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Accurate estimation of remaining useful life (RUL) of industrial equipment can enable advanced mainte-
nance schedules, increase equipment availability and reduce operational costs. However, existing deep
learning methods for RUL prediction are not completely successful due to the following two reasons.
First, relying on a single objective function to estimate the RUL will limit the learned representations
and thus affect the prediction accuracy. Second, while longer sequences are more informative for mod-
elling the sensor dynamics of equipment, existing methods are less effective to deal with very long
sequences, as they mainly focus on the latest information. To address these two problems, we develop
a novel attention-based sequence to sequence with auxiliary task (ATS2S) model. In particular, our model
jointly optimizes both reconstruction loss to empower our model with predictive capabilities (by predict-
ing next input sequence given current input sequence) and RUL prediction loss to minimize the difference
between the predicted RUL and actual RUL. Furthermore, to better handle longer sequences, we employ
the attention mechanism to focus on all the important input information during the training process.
Finally, we propose a new dual-latent feature representation to integrate the encoder features and decoder
hidden states, to capture rich semantic information in data. We conduct extensive experiments on four
real datasets to evaluate the efficacy of the proposed method. Experimental results show that our pro-
posed method can achieve superior performance over 13 state-of-the-art methods consistently.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Prognostic and Health Management (PHM) is receiving much
attention in many industrial applications, as it can potentially
reduce equipment downtime and increase system reliability. Typ-
ically, PHM systems are leveraged to monitor the condition of
mechanical or electrical equipment based on their environmental
information and domain knowledge. One key task in PHM is the
reliable prediction of remaining useful life (RUL) of an equipment.
RUL is defined as time interval between the current state and the
end-of-life state. With accurate RUL estimation, industries can
have predictive maintenance planning and thus prevent catas-
trophic failures or faults from happening [1]. Yet, with the sophis-
ticated machine design and the dynamic surrounding
environment, precise estimation of RUL can be of great challenge.
Various approaches have been proposed to estimate the RUL of
machines. These approaches can be classified into three major cat-
egories, namely, model-based approaches, data-driven approaches,
and hybrid approaches. Specifically, model-based approaches
require strong theoretical understanding to model the behaviour
of equipment and its detailed degradation process [2]. As equip-
ment complexity continues to evolve, it becomes extremely chal-
lenging to apply model-based methods in real applications [3].
With increasing data availability in smart manufacturing, data-
driven approaches have emerged more promisingly for predicting
the RUL of equipment. These methods aim to explore the underly-
ing relationship between the sensor readings and degradation
trend, such as hidden Markov model, artificial neural network
[4], extreme learning machines [5], and support vector machines
[6]. However these approaches require manual feature engineering
to extract the corresponding degradation pattern, which can be
very laborious task. Hybrid approaches aim to improve the physi-
cal model via leveraging the data availability to better detect the
deterioration trend [7]. They also suffer from the difficulty of
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building accurate physical models and effectively combining both
techniques.

In recent years, with the surge of computational power and the
data volume, deep learning with its hierarchical multi-layer repre-
sentative power can automatically extract silent features without
handcrafted feature engineering. As a result, research paradigm
of RUL prediction is shifting from conventional machine learning
to deep learning based architectures. Various deep learning meth-
ods, including convolutional neural networks (CNN) and recurrent
neural networks (RNN), have been developed for RUL prediction. In
particular, CNN based methods aim to use 1-dimensional convolu-
tional kernel to extract the sequential information from time series
data [8,9]. However, CNN-based approaches still have limited
capability for RUL prediction, as they are not able to capture
long-range sequential dependencies in sensory data.

RNN based approaches were developed to capture the temporal
dependency among time series data [10]. However, conventional
RNN architectures still suffer from vanishing gradient problem
with longer time dependencies. To tackle this issue, the long
short-term memory (LSTM), a gated RNN with both long and short
memories, was developed to address the vanishing gradient prob-
lem and achieved the state-of-the-art performance for RUL predic-
tion [11–15]. Yet, LSTM based methods tend to lose relevant and
important historical information when dealing with very long
sequences [16], as they only focus on latest sequence information
when mapping the whole input sequence into fixed-length vector
representation. In addition, all the aforementioned methods only
used a single objective, i.e., minimizing the mean square error
(MSE) between the predicted and true values for the model train-
ing. We argue that using a single objective can limit the generaliza-
tion performance of the model on unseen test data [17,18].

To address the above two problems, we propose a dual-
objective sequence to sequence approach named ATS2S for accu-
rate RUL prediction. First, to address the shortage of LSTM with
long sequences, we propose an attention based decoding and focus
on the important parts of the input sequence (instead of the latest
information in LSTM) that can maximize the decoding performance
without losing relevant information. Additionally, we integrate the
last hidden state of the decoder with the encoder hidden features
as a comprehensive dual-latent feature representation for the RUL
predictor. Second, inspired by the success of auxiliary tasks in
improving the generalization performance [17,18] in computer
vision applications, we design a novel auxiliary task to further
improve the prediction capability on unseen test data. Particularly,
given the current input sequence, we train the model to recon-
struct the future input sequence in an unsupervised manner. Con-
currently, we train the model with a supervised MSE loss between
the true RUL labels and the predicted ones.

Overall, our main contributions can be summarized as follows.

� Our model jointly optimizes both reconstruction loss of future
sequence to empower our model with predictive capabilities
(by predicting the next input sequence given current input
sequence) and RUL prediction loss to minimize the difference
between the predicted RUL and actual RUL.

� We design an attention mechanism in the encoder-decoder net-
work to handle the long sequences. As such, our model can
focus on the most relevant information of the input sequences
for RUL prediction.

� We propose a new dual-latent feature representation to integrate
the encoder features and decoder hidden states, to capture rich
semantic information in the data for RUL prediction.

� We conduct extensive experiments on four benchmark datasets
to evaluate our proposed approach. The results show that the
proposed approach can significantly improve RUL prediction
over 13 state-of-the-arts.
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2. Related work

Deep learning with the ability of automatic feature extraction
has achieved wide success in many fields, including computer
vision, natural language processing, and speech recognition [19].
Very recently, various deep learning methods, e.g., CNN and RNN,
have also been explored for RUL prediction [20,21]. For instance,
Li et al., proposed a CNN with 1-D filters to extract features from
input sensor data for RUL prediction and also used window-time
approach to prepare data samples for enhanced feature extraction
[8]. Yang et al., developed a two-stage approach by using one CNN
network to inspect the fault points and another CNN network to
estimate the RUL [9]. Zhu et al., proposed a multi-scale CNN to
extract features and predict the degradation of bearings [22].
Zhang et al., combined multi-layer perception (MLP) and CNN to
extract features from vibration data and predict the health index
of machines [23]. As shown in above studies, CNN based methods
have achieved good performance for RUL prediction. However,
they have limitations when dealing with the sequence data as they
ignore the temporal dependency among data points in a given
input sequence. Therefore, it is motivated to explicitly handle the
temporal dependency of sequence data for RUL prediction.

RNN based methods have been shown to be effective in model-
ing dynamic systems and learning temporal dependency in data. In
particular, Long Short-Term Memory (LSTM) is a special type of
RNN that can model the dynamics of sequences by introducing
the memory cells [24]. It has become increasingly popular for
RUL prediction. For example, Zheng et al., have used two layers
LSTM network to predict the RUL of turbofan engines [11]. Huang
et al., employed a stacked-bidirectional LSTM with auxiliary inputs
to model sensor data under multiple operating conditions [12]. For
instance, Miao et al., designed a deep LSTM framework to jointly
perform degradation assessment and RUL prediction [14]. Chen
et al., fused the learned features of the LSTM network with the
handcrafted features to boost the RUL prediction performance
[13]. Yet, LSTM based approaches tend to only focus on latest infor-
mation of the sequence and may lose important information at the
very beginning of the sequence [16].

More relevant approaches to our work are the encoder-decoder
based methods such as LSTM-ED [25] and BiLSTM-ED [26], which
leveraged health index estimation to predict the RUL. Our pro-
posed ATS2S is different from them in the following aspects. First,
ATS2S is an end-to-end framework, while their methods extract
features and predict RUL separately. Second, we propose a novel
auxiliary task of reconstructing the future sequence in an unsuper-
vised manner to improve the generalization power of our model to
the unseen test data. Last, ATS2S implements an attention mecha-
nism and leverages the dual-latent feature representation for RUL
prediction, while their methods still use the encoder’s last hidden
state as features for health index prediction and RUL estimation.
3. Methodology

In this section, we will introduce our proposed attention-based
sequence to sequence with auxiliary task (ATS2S) model for RUL
prediction.

3.1. Overview of ATS2S

The proposed ATS2S is composed of three main components,
namely, encoder, decoder, and RUL predictor, as shown in Fig. 1.
Firstly, the encoder maps the whole input sequence into a
sequence of hidden states. Unlike conventional encoder-decoder
models that compress all the input information into the single
fixed-length vector (i.e., encoder’s last hidden state), we design



Fig. 1. Attention-based sequence to sequence model for RUL prediction.
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an attention layer to select the hidden states that are relevant and
important for the decoding. Then, we pass the weighted sum of the
encoder hidden states (i.e., attention outputs) as encoder features to
decoder. The decoder is then trained to forecast the next input
sequence given the current input sequence, in order to give our
model more predictive power. Finally, the RUL prediction network
(a fully connected neural network) takes dual-latent feature repre-
sentation to integrate both the encoder and decoder hidden
states/features for RUL prediction. The predictor maps from the
feature dimension space to a single value, i.e., predicted RUL.

Note that our ATS2S method jointly optimizes the RUL predic-
tion loss, which is the difference between the predicted RUL label
and ground-truth label, as well as the reconstruction loss, which
is the difference between predicted and actual sequence. Next,
we will introduce each of the three components of ATS2S in details.
Fig. 2. The detailed structure of the attention module..
3.2. LSTM based encoder

In order to model the input dynamics of sensor signals, we
employ the LSTM model as our backbone architecture in the
sequence to sequence model. Given an input sample
X ¼ x1;x2; . . . ;xTð Þ 2 Rn�T ;xt 2 Rn is n-dimensional input vector at
each time step t (1 6 t 6 T) from n sensors. At each time step t,
LSTM takes the input vector xt and previous hidden state ht�1 to
produce current hidden state ht , current long term memory cell
ct and output ot . The following equations demonstrate the detailed
process in the LSTM cell.

it ¼ r Wixt þ Uiht�1 þ bið Þ; ð1Þ
ft ¼ r Wfxt þ Ufht � 1þ bf

� �
; ð2Þ

ot ¼ r Woxt þ Uoht � 1þ boð Þ; ð3Þ
gt ¼ tanh Wgxt þ Ught � 1þ bg

� �
; ð4Þ

ct ¼ ft � ct�1 þ it � gt ; ð5Þ
ht ¼ ot � tanh ctð Þ; ð6Þ

where r is nonlinear sigmoid function, � is an element-wise multi-
plication operator, W� 2 Rn�p (i.e., Wi;Wf ;Wo and Wg) are the
model parameters that map from input dimension n to hidden
dimension p;U� 2 Rp�p map from the previous hidden dimension
to the current hidden dimension, and b� 2 Rp are bias vectors. It
worth noting that the parameters are shared across all the time
steps. The Encoder model f enc takes the input sequence
x1; x2; . . . ;xTð Þ and produces a sequence of hidden states
(h1;h2; . . . ;hT ) and a sequence of cell states (c1; c2; . . . ; cT ) in Eq. (7).

h1; . . . ;hTð Þ; c1; . . . ; cTð Þ½ � ¼ f enc x1; x2; . . . ; xT ; hencð Þ; ð7Þ

where henc ¼ Wenc;Uenc;benc½ � are the parameters of the Encoder
model.
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3.3. Decoding

The main idea of attention is inspired by human visual systems
where human can focus on the relevant part of a scene and ignore
irrelevant parts. Similarly, we design an attention mechanism in
our sequence to sequence model for the whole sequence of hidden
states. In particular, we focus on all the important hidden states of
the encoder for decoding, while standard sequence to sequence
model relies solely on the last hidden state and thus loses valuable
information.
3.3.1. Calculation of attention weights
For the decoding process, we employ the hidden states from

both encoder and decoder to produce the attention weights. Note
that each decoding time step will have different attention weights.
For the decoding time step i, the attention weights
ai ¼ ai1; ai2; . . . ; aiT½ � can be calculated by the attention module
f attn �ð Þ, which can be expressed as

ai ¼ f attn si�1;Hð Þ; ð8Þ

where H ¼ h1;h2; . . . ;hT½ � 2 Rp�T represents the encoder hidden
states, and si�1 2 Rp is the previous decoder hidden state which is
initialized by the last encoder hidden state at the very beginning
of the decoding process. Here, p is the dimension of each hidden
state and T is the total number of time steps for one sample.
Fig. 2 shows the detailed structure of the attention module f attn �ð Þ.
Specifically, the decoder hidden state si�1 will be concatenated with
each encoder hidden state and then passed through a fully con-
nected layer FC : R2p ! R. The outputs of the fully connected layer
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will be fed into a softmax layer which produces the final attention
weights ai.

3.3.2. Attention based decoding
For each time step i in the decoding process, we employ the

attention weights ai and the encoder hidden states H to calculate
the context vector zi as follows:

zi ¼
XT
j¼1

aijhj; ð9Þ

where Z ¼ zi; ziþ1; . . . ; ziþT�1½ � is a collection of context vectors for all
the time steps. For the i-th time step, the context vector zi will be
concatenated with the current input ŷi which is the prediction of
the previous step. Then, the concatenated vector and the previous
hidden state si�1 will be passed through the decoder cell, which
can be formalized as:

si ¼ f dec ŷi; zi; si�1ð Þ; hdecð Þ: ð10Þ
where hdec represents the parameters of the decoder network. Then,
we map from si to the next step of the target ŷiþ1 in Eq. (11):

ŷiþ1 ¼ f FC si; hFCð Þ; ð11Þ
where f FC is a fully connected layer that maps from the hidden
dimension to the output dimension, and hFC represents the param-
eters of the fully connected network. It worth noticing that we pass
the output of the last time step as the next input. Hence, the deco-
der is trained to predict the future step given the current input
which can be valuable for the RUL prediction.

3.4. RUL predictor

The objective of the RUL predictor is to accurately predict the
corresponding RUL value for each input sequence (sensor signals).
We first integrate the last hidden state of the decoder with the
encoder hidden features, as a comprehensive dual-latent feature
representation, and then design a function that maps the dual-
latent feature representation to a single RUL value. We denote
the RUL predictor as f pred : R

D ! R in Eq. (12), where D is the
dimension of dual-latent feature representation.

dRUL ¼ f pred hT ; sTð Þ; hpred
� �

; ð12Þ
Fully Connected 
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Fig. 3. Architecture of RUL predictor network.
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where dRUL 2 R is the predicted label, hT and sT are the features of
encoder and decoder respectively. Fig. 3 shows the diagram of the
RUL predictor, which is a multi-layer feed-forward network fol-
lowed by a non-linear activation function (i.e., ReLU).

3.5. Multi-objective optimization

3.5.1. Reconstruction loss
In our ATS2S, we aim to forecast the next input sequence given

the current input sequence so that our model has predictive power.
Fig. 4 shows the detailed process of the forecasting-based recon-
struction loss. Given a predicted sequence by the decoder

Ŷi ¼ ŷ1; ŷ2; � � � ; ŷTð Þ 2 Rn�T , and a target sequence Yi ¼ y1; y2; � � � ;ð
yTÞ 2 Rn�T where yt ¼ xtþ1 2 Rn; T is the length of the sequence,
and n is the number of sensors. We define the reconstruction loss
as the mean square error between the target output and predicted
output. Eq. (13) shows the formulation of the reconstruction loss.

Lrec hð Þ ¼ 1
N

XN
i¼1

jjŶi � Yijj22; ð13Þ

where h is the model parameters, and N is the total number of
samples.

3.5.2. RUL prediction loss
The RUL prediction loss is defined as the mean square error

between the true RUL label and the predicted RUL label for each
input sequence. The RUL loss can be defined as follows:

Lrul hð Þ ¼ 1
N

XN
i¼1

dRULi � RULi
� �2

ð14Þ

where dRULi is predicted label and RULi is the true label.

3.5.3. Joint loss
The proposed model aims to optimize both reconstruction and

prediction losses concurrently. We argue that jointly optimizing
both losses can not only provide a good and rich latent representa-
tion, but also improve the accuracy of RUL prediction. The joint loss
can be formulated as follows

L hð Þ ¼ aLrec hð Þ þ Lrul hð Þ; ð15Þ
where a is a tunable parameter to control the contribution of the
reconstruction loss. It can control the contribution from reconstruc-
tion loss while maintaining the prediction loss (the major loss for
RUL prediction).

4. Experiments and results

We have conducted extensive experiments on benchmark data
to evaluate the performance of our proposed model.

4.1. Experimental data

We evaluate our proposed ATS2S method on C-MAPSS (Com-
mercial Modular Aero-Propulsion System Simulation) data [27].
C-MAPSS data describes the degradation process of aircraft engines
as shown in Fig. 5. It consists of four benchmark datasets with dif-
ferent number of training/testing engines, operating conditions
and fault types. The details about these four datasets are summa-
rized in Table 1.

4.1.1. Sensor data selection
Twenty-one sensors are deployed in different locations of the

engine to measure temperature, pressure and speed. To select rel-
evant sensors for RUL prediction, we visualize the signals from all



Fig. 4. Details of forecasting based reconstruction task.

Fig. 5. Diagram of the engines in C-MAPSS data [27].
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the 21 sensors for FD001. Fig. 6 shows the sensor readings for a
randomly selected engine. While most of sensors have a clear
degradation trend, other sensors remain constant in the run-to-
fail experiments (i.e., sensors 1, 5, 6, 10, 16, 18 and 19). Therefore,
14 sensors, namely sensors 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20
and 21, are used for RUL prediction. FD003 follows the same degra-
dation patterns as FD001 and thus we use the same subset of sen-
sors for FD001 and FD003. Similar procedure has been done for
FD002 and FD004. Eventually we adopt 9 sensors [12], namely sen-
sors 3, 4, 9, 11, 14, 15, 17, 20 and 21, for RUL prediction on FD002
and FD004.

4.1.2. Data segmentation and processing
We follow the sliding window method [28,29] for data segmen-

tation. Fig. 7 shows the process of data segmentation with sliding
window, where W is the window size, n is the number of sensors
and s is the shifting size. Given that the total number of cycles is
T, the RULs for the first and second windows/samples are thus
T �W and T �W � s, respectively. In our experiments, W and s
are set to be 30 and 1, respectively.
Table 1
Properties of C-MAPSS dataset.

Dataset FD001 FD002 FD003 FD004

# Training engines 100 260 100 249
# Testing engines 100 259 100 248
# Operating conditions 1 6 1 6
# Fault types 1 1 2 2
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Moreover, we adopt the piece-wise linear degradation model
[12,30] for the RUL labels. In case a sample has RUL value greater
than a pre-defined threshold, we re-set the RUL value as the
threshold for this sample. In particular, we follow the previous
studies [12,30] and set the threshold as 125 for FD001/FD003
and 130 for FD002/FD004.
4.1.3. Data normalization
The prognostic problem of real systems involves different types

of sensors and different operating conditions. Directly feeding the
raw sensor readings with high variance to the machine learning
models may hinder the learning process and affect the model per-
formance. To remedy this issue, we use Min–Max normalization
for each sensor restrict the values within 0;1½ �. For datasets with
multiple working conditions, we normalize the sensor readings
with respect to their corresponding working condition. In particu-
lar, we first group the sensors by their corresponding working con-
ditions, then we apply normalization on each cluster
independently. To formulate the scaling function, let a vector Q rm

contains all the data points of the r-th sensor under m-th working

condition. The normalized vector Q̂ rm is calculated as follows:

Q̂ rm ¼ Q rm �min Q rmð Þ
max Q rmð Þ �min Q rmð Þ : ð16Þ
4.2. Experimental settings and evaluation metrics

4.2.1. Experimental settings
Our architecture is composed of three main parts, namely, enco-

der network, decoder network, and RUL predictor network. Both
encoder and decoder networks rely on LSTM model. To reconstruct
the next input sample, the decoder network is followed by a single
layer fully connected (FC) network to map from the hidden dimen-
sion to the output dimension. The attention mechanism is imple-
mented by two FC networks, i.e., one network computes the
attention weights with dimension of n� 30, while the other net-
work generates a weighted sum of the encoder hidden states using
attention weights. Finally, the RUL predictor network consists of
three FC layers, and each layer is followed by rectified linear unit
(ReLU) to increase complexity. Adam optimizer is used to optimize
the overall model with learning rate of 3e� 4. Moreover, dropout
regularization algorithm is employed to relieve the over-fitting



Fig. 6. Degradation trend of one engine across 21 sensors on FD001.

Fig. 7. Data segmentation using sliding window for RUL prediction.
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problem. Table 2 summarizes all the hyper-parameters in our
ATS2S model.
4.2.2. Performance metrics
We employ two standard metrics, namely root mean square

error (RMSE) and the Score, to evaluate the performance of various
methods for RUL prediction. RMSE is defined following Equation:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

dRULi � RULi
� �2

vuut ð17Þ

where dRULi and RULi are the predicted RUL and true RUL respec-
tively, and N is the total number of samples. For machine prognosis
and RUL prediction, late prediction of RUL (e.g., the predicted RUL is
longer than the actual RUL) can lead to catastrophic consequences
Table 2
Hyper-parameters of proposed approach.

Hyper-parameters Range

Batch size {10}
Learning rate {0.0003}
Training epochs {10, 20}
Dropout rate {0.2, 0.5}
Sequence length {30}
a {1}
Number of layers (Encoder and Decoder) {1}
Number of hidden units (Encoder and Decoder) {18, 32}
Number of layers (Attention Model) {2}
Number of hidden units (Attention Model) L1{30}, L2{9, 14}
Number of layers (RUL predictor) {2, 3}
Number of hidden units (RUL predictor) L1{18,32}, L2{18,1}, L3{1}
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compared to early prediction. However, RMSE is not able to distin-
guish between early and late predictions. Hence, it requires an
asymmetric evaluation function to give larger penalty for overesti-
mation. To address this issue, a score metric has been developed,
which was firstly proposed by the PHM community during the
2008 PHM data challenge competition [27]. Recently, many related
research has adopted the score metric to evaluate the performance
of a model on the RUL prediction task [12,29]. The score metric can
be formalized as follows:

Score ¼

XN
i¼1

e�
errori
13 � 1

� �
; if errori 	 0ð Þ

XN
i¼1

e
errori
10 � 1

� �
; if errori > 0ð Þ

8>>>>><
>>>>>:

ð18Þ

where errori ¼ dRULi � RULi
� �

is the difference between the pre-

dicted RUL dRULi and the true RULi.

4.3. Comparison against state-of-the-arts

In this section, to comprehensively evaluate our proposed
ATS2S method, we compare against 13 state-of-the-art methods,
which can be classified into 6 categories as follows.

� Traditional machine learning (ML) methods. Three shallow
models are employed in the comparison, including support vec-
tor machine (SVM) [29], random forest (RF) [29], and gradient
boosting (GB) [29].

� CNN based methods. A 2D CNN network was used in [28] to
predict the RUL for turbofan engines, while Li et al., used 1D
CNN with multiple channels for RUL prediction [8].

� LSTM based methods. A standard LSTM network [11] and a bi-
directional LSTM [12] were developed for RUL prediction. In
[31], LSTM is augmented with a bootstrap algorithm to predict
the RUL values.

� Ensemble methods. A deep belief network (DBN) is used
together with ensemble techniques for the RUL prediction task
[29].

� Hybrid CNN-LSTM based methods. Combination of CNN and
LSTM models has been used for RUL prediction. CNN and LSTM
can be cascaded in a sequential manner, e.g., CNN-LSTM [32]



Table 3
Comparison among various methods in terms of RMSE and Score.

Category RMSE Score

Method FD001 FD002 FD003 FD004 FD001 FD002 FD003 FD004

Traditional ML SVM [28,29] 40.72 52.99 46.32 59.96 7703 316483 22542 141122
RF [28,29] 17.91 29.59 20.27 31.12 480 70457 711 46568
GB [28,29] 15.67 29.09 16.84 29.01 474 87280 577 17818

CNN methods 2D CNN [28] 18.45 30.29 19.82 29.16 1287 13570 1596 7886
1D CNN [8] 12.61 22.36 12.64 23.31 274 10412 284 12466

LSTM methods D-LSTM [11] 16.14 24.49 16.81 28.17 338 4450 852 5550
LSTMBS [31] 14.89 26.86 15.11 27.11 481 7982 493 5200
BLSTM [12] N/A 25.11 N/A 26.61 N/A 4793 N/A 4971

Ensemble methods MODBNE [29] 15.04 25.05 12.51 28.66 334 5585 422 6558

Encoder-decoder methods BiLSTM-ED [26] 14.74 22.07 17.48 23.49 273 3099 574 3202

Hybrid CNN-LSTM methods CNN-LSTM [32] 14.4 27.23 14.32 26.69 290 9869 316 6594
BLCNN [33] 13.18 19.09 16.76 20.97 302 1558 381 3859
HDNN [30] 13.02 15.24 12.22 18.16 245 1282 288 1527

Proposed ATS2S 12.63 14.65 11.44 16.66 243 876 263 1074

IMP 3.87% 6.4% 8.3% 0.82% 31.6% 8.7% 29.7%
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put CNN in the first stage, while BLCNN [33] reversed the order.
In addition, HDNN [30] combined both the features from CNN
and LSTM to generate the final predictions.

� Encoder-decoder based methods. BiLSTM-ED [26] first extracts
health index and then estimates the health index curves using
linear regression model. Finally it uses curve-similarity match-
ing to estimate the RUL.
Table 4
Comparison of the number of parameters between the proposed method and some state-

Model ATS2S BLSTM

Number of model Parameters 13628 29053

Fig. 8. Comparison between predicted RULs of the proposed model and the actual RULs.
sorted in descending order based on their RUL values.
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Table 3 shows the comparison among the above methods for
RUL prediction. Note that the highest score in each column is in

bold, while the second best score is underlined. We have used
the same datasets and experimental settings of the compared
approaches to ensure fair comparison. Hence, in Table 3, we have
directly reported their published results.
of-the-arts.

HDNN BLCNN BiLSTM-ED D-LSTM

54766 16196 345600 14865

Each point represents a test engine and its corresponding RUL. The test engines are
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We can observe that our proposed ATS2S outperforms all the
other methods consistently, except that it achieves a comparable
RMSE with 1D CNN [8] on FD001 dataset. In particular, our ATS2S
achieves significant improvement over the state-of-the-arts on
FD002 and FD004, which are two complex datasets with multiple
working conditions and thus indicate more practical scenarios.
For example, ATS2S is able to achieve improvements over the sec-
ond best performer on FD004 by 8.3% and 29.7% in terms of RMSE
and Score, respectively. Such improvements on FD002 and FD004
demonstrate that ATS2S has clear advantages over the competing
methods to handle the complex datasets. In addition, compared
with the RMSE metric, our ATS2S achieves even better improve-
ments in terms of the Score metric, indicating that we can better
address the issue of late predictions.

To further evaluate the complexity of our proposed model, we
have compared it with some state-of-the-art methods for RUL pre-
diction, i.e., BLSTM, HDNN, BLCNN, BiLSTM-ED, and D-LSTM, in
terms of the number of model parameters. The results are shown
in Table 4. It can be clearly seen that our model requires less num-
ber of parameters, which indicates its efficiency. In a nutshell, our
Fig. 9. Ablation study for the

Fig. 10. Study of feature importa
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ATS2S outperforms existing state-of-the-arts for RUL prediction in
terms of RMSE and Score without requiring additional computa-
tional burden.

To further show the efficacy of our proposed approach, we have
visualized the predicted RUL against the true RUL for test engines
among four different datasets, as shown in Fig. .8. It worth noting
that we have sorted the RUL values of test engines in descending
order for clearer visualization. It can be clearly seen that our pre-
dicted RUL values are well aligned with the true RUL values for
all the four datasets.

4.4. Model analysis

4.4.1. Ablation study
In this section, we disentangle the contribution of each part of

the ATS2S model. In addition to the ATS2S model, we further derive
three variants, namely (1) Basic sequence to sequence model with-
out reconstruction or attention, (2) Basic model with reconstruc-
tion, (3) Basic model with attention. Fig. 9 shows the comparison
between these 3 variants and the proposed ATS2S model. Based
proposed ATS2S method.

nce of the proposed method.



M. Ragab, Z. Chen, M. Wu et al. Neurocomputing 466 (2021) 58–68
on the comparison shown in Fig. 9, we can further draw two
conclusions.

Firstly, our proposed ATS2S model with both attention mecha-
nism and reconstruction architecture achieves the best perfor-
mance over 4 datasets in terms of both metrics, showing that it
is indeed more effective for RUL prediction than basic sequence
to sequence model. This demonstrates that learning from most rel-
evant information from long sensor signals by attention mecha-
nism (not just focusing on the latest information), as well as
enabling predictive power and capturing temporal dependencies
by reconstruction architecture, are critical for improving RUL
prediction.

Secondly, the model with attention mechanism outperforms
the model with reconstruction architecture, indicating that atten-
tion mechanism has larger impact than reconstruction task in
Fig. 11. Sensitivity analysis o

Fig. 12. Illustration of attention weight
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our ATS2S model. Without the attention mechanism, we squash
the whole input sequence into a single hidden vector (i.e., the last
hidden state of the encoder). Instead, attention mechanism can
consider all the hidden states with different weights and help to
learn better comprehensive dual-latent feature representation from
both encoder and decoder for RUL prediction.

4.4.2. Feature importance analysis
As shown in Fig. 3, we use the dual-latent feature representation

to integrate features from both encoder and decoder for RUL pre-
diction. To study the importance of the features used in our ATS2S,
we conduct experiments using three different feature sets, namely,
encoder features (i.e., encoder hidden states), decoder features and
integrated features, i.e., encoder-decoder features (dual-latent fea-
ture representation). Fig. 10 shows the detailed model
f reconstruction weight.

s for a randomly selected sample.
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performance with three different feature sets. We can observe that
dual-latent feature representation achieves the best performance
over all four data subsets consistently, indicating the importance
of a comprehensive representation with rich semantics from both
encoder and decoder features.

4.4.3. Sensitivity analysis
As shown in Eq. (15), the parameter a controls the contribution

of reconstruction loss in the final joint loss. In this section, we per-
form the sensitivity analysis for this parameter a. Fig. 11 shows the
performance of ATS2S model across four datasets with different
values for a. Overall, it can be clearly observed that equal contribu-
tion from both reconstruction and prediction loss (i.e., a ¼ 1)
achieves the best performance, demonstrating that both of them
are critical for accurate RUL predictions.

4.4.4. Attention weights
To demonstrate our model capability on capturing long-term

dependencies, we have visualized the attention weights among dif-
ferent time steps. Fig. 12 shows the attention weights of a
randomly selected sample at one decoding time step. It can be
found that the model pays more attention to previous time steps.
This indicates that the attention mechanism helps the model to
capture long-term dependencies of the data.

5. Conclusion

In this work, we presented a novel attention-based sequence to
sequence model ATS2S to accurately predict equipment RUL,
which has huge impact for many real-world applications. In partic-
ular, we designed a novel framework that learns to reconstruct the
next sequence and predict the RUL labels concurrently. In addition,
we showed our attention mechanism can better capture all the rel-
evant historical information from long sensor sequences than stan-
dard LSTM approach which focuses on the latest information only.
Finally, our dual-latent feature representation which integrate both
the encoder and decoder features is very effective for RUL predic-
tion. Our extensive experimental results demonstrate that our pro-
posed ATS2S significantly outperforms 13 state-of-the-arts for RUL
prediction across 4 benchmark datasets consistently.

One limitation of our work, as well as existing studies, is the
assumption that a large amount of labeled data are always avail-
able. This assumption may not be feasible for many real applica-
tions. As annotating time series data can be very labor intensive
even for experts. Hence, as a future work, we are aiming to rely
on the unsupervised input forecasting or another self-supervised
learning task to learn feature representation in an unsupervised
manner [34]. After that, we can finetune the model with few
labeled data to learn the corresponding prognostic task. Reducing
the required amount labels can be of great importance towards
more practical data-driven RUL prediction.
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