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A B S T R A C T   

Remaining useful life (RUL) prediction plays an important role in increasing the availability and productivity of 
industrial manufacturing systems. This paper proposes a joint classification-regression scheme for multi-stage 
RUL prediction. First, the time domain and frequency domain features are extracted from various types of 
raw sensory data (e.g., acoustic, current, vibration and temperature) to constitute the training data set. Second, 
the system health stage is classified based on the trained model and real-time sensory data. Third, we perform 
stage-level RUL prediction with regression algorithm to estimate overall useful life. Distinct from the existing 
RUL estimation algorithms, the proposed multi-stage remaining useful life (MS-RUL) prediction effectively in-
tegrates the machine/deep learning based classification and regression to improve overall estimation accuracy. 
We conduct the performance evaluation with sensory data from real manufacturing systems. Experimental re-
sults demonstrate that the proposed MS-RUL achieves approximately 6.5% accuracy improvements over the 
state-of-the-art algorithms in the RUL prediction.   

1. Introduction 

Prognostic and health management schemes are the key technologies 
in predictive maintenance for various industrial applications [1,2,35, 
45], e.g., advanced manufacturing, power systems, aircraft engines, 
vehicles, and heavy industry. In particular, prognostic technologies are 
commonly adopted to estimate the future status/performance of a sub-
system or a component for remaining useful life (RUL) prediction 
[3–10]. Furthermore, prognostic solutions also evaluate the system/-
component degradation based on provided environmental conditions. 
For instance, accurate prediction of engine failure is critical to make 
maintenance decisions, so that the maintenance cost can be reduced and 
the operational activities can be streamlined. 

Based on the existing studies [11,12], the current prognostic solu-
tions can be generally divided into the categories of: (1) modeling-based; 
(2) data-driven; and (3) hybrid methods. 

In modeling-based solutions, the prediction models are developed to 
characterize the degradation level of a component/subsystem. For 
example, the authors in reference [13] adopt the Paris’s fatigue law to 
model the defect growth rate of a bearing. In literature [14], the crack 
growth of rotor shaft is analytically modeled based the Forman law in 

linear elastic fracture mechanics. However, these solutions require 
special domain knowledge and are not effective in characterizing com-
plex systems. 

Data-driven methods typically develop prediction models from sen-
sory data of industrial systems. Conventionally, the statistical and ma-
chine learning algorithms are used in these models to capture the system 
performance. Therefore, these data-driven solutions is able to balance 
the relationship between applicability, complexity, and precision. The 
representative data-driven approaches include neural networks [15], 
Markov models/chains [16–18], autoregressive algorithm [21], sto-
chastic models [22], and Bayesian networks [23]. 

However, several existing studies already point out the main prob-
lems with data-driven prognostic algorithms: (1) sufficient amount of 
training data is required in most of data-driven methods to learn the 
degradation model [24]. If the labeled data is absent, the number of 
healthy states need to be determined manually; (2) a system degradation 
model is assumed in most of these approaches for the specific component 
without sufficient evidence/proof; (3) although the methods based on 
neural network or deep learning entail highly accurate RUL estimations, 
they do not provide an in-depth understanding of the failure process. On 
the other side, the stochastic models perform better in exploring failure 
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mechanisms but generally have limited applicability to standard data 
sets. The hybrid approaches is a combination of modeling-based and 
data-oriented methods. In general, the hybrid model is developed based 
on both the specific-domain knowledge of the industrial applications 
and the parameters trained using real system data. 

To remedy the shortcomings of the above prediction methods, this 
paper proposes a Multi-Stage RUL (MS-RUL) estimation scheme. First, 
the proposed MS-RUL extracts the time-frequency domain freatures 
from various sensory data (e.g., acoustic, current, vibration and tem-
perature) to constitute the training data set. Second, the system health 
stage (e.g., new, medium, heavy) is classified based on the trained model 
and real-time sensory data. Third, we perform stage-level RUL predic-
tion with machine/deep learning regression algorithm to estimate 
overall useful life. SVM proves to be effective in RUL estimation [7,12] 
and this is the main motivation for us to adopt SVM for joint 
classification-regression. Distinct from the existing RUL estimation al-
gorithms, the proposed solution effectively integrates the machine 
learning based classification and regression to improve overall estima-
tion accuracy. MS-RUL is an effective and novel integration of the health 
stage classification and stage-level regression to achieve higher accu-
racy. The scientific justification of the proposed MS-RUL can be sum-
marized as combining the advantages of machine/deep learning based 
classification and regression algorithms. First, MS-RUL intelligently di-
vides and diagnoses the machine healthy stages. Second, the special 
degradation features of different healthy stages are exploited to improve 
the stage-level prediction accuracy. 

The motivation for us combine the two approaches of health stage 
classification and stage-level regression stems from our practical RUL 
prediction for tool wear in shaft production line (Section 4.2). In this 
problem, we observe that the whole life cycle of the tool can be divided 
into multiple health stages (e.g., new, medium, old) with different 
sensory data features. This motivates us to design the two-stage 
approach for RUL prediction and also apply on other representative 
data-sets (e.g., the C-MAPSS [40]). Experimental results demonstrate 
that our two-stage combination approach also achieves better perfor-
mance than other competing algorithms in this turbofan sensory data-set 
[40]. 

On the combination of the models for the two stages in MS-RUL, we 
have evaluated representative algorithms as shown in Tables 3, 5 and 6. 
These evaluation results demonstrate that the superiority of MS-RUL 
framework and the effectiveness of the combinations. In different 
application scenarios, there may be other combinations of approaches/ 
models to achieve high accuracy. Since there is a large number of ma-
chine/deep learning models, it is impossible for us to evaluate all the 
possible combinations. On the selection of the potential algorithms for 
each stage, we have conducted extensive comparison experiments with 
representative models (e.g., GB, SVM, LSTM and CNN) in Section 4. The 
performance is evaluated with commonly-used accuracy metrics, e.g., 
the RMSE and Score [40]. As the experimental results indicates, the CNN 
based MS-RUL achieves the highest average accuracy for the C-MAPSS 
data-set [40]. For other different data-sets, the selection of potential 
algorithms for each stage can follow the above routine. 

The special features and complexity of different sensory data need to 
be considered for effective combination of the two steps. For instance, 
the healthy stage classification is ineffective in application scenarios in 
which there are no distinct pattern differences observed in the raw 
sensory data of different health stages. To deal with such cases, we need 
to consider exploring the latent variables (e.g., by extracting frequency 
or using auto encoder) for accurate RUL prediction. In summary, the 
combination of different approaches for RUL prediction is dependent on 
specific conditions and environments. 

In particular, the contributions of this research can be summarized as 
follows.  

• We propose a novel RUL prediction scheme that models the multi- 
stage system/device degradation process with the following 
modules: 

–Classification: a health stage classification method that maps 
the continuous sensory data values to discrete machine/compo-
nent states. 
–Regression: a machine/deep learning based stage-level RUL 
prediction method to leverage the special features in different 
stages of useful life. 
–Labeling: an automatic labeling algorithm that leverages mem-
bership degree function to process unclassified continuous sen-
sory data. 
–Flexibility: the classification and regression modules can be 
implemented with different machine/deep learning algorithms 
(e.g., CNN, LSTM, SVM, etc.) according to the special system/ 
device features to improve prediction accuracy.  

• We evaluate the performance with real sensory data from shaft 
production system and open-source C-MAPSS data for engine 
degradation. Experimental results demonstrate: 

–the proposed MS-RUL framework achieves higher prediction 
accuracy than CNN (Convolutional Neural Network) [1], SVR 
(Support Vector Regression) [12], LSTM (Long Short-Term 
Memory), and LR (Linear Regression). 
–the deep learning algorithms (e.g., LSTM and CNN) achieve 
higher accuracy shallow learning (e.g., SVM and GB) algorithms 
in the proposed MS-RUL for joint classification-regression. 

The remainder of this paper includes the following parts. Section 2 
briefly reviews the related work close to this paper. In Section 3, we 
present the proposed algorithms of the MS-RUL in detail. The perfor-
mance evaluation is provided in Section 4. 

2. Related work 

The related work close to this paper generally include RUL estima-
tion algorithms and fault detection methods in industrial manufacturing 
systems/applications. In Table 1, we summarize and compare the 
representative studies on RUL prediction. The following subsections will 
discuss these works in detail. 

2.1. Data-driven RUL prediction schemes 

In reference [1], the authors adopt deep CNN based on regression 
approach for RUL prediction. The convolutional and pooling filters in 
[1] are applied along the temporal dimension over the multi-channel 
sensor data. However, the CNN model [1] is ineffective in capturing 
the sudden/fast degradation trends caused by faults/anomalies. In 
reference [12], the relationship between health indicator and sensory 
data values are directly modeled using SVR. Furthermore, an offline 
wrapper variable is used for selection before model training. This 
SVR-based prediction method has the limitations of using the same 
weight vector for different healthy stages of RUL. Orchard et al. [25] 
develop a RUL prediction algorithm that merges mutual information 
obtained from the multiple features and appropriately correlates with 
the machinery failure. Then, the authors estimate the RUL using a par-
ticle filtering-based algorithm. However, reference [25] assumes the 
same degradation trend for the whole life-cycle. In reference [28], a 
joint fuzzy mean clustering and neural network method is adopted to 
classify the sensory data into dynamic health status. And the RUL is 
calculated based on the time stamp of the failure status. This data-driven 
prognostic technique [28] is heavily dependent on the accurate failure 
threshold value and large amount of training data. Chen et al. [44] 
propose an intelligent and end-to-end health indicator construction 
approach which integrates the advantages of RNN and CNN. In [46], an 
attention-model based LSTM is proposed to improve the accuracy of 
machine RUL prediction. 
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2.2. Model-driven RUL prediction schemes 

Lei [2] et al. propose a machine RUL prediction method includes: (1) 
a stochastic model considering the multiple variability sources of ma-
chine degradation process; (2) a Kalman particle filtering algorithm to 
estimate the system states and predict RUL. The authors in reference 
[26] combine an unscented particle filter algorithm and degradation 
modeling to predict the RUL. The probability distributions of the last 
step for online update are considered as the RUL value distribution. 
However, it is widely acknowledged that the particle filter algorithm 
generally assumes a Gaussian distribution of the measured data. The 
data in practical scenarios may not follow the Gaussian distribution. The 
belief functions are adopted by Ramasso et al. [27] to classify the 
original sensory data into four healthy states. Then, the RUL is estimated 
as the duration from degradation to failure state. The fixed healthy state 
number in [27] usually cannot capture the degradation stages in prac-
tical industrial manufacturing systems/applications. In [19], the 
anomaly monitoring (raw sensor data change) is used in both RUL 
estimator training and deployment processes. Wang et al. [20] present 
tool RUL prediction approach based on Bayesian network and PF to 
reliably quantify the degradation trend. In [30], the tool wear state is 
predicted by recursively updating a physics-based tool wear rate model 
with online measurement, following a Bayesian inference scheme. 

In instance-based learning research, the system degradation is 
expressed as health indicator obtained with the fuzzy model [29], un-
supervised kernel regression modeling [31], linear regression [32]. Or 
using lower and upper envelopes of a trajectory to compute polygons 
[33]. Then, the RUL is calculated as a weighted moving average of all the 
useful life values from similar cases. However, the health indicator used 
for different healthy stages often cannot capture the fast/sudden 
degradations. 

2.3. Hybrid RUL prediction 

There are also some researches using pattern matching for prog-
nostic. These models first estimate the variation of a failure signal and 
the RUL is then estimated as the duration for the signal to approach the 
end of life (EOL). These approaches generally require adjusting failure 
threshold values. The Support Vector Regression [34] or Support Vector 
Machines [36] are adopted to capture degradation models. The minimal 
value obtained with the three mathematical models in reference [36] is 
used to estimate the RUL. In [37], the RUL estimation is made only for 
the state near the EOL and is defined as a percentage of EOL values. The 
particle swarm optimization is adopted by Qin et al. [34] to obtain SVR 
configuration parameters. Loutas et al. [38] use Wiener entropy to 
monitor conditions and locate critical system faults. Based on the 
establishment of a critical operational threshold, the RUL is then pre-
dicted. Dong et al. [39] combine SVR-PF model to estimate the 
component degradation time. Then, the RUL is estimated by updating 
the probability distribution when the time stamp changes. 

In summary, a failure threshold is generally required in the existing 
degradation and regression based prognostic methods. However, a static 
threshold is difficult to estimate and such static parameters are not 
adaptive to environmental changes. On the other side, the pattern 
matching methods normally do not require setting threshold values. The 
RUL estimation is the process of tracing the correct trend following its 
EOL value. Nonetheless, this approach cannot derive right solutions in 
the case that matched patterns are absent. This paper leverages the 
advantages of machine learning based classification and regression. And 
the special features of different stages are leveraged to improve the 
prediction accuracy. The idea of integrating the classification and 
regression schemes is motivated by the fact/observation that the ma-
chine/component RUL lifetime can be divided into multiple stages. To 
leverage this multi-stage degradation feature, we take efforts on devel-
oping the joint classification-regression framework including the feature 
selection, health stage classification, and stage-level RUL prediction. 

3. MS-RUL algorithms 

3.1. Overview of system framework 

The system framework of the proposed scheme is shown in Fig. 1. We 
consider the problem of system RUL prediction with real-time hetero-
geneous sensory data (e.g., acoustic, current, vibration, temperature and 
other sensory values). 

First, the time and frequency domains of features are extracted from 
four types of sensory data (i.e., acoustic, current, vibration and tem-
perature) to constitute the eigenvectors of support vector machine 
(SVM). In the data pre-processing phase, the time-frequency feature 
analysis is used for characterizing and converting data rows with vari-
able statistics in time. This step is a refinement and summarization of the 
Fourier transform for the case of time-varying signal frequency. In 
practical industrial applications, many sensory data (e.g., acoustic, vi-
bration, current values and temperature) have variable frequency fea-
tures and time-frequency analysis has wide range of application 
scenarios. 

3.2. Feature engineering 

Before the model training phase, it is important and necessary to 
differentiate the most important information from less important ones. 
Including the irrelevant/unnecessary features may degrade the training 
accuracy and delay performance of machine learning algorithms. 
Consequently, the selection of critical information is of vital significance 
for developing a model with high accuracy. Thus, the variable deter-
mination is a critical step on the improvement of SVR models. 

Based on the dependence on decision algorithms, the feature selec-
tion methods can be generally classified into three main groups: wrap-
pers, filters, and embedded methods. Specifically, the filters run 
independently of decision algorithms. The wrapper methods take into 

Table 1 
Comparison of the existing works on RUL prediction.  

Ref. Type Algorithm Contributions/Features Remarks 

[1] Data-Driven CNN Convolution-pooling applied along with temporal dimensions Ineffective for sudden degradation 
[12] Data-Driven SVR Health indicator to sensory data mapping, offline wrapper for training Same weight vector for whole life cycle 
[28] Data-Driven Clustering & NN  Dynamic health status Dependency on failure threshold 
[2] Model- 

Driven 
Stochastic model & Kalman filter  Stochastic model for degradation process Limited variability sources 

[26] Model- 
Driven 

Particle filtering (PF) Combining particle filter & degradation model  Gaussian distribution assumption 

[27] Model- 
Driven 

Belief function Sensory data classification into four health stages Fixed health stage number 

[37] Hybrid SV-based End of Life estimation Based on critical features 
[39] Hybrid SVR-PF Probability distribution based Assumption in distribution 
MS- 

RUL 
Hybrid Classification & regression  Automatic stage classification stage-level prediction Capture various degradation trends  
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account the performance of the decision algorithm during the criteria 
selection. Embedded methods are developed based on a decision mining 
algorithm for the feature filtering. In this system framework, a wrapper 
sensor selection scheme is adopted as the offline phase of the proposed 
solution. The performance and score of each type of sensory values, as 
well as the system-level values are tested first in order to analyze the 
impact on the trained model. Then, at each duration, a new sub-set of 
sensory data values are selected to achieve the best performance and this 
is achieve using the leave-one-out cross validation. 

In this work, we consider the features that characterize both the 
values and the trend of the time-series data in a sliding window. The 
time series is first decomposed into non-overlapping windows of a fixed 
size. For each window, we extract the following parameters per 
dimension: the mean value of the sliding window and the trend 
parameter on the sliding window. Consequently, the feature vector el-
ements of size 2 times the time-series dimension is obtained for each 
sliding window. The remaining useful life is then associated with the 
feature vector elements. 

As shown in Table 2, the time-domain features include the mean 
value, maximum value, minimum value, variance, root mean square, 
first quartile, and mean absolute value. Specifically, the equations for 
some of these time domain and frequency domain features are listed 
below: 

Mean (μ) =

∑n

i=1
xi

n
,

Variance (σ2) =

∑n

i=1
(xi − μ)2

n
,

Root mean square =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1
(xi)

2

n

√

,

Skewness =

∑n

i=1
(xi − μ)3

n × σ3 ,

Kurtosis =

∑n

i=1
(xi − μ)4

n × σ4 − 3.

The fast Fourier transform can be applied to capture the frequency of 
different signal values. Note that his method also requires the de-
scriptions of the signal features over the whole lifetime. In merging the 
information across the time domain, it is natural to consider also 
leveraging the points in the frequency/spectral domain. Table 2 also 
presents the frequency-domain features including correlation, spectral 
roll-off, spectral centroid, spectral flux, Kurtosis and Skewness. 

We use the data buffer to deal with the non-stationary time-series 
data in the RUL prediction process. The buffer size can be dynamically 
adjusted according to the specific requirements (e.g., the data sampling 
frequency and delay requirement). In our proposed MS-RUL, the buffer 
size is 30 seconds because of the accuracy results. As shown in Table 8 of 
Section 4.4, the buffer size of 30 s is able to achieve the highest average 
accuracy for different data-sets. Please note the RUL prediction prob-
lems considered in this research are normally delay-tolerant (i.e., there 
is no strict deadline). A shorter buffer size can be adopted if the RUL 
prediction is imposed with tighter delay constraint. 

3.3. Health stage classification 

The health stage classification step is used to determine the current 
system/machine status, such that the RUL of the current and remaining 
stages can be estimated. Basically, this step can be performed using 
machine/deep learning based classification algorithm. In this section, 
we describe the health stage classification using the SVM algorithm. The 
other machine/deep learning algorithms (e.g., CNN, LSTM, GB, etc.) can 
also be adopted in the MS-RUL for this stage classification. 

We consider the problem in which three groups of data (e.g., new, 
medium and heavy states in this studied problem) have to be classified. 
Basically, these cases are considered independently, i.e., the multiple 
classes can be linearly separated. Assume that a training data-set in-
cludes sensory data values is available and the status values {− 1, 0,1}
are allocated to the three classes in which the original sensory data can 
be classified, e.g., 

yi =

⎧
⎨

⎩

− 1, if i-th sample ∈ − 1,
0, if i-th sample ∈ 0,
1, if i-th sample ∈ 1.

(1) 

The three classes are assumed to be separable. Then, it is feasible to 
obtain a function f(x) subject to the condition of 

yi⋅f (x) > 0, ∀i.

The largest margin Π within the hyperplane is selected among the 
three classes: this can also be regarded as the constrained maximization 
problem 

argmax
β,β0 ,‖β‖

{Π}

subject to: yi⋅f (x) ≥ Π, i = 1,…, n.

Fig. 1. System design of the proposed multi-stage RUL prediction scheme.  

Table 2 
Time and frequency domain feature list.  

Time-domain features Frequence-domain features 

Mean Correlation 
Max Spectral roll-off 
Min Spectral centroid 
Variance Spectral flux 
Root mean square Kurtosis 
First quartile Skewness 
Mean absolute value Amplitude  
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In practical classification issues, the multiple classes may be non-
separable, i.e., the three categories interlace. In these cases, SVMs can 
still be used and some samples may be on the incorrect side of the 
separation line. For the separable cases, the optimization is updated by 
revising the condition as 

y⋅(β0 + xi⋅β) ≥ Π − ξ = Π⋅(1 − ξi) ∀i, (2)  

in which the slack variables ξi satisfy the following conditions: ξi ≥ 0 
(the points on the incorrect side of the margin area are labeled with 
ξ∗i > 0, while the points on the correct side are marked as ξi = 0) and 
∑n

i=1ξi ≤ ℝ. Then, the constrained optimization problem is converted to 

argmin
β,β0

{
1
2
‖ β ‖ +γ

∑n

i=1
ξi

}

subject to: y⋅(xi⋅β + β0) ≥ 1 − ξi, i = 1,…, n.

In the above problem, the γ (i.e., regularization parameter) determines 
the relationship between the sum of values of the slack variables and the 
margin. 

3.4. Labeling: value-to-status mapping 

Algorithm 1. Continuous value to discrete status    

In the case that the labels of machine/component status is unavai-
lable, the value-to-status mapping algorithm in this subsection is 
adopted to achieve the target. We consider the membership function set 
(represented as MF) and the discrete value set (denoted with DS) as 
correlated arrays whose paired elements including the same index 
should be treated as an integral unit. A continuous sensory data value 
can be mapped to multiple discrete values in case that the probability 
density of the fitted Gaussian distribution includes several terms. This is 
because an identical numerical characteristic is reflected in each term, i. 
e., the values indicated by a term are closer in semantic than those 
represented with other terms. 

The proposed Algorithm 1 (Continuous Value to Discrete Status 
Mapping) is adopted for this sensory data to discrete status mapping 
process. Specifically, the membership degree of sensory data will be 

calculated when the raw data is obtained. And the status values {− 1,0,
1} closest to the membership degree is selected as the current discrete 
state. In particular, the hyperplane F0 in the space ℝp is defined as 

F0 = {x|f (x) = xβ + β0 = 0}, (3)  

where the parameter β ∈ ℝp is of normalization β = 1. Then, the status 
classification is according to the selection of f(x) (and as a result of F0): 
for a new data sample xi ∈ 𝒮, we classify 

yi =

⎧
⎨

⎩

− 1, if f (xnew) ∈ − 1,
0, if f (xmedium) ∈ 0,
1, if f (xheavy) ∈ 1.

(4) 

In the data training process, a sample set of continuous sensory 
values is collected and the value-to-status mapping algorithm (see Al-
gorithm 1) is invoked to calculate the discrete values (if the status labels 
are unavailable). In particular, (1) a continuous sensory value is mapped 
into a discrete one from step 2 to step 8; (2) an basic discrete state is 
converted into the expected format from step 11 to step 14. 

3.5. Stage-level RUL prediction 

The objective of this module is to estimate the variable value y (i.e., 
the RUL value of the current stage) using prediction variables x resulted 
from the regression calculations. Similar to the health stage classifica-
tion step, this process can also be implemented with different machine/ 
deep learning algorithms according to special features/requirements. 

Therefore, the main idea is to obtain a function that models the tradeoff 
between the target variables and the predictor: y ≃ f(x). 

This section provides an example of adopting ∈-SVR for stage-level 
RUL prediction. In ∈-SVR, the symbol ∈ determines the number of er-
rors permitted in the algorithm. The objective of ∈-SVR selection is to 
obtain an affine function f(x) satisfied to: for all the training samples, 
there are maximum ∈ deviations of f(x) from the targets y and this 
function should also be possibly flat. We introduce the slack variables of 
ζi and ζ∗i into the optimization problem and it can be converted into 

argmin

{

‖ ω‖2 + C
∑N

i=1
(ζi + ζ∗

i )

}

(5)  
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subject to :

⎧
⎪⎪⎨

⎪⎪⎩

yi− < ω, xi > − b ≤∈ +ζi

< ω, xi > +b − yi ≤∈ +ζ∗
i ,

ζi, ζ∗
i ≥ 0.

(6) 

Specifically, the parameter C > 0 determines the tradeoff between 
the errors tolerance (larger than ∈) and the flatness of target function. 
The kernel-trick similar to SVM is adopted to analyze the nonlinear re-
lationships between the parameters x and y. Namely, the input data is 
mapped into a feature-space of higher dimension and a linear ∈-SVR is 
used on this space of new high dimension. The result of this SVR 
calculation is a model to be employed to estimate the RULs in each stage. 

The SVR model trained from the health stage classification step is 
now adopted to estimate the RUL of the current stage of the specific 
components. The context is stated as follows: the sensory value of the 
target component is continuously monitored and the objective is to es-
timate when this component is likely to fail based on the historical data. 
The monitoring of the target component is modeled using a time series 
data U = u1, …, ul(U). However, the information about the last moni-
toring event l(U) is provided in the previous subsection (status classifi-
cation). The per-status RUL estimation process introduced in this 
subsection aims at estimating the duration between the failure instant 
and l(U) of the testing component. 

Firstly, we split the time series U into sliding windows of size L. For 
these sliding windows, we should also note the cases of overlapping as 
follows: By converting the previous time instant, a new window is 
created. Totally, the time series U has nU = l + l(U) − L such windows. 
The trend features are extracted following the steps in the previous 
subsection to obtain a feature vector for each of these sliding windows. 
The SVR model predicts the time (from the last event of the sliding 
window) at which a failure is supposed to occur when the feature vector 
xk of the kth window of U is provided. Therefore, the model prediction 
value yk for window k indicates the failure time instant of fk = L+ k −
1+ yk. Finally, this will result in nU predictions: f1,…, fnU for the esti-
mated failure occurrence events. We select a mean of these values the 
final RUL prediction of U. 

In prognostic techniques, it is also fairly important to add a confi-
dence interval measurement to the RUL prediction. Specifically, the 
error covariance matrix is used to calculate the confidence interval of 
the RUL prediction in the estimation phase. Given the uncertainty of the 
estimated results between the actual measurements and predicted state, 
the covariance matrix of estimation error is updated after each phase. 
This can be either the variance or entropy. P(1,1) includes the uncer-
tainty of the conjectured state. Provided this uncertainty, a confidence 
interval of 95% can be introduced for this estimation. The lower and 
upper bounds of xlbd = x(l) − 2.567⋅P(1,1) and xubd = x(l) + 2.567 ×

P(1, 1) can be calculated. Besides, these values can also be predicted as 
the failure threshold to determine the lower and upper confidence 
intervals. 

4. Performance evaluation 

This section presents the performance evaluation of the MS-RUL 
framework using both open-source and real production-system data. 

4.1. Experimental setting 

To validate the efficacy of the proposed solution, we implement MS- 
RUL using SVM, GB (Gradient Boost), LSTM and CNN for performance 
comparison. The implemented CNN architecture is based on our previ-
ous work [1] on RUL prediction. The results of the following reference 
algorithms are also included:  

• LR (Linear Regression): linear regression is the basic linear approach 
to characterize the relationship between a explanatory variables (or 
independent variables) and scalar response (or dependent variable).  

• CNN (Convolutional Neural Network): In reference [1], the CNN is 
firstly adopted for the RUL prediction. This network architecture is 
composed of multi-variate time-series input, 2 convolutional 
filtering layers, 2 polling filtering layers and one fully connected 
layer.  

• LSTM (Long Short Term Memory) [7]: In the LSTM algorithm, we set 
the sliding window size as 50. All the simulations for this algorithm 
are conducted using original data.  

• SVR (Support Vector Regression) [17]: The SVR uses the same RBF 
kernel as the SVM, with the objective to find the objective RUL as a 
continuous value (instead of a discrete value as the status classifi-
cation). Note that this SVR algorithm also represents the solution 
without using multiple stages. 

For the CNN-based MS-RUL, the network structure is adjusted for the 
multi-variate time-series data. Specifically, we use two pairs of con-
volutional layers, two pairs of pooling layers and one fully-connected 
multi-layer perceptron. All end layer feature maps are concatenated 
into a vector as the MLP input for RUL estimation. Training stage in-
volves the CNN parameters estimation by standard back propagation 
algorithm using stochastic gradient descent method to optimize objec-
tive function, which is cumulative square error of the CNN model. 

Theoretically, the optimal SVM parameters are obtained by adopting 
grid search technique (cross validation) over the training data. However, 
the grid search algorithm incurs polynomial complexity of M × N times, 
in which M denotes the optional amount of C and N represents the 
optional amount of γ. To reduce the time complexity, a two-phase grid 
search is conducted to guarantee calculation efficiency and optimize the 
parameter selection process:  

• In the first stage, we select a larger step size and testing interval. For 
instance, the step size is configured as 4 and the testing interval is {
2− 15,215}. Within a large range, this step is critical to generally locate 
the optimal values (Copt, γopt) of the kernel.  

• In the second stage, we adopt a testing range covering (Copt, γopt) and 
smaller step size. Experimental results demonstrate that the optimal 
values (Copt, γopt) of the kernel is (20,21). Prior studies suggest that the 
optimal value of C is often located in the interval larger than 20. And 
the optimal value of γ is more likely to appear in interval smaller than 
20. The search intervals of γ and C are γ = {2− 9,2− 8,…,22} and C =

{2− 2,2− 1,…,29}, respectively. Then, the optimal parameter setting 
can be obtained by comparing and selecting the combination with 
the highest classification accuracy, e.g., accuracy = 0.932 for C =

20,γ = 2− 1, accuracy = 0.926 for C = 21,γ = 2− 2, and accuracy =

0.936 for C = 20, γ = 21. 

4.2. Evaluation with real sensory data 

In this subsection, we present and discuss the evaluation results 
measured from a real shaft production system. Specifically, this pro-
duction system includes the acoustic, current, and vibration sensors to 
provide real-time feedback information. The data profile is presented in 
Fig. 2. The original sensory data from different channels need to be 
merged as the input for model training. In this production system, tool 
wear (caused by surface cutting operations) is one of main factors that 
impact on the shaft quality (e.g., surface roughness, roundness, and 
diameter). Therefore, we use the evaluation algorithms to predict the 
tool RUL and the tool conditions are classified into three states (new, 
medium, heavy). 

For this evaluation data set from real shaft production system, the 
labels to classify the machine states are available and these states 
represent the tool conditions. 

Table 3 presents the average prediction accuracy of the different 
evaluated algorithms. As show in the table, the proposed MS-RUL is able 
to achieve approximately 90% accuracy. While the reference schemes 
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are around 71–83 percent. This is because the per-state RUL estimation 
can overcome the uncertainties in different stages, e.g., caused by cut-
ting system dynamics, tool mis-alignment, and other faulty conditions. 

Fig. 3 presents the accuracy comparison in terms of RUL versus the 
number of cycles. This accuracy is expressed as 1 − MAPE (Mean ab-

solute percentage error), in which MAPE = 1
n
∑n

i=1

⃒
⃒
⃒
⃒
Actual− Predicted Actual

⃒
⃒
⃒
⃒. 

Specifically, each cycle is approximately 6.13 s according to the average 
RUL of tool data. As shown in the results: (1) LR models the RUL as 
linear-type variation trend and the result is normally too large/small 
than the actual value; (2) SVR uses a single weight vector to determine 
the whole RUL and thus is often unable to capture the special tool 
conditions in different stages. For our proposed MS-RUL solution, we 
present two typical results of MS-RUL (SVM) and MS-RUL (CNN) in 
Fig. 3. The microscopic results obtained from MS-RUL (GB) and MS-RUL 
(LSTM) are very close to the above two, respectively. As it can be 
observed, CNN performs slightly better than SVM in the estimation 
accuracy. 

An important module in our proposed MS-RUL is the value-to-status 
mapping algorithm (Algorithm 1 in Section 3.4). This module is used to 
classify the data into different states if the labels are unavailable. 
Therefore, the accuracy of the Algorithm 1 is critical to the performance 
of MS-RUL. In our experiment, we evaluate the classification accuracy of 
Algorithm 1 for different types of real sensory data by comparing with 
the ground truth of the labels provided. As indicated in the results, the 
overall state classification accuracy is 89.3% by integrating different 
types of data. 

Table 4 presents the accuracy of the linear, RBF (Radial Basis 
Function) and polynomial kernels. As the results indicate, the classifi-
cation accuracy of the RBF kernel is approximately 2% higher than the 
polynomial and linear. Therefore, the RBF kernel is selected as the SVM 

Fig. 2. Profile of the real sensory data from production system.  

Table 3 
Average prediction accuracy.  

Algorithm Avg. prediction accuracy (%) 

LR 71.5 ± 3.2  
SVR 76.5 ± 3.5  
LSTM 81.3 ± 2.9  
CNN 83.5 ± 2.7   

MS-RUL Avg. prediction accuracy (%) 

MS-RUL (GB) 88.2 ± 2.1  
MS-RUL (SVM) 90.3 ± 1.8  
MS-RUL (LSTM) 90.5 ± 1.5  
MS-RUL (CNN) 91.2 ± 1.1   

Fig. 3. RUL degradation trends predicted by the evaluated algorithms.  

Table 4 
Classification accuracy of different SVM kernels.  

Kernel Avg. classification accuracy (%) 

Linear 90.3 ± 0.35  
RBF 93.7 ± 0.21  
Polynomial 91.3 ± 0.32   

Fig. 4. RMSE for different numbers of input parameters.  
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kernel in our proposed MS-RUL. 
SVM performance is known to get affected by sensational variations 

or peaks in time series data [43]. As far as we can see, such influence can 
be mitigated by involving more useful sensory data in the RUL predic-
tion. This result in Fig. 4 is evaluated with the FD003 dataset of 
C-MAPSS. As it can be observed, a higher accuracy can be generally 
achieved if more types of sensory data values are involved. 

4.3. Evaluation with C-MAPSS data [40] 

The C-MAPSS data set is commonly used in existing studies [2,40] for 
performance comparison. This data set includes multiple multivariate 
time-series signals generated by a simulation model developed based on 
the Commercial Modular Aero-Propulsion System Simulation 
(C-MAPSS). Totally, 26 signals/inputs (e.g., temperature, pressure, 
rotation speed, and other sensory values) are generated for the 
open-loop system operations. Specifically, three of these inputs repre-
sent the configuration of the system environments, twenty one are the 
sensory data records and the remaining ones denote the number of cy-
cles and engine IDs. 

Each data set stands for a different engine from the same operation 
system. Each engine includes different system elements, e.g., high/low 
pressure compressors, turbines, fan and other components. The flow-
chart that describes how various subroutines are assembled and main 
elements of the engine model in the simulation are presented in Fig. 1 of 
reference [40]. Interested readers can refer to [40] for more informa-
tion. The engine operations are normal at the start and a fault is intro-
duced at a time before the system failure. 

The dataset is featured by single failure mode and operating condi-
tion. The text files for this data set are listed as follows:  

• “TRAIN FD001-4”: include 100, 260, 100, 248 training units. The 
measurement data starts at a degradation level with similar patterns 
that is considered healthy and stop when failure is reached.  

• “TEST FD001-4”: include 100, 259, 100, 249 testing units. The time 
series data is incomplete and finishes before engine failure. The 
target is to predict the remaining lifetime.  

• “RUL FD001-4”: specify the actual RUL values which are used as the 
baseline (standard values) for comparison. Fig. 5 presents the actual 
values used as the ground truth for comparison. 

4.3.1. Evaluation metrics 
Score: This evaluation metric is defined by the authors of the C- 

MAPSS data set [40] and is widely used in existing studies [12,28] for 
performance comparison. And the mathematical expression is as 
follows. 

Score =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑n

i=1
exp

{

−
d
a1

}

− 1, if d < 0,

∑n

i=1
exp

{

−
d
a2

}

− 1, if d ≥ 0,

(7)  

where n is the total number of units under test, d = Estimated RUL −
True RUL, a1 = 10 and a2 = 13. 

Root Mean Square Error (RMSE): RMSE is also a commonly-used 

metric to compare the accuracy of competing algorithms. In partic-
ular, the mathematical expression of RMSE is as follows. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Estimated RUL − True RUL)2

n

√

.

4.3.2. Evaluation results 
Table 5 lists the score of the different algorithms for performance 

comparison. In general, the proposed MS-RUL achieves the lowest score 
(i.e., the highest accuracy) for all the data sets. For all the algorithms, the 
score results of FD002 and FD004 are obviously higher than those of 
FD001 and FD003. This is because of the larger number of engines and 
more faulty conditions in simulations. Due to the higher complexity, the 
difficulty in RUL estimation also substantially increases. The superiority 
of our proposed solution indicate the importance of identifying the 
health stage in RUL prediction. 

Table 6 presents the RMSE of different algorithms for the turbofan 
datasets. The pattern is similar to that shown in Table 5. Our proposed 
MS-RUL still achieves the lowest RMSE among all the evaluation 
methods. In particular, the deep learning algorithms (CNN and LSTM) 
perform better than shallow learning (GB and SVM) in the MS-RUL 
framework. Both the RMSE and score values reflect the accuracy 
improvement of using deep learning algorithms in MS-RUL. This is 
because both the CNN and LSTM are able to explore more system 
degradation information than the other shallow learning methods [1]. 

In order to have a microscopic view of the evaluation results, the 
comparison of FD001 results are shown in Fig. 6. It can be seen from the 

Fig. 5. Actul RUL plots of the C-MAPSS data set.  

Table 5 
Score [Equation (7)] of the evaluated algorithms.  

Baseline algorithms FD001 FD002 FD003 FD004 

LR 2200 19,012 2629 14,173 
SVR 2394 18,074 2137 8210 
LSTM 983 17,568 1539 9038 
CNN 1372 16,048 1546 8843  

MS-RUL Performance FD001 FD002 FD003 FD004 

MS-RUL (SVM) 765 14,192 1335 6568 
MS-RUL (GB) 772 13,893 1346 6423 
MS-RUL (LSTM) 748 13,761 1293 6375 
MS-RUL (CNN) 732 13,566 1262 6126  

Table 6 
RMSE of the evaluated algorithms.  

Algorithm FD001 FD002 FD003 FD004 

LR 23.45  33.23  23.36  34.79  
SVR 21.74  31.76  22.42  30.87  
LSTM 18.98  30.87  20.62  29.83  
CNN 19.7  30.39  20.18  29.69   

MS-RUL Performance FD001 FD002 FD003 FD004 

MS-RUL (SVM) 17.12  29.79  19.57  28.27  
MS-RUL (GB) 17.92  28.63  20.56  28.13  
MS-RUL (LSTM) 17.26  28.15  19.13  27.78  
MS-RUL (CNN) 16.89  27.52  18.62  27.12   

J.-Y. Wu et al.                                                                                                                                                                                                                                   



Journal of Manufacturing Systems 58 (2021) 109–119

117

results’ trend that the predicted values of our proposed MS-RUL methods 
(both in SVM and CNN) track closely to the actual RUL values, and 
achieve the lowest deviations. For other competing solutions, we can 
observe large differences from the ground truth. 

The experimental results for the FD002 dataset is shown in Fig. 7 for 
comparison. As the number of engines increases, larger variations and 
differences are reflected in the RUL value comparisons. For our proposed 
solution, the difference and variation is obviously lower than the 
reference algorithms. The results reflect our proposed algorithm is able 
to achieve higher performance superiority in more complex operation 
conditions. 

Based on the above evaluation results using both real sensory and C- 
MAPSS data, we can have the following conclusions: (1) MS-RUL out-
performs the baseline algorithms and the superiority becomes larger for 
complex data set; (2) the deep learning algorithms (CNN and LSTM) 
perform better than shallow learning (SVM and GB) in MS-RUL for the 
joint classification-regression. 

4.3.3. Execution time (efficiency) 
Table 7 presents the execution time (efficiency) of the evaluated 

algorithms. As it can be observed from the table that LR algorithm 
achieves the lowest execution time. This is because the complexity of LR 
is obviously lower than other algorithms. However, the average pre-
diction accuracy of LR is also the lowest. The deep learning algorithms 
(e.g., CNN, LSTM, MS-RUL) generally incur higher execution time and 
achieve higher prediction accuracy. 

4.4. Impact of buffer size 

This subsection presents the results to validate the impact of buffer 
data size in MS-RUL. We evaluate the buffer sizes from 10 to 50 s using 
both data-sets from the shaft production system and C-MAPSS (FD002). 
As shown in Table 8, the buffer size of 30 s is able to achieve the highest 

Fig. 6. Ground truth versus predicted values for the FD001 dataset.  

Fig. 7. Actual versus predicted values for the FD002 dataset.  

Table 7 
Efficiency (execution time in units of seconds) of the evaluated algorithms.  

Algorithms FD001 FD002 FD003 FD004 

LR 4.3  17.5  4.6  18.8  
SVR 15.7  78.6  18.3  80.5  
LSTM 35.3  92.2  43.6  97.6  
CNN 22.6  85.2  26.3  91.2  
MS-RUL (CNN) 29.7  91.8  30.2  97.5   

Table 8 
Accuracy results for different buffer sizes.  

Data-set Real data from shaft production systems 

Buffer size 
(s) 

10 20 30 40 50 

Accuracy 
(%) 

87.6 ± 2.6  89.3 ± 2.2  91.2 ± 1.1  88.7 ± 1.9  87.3 ± 2.5   

Data-set FD002 

Buffer size (s) 10 20 30 40 50 

RMSE 13965  13773  13566  13792  13916  
SCORE 28.47  28.13  27.52  28.26  28.74   
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accuracy and this buffer size is adopted as the default setting in our 
experiments. 

4.5. Scientific justification 

In summary, the scientific justification for our proposed MS-RUL can 
be summarized as follows:  

• Empirical/Experimental evidence: The evaluation results with the 
real sensory data and C-MAPSS data-set [40] prove that MS-RUL is 
able to achieve higher RUL prediction accuracy than the existing 
models/algorithms. Those two data-sets of shaft and turbofan 
represent the typical industrial application scenarios with machinery 
components. As summarized in Table 9, experimental results 
demonstrate that MS-RUL achieve more than 6% accuracy 
improvement than the existing deep learning models (e.g., CNN and 
LSTM) in the evaluated data-sets. Therefore, it is desirable to adopt 
our MS-RUL in these real problems to improve the efficiency in 
predictive maintenance to guarantee system reliability and reduce 
the cost.  

• Scientific idea: The scientific idea to develop this multi-stage 
framework is that RUL variation is a complex process, and multi- 
gradient based estimation is more accurate than the single-gradient 
estimation as shown in Fig. 8. A typical example of single-gradient 
based algorithm is the linear regression (LR). Since the only 
gradient is used to predict the RUL, the complex RUL variations 
cannot be captured and early/late predictions often incur high esti-
mation errors.  

• Prior experiences: The prior experiences from the existing studies 
(e.g., [12,27,28,37]) demonstrate that RUL variation in many in-
dustrial systems/components is a multi-stage process. However, the 
stage number and degradation trend are significantly different in 
various application scenarios. Thus, we first develop the feature 
extraction and value-to-status mapping (Algorithm 1) to 

automatically estimate the stage number. Then, the stage-level RUL 
estimation is performed according to classified healthy stages.  

• Plausible mechanisms: Recent advances in machine/deep learning 
algorithms provide effective solutions for the classification and 
regression tasks. The healthy stage classification and stage-level RUL 
estimation are basically classification and regression problems, 
respectively. These machine/deep learning algorithms/models are 
effective in our health stage classification and stage-level RUL esti-
mation problems. Furthermore, the experimental results of MS-RUL 
(e.g., MS-RUL (CNN) and MS-RUL (SVR)) demonstrate that our 
proposed framework is able to overcome the limitations of using 
stand-alone classification/regression models. 

5. Conclusion and discussion 

RUL prediction is vitally significant to the predictive maintenance in 
industrial systems. This paper develops an accurate prediction scheme 
dubbed MS-RUL that effectively integrates the classification-regression 
algorithms. The objective is to accurately diagnose the faults and 
reduce the cost in predictive maintenance. This paper proposes a Joint 
Classification-Regression Method that predicts RUL in multiple states to 
improve the estimation accuracy. The approach was evaluated using 
turbofan engines and shaft production system data. Results demonstrate 
an accuracy improvement around 6.5% over the competing algorithms 
in RUL prediction. As the future work, we will consider: (1) using 
different kernels/algorithms for the classification and regression phases 
to achieve better accuracy; (2) developing new solution to cope with the 
missing label problem; (3) adopt transfer learning [41,42] algorithms 
for accurate multi-stage RUL prediction; (4) introducing pre-processing 
techniques like data cleaning and integration to cope with data cor-
ruption/noise problems. 
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