. General framework o
metagraph Mi 2 M and then construct the metagraph representa-
tions mp and dp as defined in Eq. (1) and (2).

Third, based on the protein representations /ð�Þ and training
data Ptrain, we build a classifier b through supervised learning. Note
that the main focus of this work is to propose the metagraph rep-
resentations based on the PPIK network, which aims to improve
disease prediction across various supervised learning techniques
including random forest, SVM and Generalized Linear Models, as
we will demonstrate in the experiments.
3. Results and discussion

In this section, we empirically evaluate the effect of metagraph
representations in the context of disease protein prediction.
Results show that the proposed representations can significantly
improve prediction across various classifiers and substantially out-
performs random walk baselines RWR [29] and PRINCE [59]. The
reason of choosing these diffusion/propagation based methods is
their dominant power over the clustering and neighborhood meth-
ods [60–62].

3.1. Data and setup

In this paper, to demonstrate the effects of our proposed novel
protein representation, we work on three different human PPI
databases, namely IntAct [53], NCBI [55] and STRING [54]. We also
exploit protein keywords from the UniProt database [35] as illus-
trated in Table 1, to construct a PPIK network for each PPI database.
Disease labels for proteins are obtained from the UniProt and
OMIM databases [63]. In particular, we first obtain disease genes
from OMIM, and further map these genes to their product proteins
based on UniProt. We conduct disease protein prediction under
two different scenarios as follows. First, whether a protein is
f the proposed method.



Table 2
Summary of the three PPIK networks.

Proteins Disease proteins Keywords PPI edges PPIK edges

All Breast cancer

IntAct 13063 2947 29 554 97652 246092
NCBI 15951 3476 31 567 227004 405632
STRING 17668 3539 29 567 3912853 4107335

Fig. 5. Performance of Metagraph and Metagraph+ compared to Keywords for all disease.
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associated with all disease, i.e, all phenotypes in OMIM; second,
whether a protein is specifically associated with breast cancer, i.e,
phenotype breast cancer. Table 2 summarizes the three PPIK net-
works. As we can see from Table 2, the three PPIK networks are
very different in terms of number of proteins, number of PPI edges,
as well as number of PPIK edges.

We split each dataset into training and testing sets, containing
80% and 20% proteins respectively. The split is repeated 5 different
times. All results reported are averaged over the 5 splits.

To evaluate the effectiveness of the proposed method, we
employ the standard metric of Area Under the ROC Curve (AUC),
which is a robust measure of the classifiers’ predictive power even
with unbalanced classes (e.g., breast cancer).
3.2. Benefits of metagraph-based representations

As discussed in Section 2, given a protein representation /ð�Þ,
different supervised learning models can be applied to derive a dis-
ease protein classifier. In particular, we consider three progres-
sively richer representations as follows.

� Keyword. We only consider protein keywords from UniProt data-
base (see Table 1), i.e., /ðpÞ ¼ kp. These keywords describe var-
ious biological properties of proteins, and thus encompass
reasonable predictive power for disease proteins.

� Metagraph. We enhance the keyword-based representation with
metagraph statistics (see Eq. 1), i.e., /ðpÞ ¼ ½kp;mp�. The vector
mp captures the topological arrangement on the PPIK network
for interactions between both proteins and keywords.

� Metagraph+. We further incorporate metagraph representations
based on the utilities of their subgraph instances (see Eq. (2)),
i.e., /ðpÞ ¼ ½kp;mp;dp�. In particular, dp differentiates meta-
graphs based on the disease class of the proteins in their sub-
graph instances.

The above representations are meant to work across different
models of supervised learning. In our experiments, we adopted 3
well-known classification models, namely, Random Forest (RF),
Support Vector Machine (SVM) and Generalized Linear Model
(GLM). For RF, we used randomforest package in R and tuned
the mtry parameter between 1 and the cardinality of protein
representation with tuneRF function based on OOB error. For
SVM, we used e1071 package in R, and tuned the gamma param-
eter over {10�5, 10�4, 0.001, 0.01, 0.1} and the cost parameter over
{0.1, 1, 10} with grid-based tune.svm function (based on classifica-
tion error). For GLM, we used stats package in R and adopted
default Gaussian distribution. Furthermore, in the case of breast
cancer, the classes are highly unbalanced. Therefore, we used the
ROSE package in R to oversample the breast cancer class with
probability 0.2.

Fig. 5 shows the AUC performance of the three representations
in each of the classification method, on each of the three datasets,
for all diseases. Two main observations can be made from the
results. First, the metagraph representation (Metagraph) can signif-
icantly and consistently outperform the keyword-only representa-
tion (Keyword) across all circumstances. Averaging over all
classifiers and datasets, Metagraph improves AUC over Keyword by
12.6%. The results imply that interactions/associations on the PPIK
network are powerful towards disease prediction; in particular,
proteins with similar functional roles tend to appear in similar
topological arrangements. On the contrary, it is inadequate to only
consider keywords for individual proteins. Second, the utility-
based metagraph representation Metagraph+ can further enhance
the performance. Overall, Metagraph+ can achieve an average
AUC of 90.9, as compared to 88.2 for Metagraph and 75.6 for Key-

word. Thus, metagraphs can effectively incorporate different utili-
ties based on disease proteins in the subgraph instances.

Next, we zoom into the results for breast cancer only, as shown
in Fig. 6. The performance differences of Keyword, Metagraph and
Metagraph+ are similar to those for all diseases. Averaging across
all classifiers and datasets,Metagraph+ attains an AUC of 75.8, beat-
ing Metagraph and Keyword by 2.3% and 14.4%, respectively. The
results reaffirm that disease proteins tend to appear in the same
neighborhood of the PPIK network, and our metagraph representa-
tions carry strong predictive power.



Fig. 6. Performance of Metagraph and Metagraph+ compared to Keywords for breast cancer.

Table 3
Performance of Metagraph+ compared to random walk and subgraph baselines.

All disease Breast cancer

IntAct NCBI STRING IntAct NCBI STRING

RWR 0.551 0.567 0.622 0.578 0.665 0.605
RWRK 0.590 0.587 0.629 0.587 0.664 0.612
PRINCE – – – 0.506 0.716 0.632
PRINCEK – – – 0.634 0.717 0.596

Classifier: RF

Subgraph+ 0.745 0.756 0.826 0.611 0.696 0.713
Metagraph+ 0.886 0.862 0.916 0.820 0.748 0.796

Classifier: SVM

Subgraph+ 0.739 0.741 0.808 0.687 0.682 0.597
Metagraph+ 0.913 0.902 0.930 0.698 0.715 0.743

Classifier: GLM

Subgraph+ 0.751 0.758 0.818 0.733 0.715 0.796
Metagraph+ 0.918 0.921 0.937 0.748 0.734 0.819

The bold values indicate the instances where Metagraph+ achieves better performance than the baselines.

Table 4
Running time (train and test in minutes) comparisons. For Subgraph+, Metagraph, and Metagraph+ the classifier with the best AUC performance, GLM, is chosen.

All disease Breast cancer

IntAct NCBI STRING IntAct NCBI STRING

RWR 1.0 1.3 2.0 1.4 1.5 1.0
RWRK 1.4 2.3 3.9 1.4 2.2 2.9
PRINCE – – – 0.7 1.0 1.1
PRINCEK – – – 0.9 1.4 1.6
Subgraph+ 0.4 1.0 0.8 0.6 0.6 0.8

Metagraph 0.2 0.2 0.2 0.4 0.4 0.2
Metagraph+ 0.8 1.0 1.6 1.4 2.0 2.6

Fig. 7. Average number of PubMed publications per prediction based on DisGeNET.
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3.3. Comparison to baselines

Having demonstrated the benefits of metagraph representa-
tions, we now compare our proposed work to other baselines for
protein disease prediction, as follows.

� RWR or Random walk with Restart [29]. On the PPI network,
consider a particle initially at one of the known disease pro-
teins, i.e., the initial position of the particle has a uniform distri-
bution over the disease proteins in the training data. Next, in
each step, the particle makes a move on the network: either
moving to a randomly selected neighbor with 1� a probability,



Table 5
Top 10 genes predicted by Metagraph+ (GLM) with the most number of publications.

GeneId Symbol Full name

3565 IL4 interleukin 4
3552 IL1A interleukin 1, alpha
4513 COX2 cytochrome c oxidase subunit II
3133 HLA-E major histocompatibility complex, class I, E
6696 SPP1 secreted phosphoprotein 1
2272 FHIT fragile histidine triad
7298 TYMS thymidylate synthetase
1813 DRD2 dopamine receptor D2
2100 ESR2 estrogen receptor 2 (ER beta)
2078 ERG v-ets avian erythroblastosis virus E26 oncogene homolog
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or jumping to one of the disease proteins in the training data
with a probability. Note that the ‘‘jumping” effectively returns
the particle to the initial condition, and thus ‘‘restarts” the ran-
dom walk. The process is repeated until it converges to a sta-
tionary distribution over all the proteins. In the end, candidate
Table 6
Top 5 associated diseases reported by DisGeNET for the 10 genes repo
proteins in the test data are ranked according to the stationary
distribution. We chose RANKS package in R as the implementa-
tion. The a parameter is tuned over {0.1,0.2,. . .,0.9} based on
AUC performances.

� RWRK. The same method as RWR, except that the random walk
with restart is performed on the PPIK network.

� PRINCE [59]. In our case, i.e, on an unweighted PPI network, this
method basically performs random walk with restart with one
major difference than RWR that is prior probabilities. In RWR

the initial probability vector consist of equal probabilities
apportioned between known disease associated proteins. On
the other hand, in PRINCE prior probabilities are assigned to
each disease associated protein based on a logistic function:
LðxÞ ¼ 1

1þeðcxþdÞ and x ¼ Sðq; pÞ where Sðq; pÞ is the similarity score
between query disease q and the associated disease p with the
protein. If the protein is associated with more than one disease
then, p is chosen to be the most similar one to q. We use the rec-
ommended values as in paper [59] and set c to �15 and d to log
rted in Table 5.



Table 7
Novel disease genes (mapped from predicted proteins) discovered by Metagraph+ based on recent PubMed publications from years 2014–2016.

GeneId Symbol PubMedId Diseases

319 APOF 25726912 Liver neoplasms; Liver carcinoma
506 ATP5B 25666834 Non-alcoholic Fatty Liver Disease; Acute kidney injury
988 CDC5L 26089329 Ischemic Cerebrovascular Accident; Ischemic stroke
1635 DCTD 25735499 Neutropenia; Leukopenia
2686 GGT7 25884624 Glioblastoma; Glioma; Carcinogenesis
3751 KCND2 24501278 Epilepsy; Autistic Disorder; Seizures

25214526 Cardiac Arrest
25878292 Alzheimer’s Disease

5152 PDE9A 25799991 Heart failure; Heart Diseases; Congestive heart failure
5634 PRPS2 25149475 Lupus Erythematosus, Systemic

26004865 Congenital absence of germinal epithelium of testes
6723 SRM 25889691 Prostate carcinoma; Malignant neoplasm of prostate
6942 TCF20 25228304 Autism Spectrum Disorders; Atrial Septal Defects; Moderate mental retardation
8974 P4HA2 25741866 Severe myopia

26001784 Disorder of skeletal system
9620 CELSR1 25117632 Ischemic stroke
10584 COLEC10 25495265 Chronic Lymphocytic Leukemia

25786252 Chronic Lymphocytic Leukemia
10940 POP1 26275995 Inflammatory disorder
11097 NUPL2 25584925 Chronic Obstructive Airway Disease; Chronic Obstructive Airway Disease
22938 SNW1 26103569 Skin carcinoma
23513 SCRIB 24802235 Neoplasm Metastasis
23710 GABARAPL1 24879149 Malignant neoplasm of breast; Breast Carcinoma
26270 FBXO6 25811541 Stevens-Johnson Syndrome
55576 STAB2 25989359 Ankylosing spondylitis
84870 RSPO3 24430505 Osteoporosis
115426 UHRF2 25664994 Hepatitis B
144568 A2ML1 26121085 Otitis Media
162515 SLC16A11 25839936 Diabetes Mellitus, Non-Insulin-Dependent; Diabetes; Diabetes Mellitus

25973943 Gestational Diabetes; Diabetes Mellitus, Non-Insulin-Dependent
167465 ZNF366 25722978 Breast Carcinoma; Malignant neoplasm of breast; Endometriosis; Endometrioma
285671 RNF180 24833402 Stomach Carcinoma; Malignant neoplasm of stomach
340419 RSPO2 25769727 Pancreatic carcinoma; Malignant neoplasm of pancreas

2 Up to the year 2016, when we conducted this analysis.
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(9999). The similarity scores between phenotypes are derived
from the study [64]. The a restart probability parameter is
tuned over {0.1,0.2,. . .,0.9} based on AUC performances as in
RWR.

� PRINCEK. The same method as PRINCE, except that the algo-
rithm is performed on the PPIK network.

� Subgraph+. We also compare proposed work to subgraph-based
approaches. Unlike metagraphs, traditional subgraphs or net-
work motifs do not differentiate heterogeneous types of nodes.
In this baseline, we consider subgraphs with only protein nodes,
and their statistics and utilities are formulated as protein repre-
sentations similar to the case of metagraphs (see Eq. (1) and
(2)), which are then concatenated with keyword representa-
tions for individual proteins. We call this method Subgraph+,
analogous to Metagraph+. We leveraged Subgraph+ by different
classifiers with the same tunning routine as Metagraph and
Metagraph+.

Table 3 compares the AUC of the baseline methods with Meta-

graph+, for all diseases and breast cancer. The foremost observation
is that with classifiers GLM and RF, Metagraph+ is significantly bet-
ter than all baselines. On average considering all the classifiers, for
all diseases, it outperforms RWR, RWRK, and Subgraph+ by 32.9%,
30.7% and 13.8% respectively; for breast cancer it outperforms
RWR, RWRK, PRINCE, PRINCEK and Subgraph+ by 14.2%, 13.7%,
14%, 11% and 6.6% respectively. We attribute the better perfor-
mance to the more predictive representations enabled by meta-
graphs. Second, the results also show that PPIK network is more
effective than PPI network, as evident from the comparison
between RWR and RWRK methods. More specifically, random
walks on the PPIK network (RWRK) produce more accurate
predictions than those on the PPI network (RWR) under most
circumstances. In other words, protein keywords can indeed com-
plement and enrich the PPI network.

Table 4 further examines the running times of the baselines
RWR, RWRK, PRINCE, PRINCEK, Subgraph+ and the proposed
approach(es). It can be concluded that for RWR and PRINCE, key-
words integrated into the PPI network induced an increase in the
running times. Moreover, for Metagraph+ we observe unfavorable
effect of additional vector dp of length jMj (metagraph set size)
compare to Metagraph.
3.4. Further analysis of the predicted disease proteins

We further study the disease proteins predicted by our pro-
posed methods. Since GLM generally has the best performance
among the three classifiers, we only focus on the results from this
classifier. A protein is classified as a disease protein if its prediction
score is higher than 0.5. Moreover, for each proposed method, we
ran disease classification on all three datasets (IntAct, NCBI and
STRING). Then, we combine the predictions for all three datasets
to obtain a predicted disease gene set for each method.

To enable the analysis, DisGeNET database [65] is used to search
the PubMed Ids of the up-to-date publications2 reporting the gene-
disease associations. In particular, we transform our predicted dis-
ease proteins to their producer gene Id’s based on UniProt. Fig. 7
illustrates the average number of publications per prediction that
support the disease gene predictions of our proposed methods. The
results are consistent with the AUC performance reported earlier,
where methods with higher average publications attain higher
AUC scores. Table 5 further lists the 10 genes with the most number
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of PubMed publications for our best proposed method, Metagraph+.
Table 6 zooms into each of the 10 genes, and illustrates the top dis-
eases associated with each gene based on DisGeNET scoring (which
combines both curated content and literature).

We also evaluate novel proteins predicted byMetagraph+, based
on recent publications from years 2014–2016, where each predic-
tion has fewer than 20 publications. There are 27 such novel genes
predicted (mapped from the predicted proteins), as listed in
Table 7. For example, PDE9A (GeneId: 5152) has been reported to
be associated with heart failure [66], and ZNF366 (GeneId:
167465) has been reported to be associated with estrogen metabo-
lism and progression of breast cancer, and a new candidate for
endometriosis as well [67]. Furthermore, a study [68] presents sup-
portive evident for KCND2 (GeneId: 3751) being a causal gene for
epilepsy, whereas another study [69] proposes KCND2 as a novel
cause of J-wave syndrome associated with sudden cardiac arrest.

4. Conclusion

Disease protein prediction is crucial to the diagnosis and treat-
ment of many diseases. In this study, we integrated protein-protein
interaction and biological keywords of proteins, to construct a
novel PPIK network. Based on the PPIK network, we further pro-
posed metagraph representations for proteins. Such novel repre-
sentations can improve the classification of disease proteins
consistently across different classifiers, outperforming them by
15.3% in AUC on average. Our method also beats random walk
and subgraph baselines by 13.8–32.9%. Finally, our literature
search based on PubMed revealed that the proposed method can
indeed better predict disease proteins that mapped with newly
discovered biological knowledge.
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