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Event prediction aims to predict the future possible event given a sequence of previously happened
events. Event prediction is important since it can benefit the government, agencies and companies for
avoiding damages by taking proactive actions. A further related task is event detection, which is to clas-
sify each event to predefined types, helping users quickly find relevant information. Event prediction is
related to event detection, since salient information of events is universal between the tasks. In this
paper, we propose a novel neural model for joint event detection and prediction, which classifies the
events to predefined types as well as predicts the next probable event by generating a sequence of words
describing it. In addition, we propose a hierarchical attention mechanism to enable the model to capture
important information at both word level and event level for next event prediction. Empirical experi-
ments on a real-world dataset reveal that our joint model with hierarchical attention achieves substantial
improvements on event prediction, advancing state-of-the-art models. With joint learning, our model
also improves the performance on event detection.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

An event is a specific thing that happens at a particular time and
place [1]. Typically, an event could trigger a series of following
events. Over years, a massive amount of news series containing
sequences of events have been accumulated. We are supposed to
learn common sequential patterns from the large amount of news
series, and empowered to predict the future events given a
sequence of existing events.

Predicting future events given a sequence of previously hap-
pened events is quite meaningful for the governments, companies
and individuals to take proactive measures by providing predictive
information. Take a news series describing ‘‘11.13 Paris Terror
Attack” for example, given the event sequences where each event
is represented by a news title, ‘‘Explosion occurs outside a sports
stadium in France”, ‘‘A mass shooting and hostage-taking
occurred”, ‘‘President declares a state of emergency after the
attacks unfold”, ‘‘ISIS claims responsibility for the attacks”, our
model generates ‘‘France”, ‘‘Paris”, ‘‘shooting”, ‘‘sever”,‘‘emergenc
y”, ‘‘chaos”, word by word. It is consistent with the true next event
‘‘Terrorist attack in France caused injuries and chaos”. With the
prediction of chaos, the government is expected to take proactive
or preventive measures to avoid casualties and damages.

Existing works dedicated to future event prediction can be dis-
cussed in two lines. Most of the works focus on predicting target
(known) events [2,3]. For example, Raindsky et al. [2] mined the
causality relationships between two events to predict whether a
target event will happen after an existing event. They cannot pre-
dict unknown events which may not exist in the training data. The
other line of works aims to predict the next event by automatically
generating a short text describing the next probable event. Hu et al.
[4] proposed a CH_LSTM framework for event prediction in a gen-
erative way. However, the results are still not satisfactory. They fail
to pay attention to critical information at both word level and
event level for prediction. In addition, all these existing works do
not consider to jointly learn the task of event prediction with other
relevant tasks such as event detection, which aims to classify an
event to a predefined type.

Event detection and prediction are highly related tasks and can
form a two-stage pipeline, in which the stages are intimately cor-
related. For example, the words indicating the types of the events
in event detection should also be scored high in event prediction.
Furthermore, the type information of existing events is helpful
for next event prediction.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.05.023&domain=pdf
https://doi.org/10.1016/j.neucom.2020.05.023
mailto:wubin@bupt.edu.cn
https://doi.org/10.1016/j.neucom.2020.05.023
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom
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In this paper, we investigate a neural attention model that
jointly detects the types of events and predicts the next probable
event of a sequence of existing events. Our model takes the
descriptions (e.g., news titles) of previous events as input and out-
puts the types of these events as well as generates a short text
describing the next probable event. To fully promote the two
sub-tasks, we apply neural stacking [5] to the pipeline, feeding
the hidden neural layers of the event detection model as additional
input features to the event prediction model, and propagating the
errors of event prediction to event detection during training, so
that information is better shared between the predecessor detec-
tion and successor prediction. To improve the performance, we
also propose a hierarchical attention mechanism including word-
level attention and event-level attention to capture important
information for next event prediction. The word-level attention
captures the key words which not only indicates the types of the
events but also correlates with the next event. On the other hand,
the event-level attention mechanism pays attention to important
previous events for next event prediction.

Overall, our main contributions can be summarized as follows.

1) To the best of our knowledge, we are the first to consider the
relatedness of event prediction and event detection, and pro-
pose a novel neural model for joint event detection and predic-
tion, which benefits both the tasks.
2) We present a hierarchical attention mechanism to capture
important information at both word level and event level for
next event prediction, improving the performance of both event
detection and prediction.
3) Empirical experiments reveal that our model achieves sub-
stantial improvements on event prediction, advancing several
state-of-the-art models. Additionally, the task of event detec-
tion also benefits from joint learning.

The remainder of this paper is organized as follows. In Section 2,
we define some concepts as well as the problem. In Section 3, we
detail our proposed joint model for event detection and prediction.
Section 4 describes our experimental results. In Section 5, we
review the related literature, followed by conclusion and future
research directions in Section 6.
2. Preliminaries

We first define some concepts and the problem of joint event
detection and prediction.

Event. An event is a particular thing which happened at a speci-
fic time and place [1]. In this paper, we consider that the title of a
news article describes an event em=(wm;1; . . . ;wm;Nm ), where
wm;n 2 V denotes the n-th word, and V denotes the vocabulary.

Event Sequence. An event could typically trigger a sequence of
following events. We can denote an event sequence as
s ¼ ðe1; e2; . . . ; emÞ.

Event Detection. In this paper, the event detection is defined as
classifying each event e to a predefined type t 2 T (e.g., sports, pol-
itics and entertainment).

Event Prediction. Given a sequence of historical events
s ¼ fe1; . . . ; em�1g where each event can be represented by a news
title ei=(wi;1; . . . ;wi;Ni

), event prediction aims to predict the next
probable event em by generating a short text describing the next
probable event. Formally, it can be defined as a language modeling
problem:

Pðemje1:m�1Þ ¼ PNm
n¼1Pðwm;njwm;1:n�1; e1:m�1Þ: ð1Þ

So far, tens of thousands of news series containing sequences of
events have been recorded as the thing happens, progresses and
ends. Reasoning these news series may show us some common pat-
terns about how a typical event sequence developed. For example,
in both earthquake events and flood events, there are sequential
events rescue effort, food scarcity, chaos and so on. With the large
scale historical data, we can automatically predict the future event
given a sequence of observed events by mining the underlying
sequential transition patterns.

Joint Event Detection and Prediction. Given a sequence of pre-
viously happened events s ¼ fe1; . . . ; em�1g, we jointly detect the
types of the events t1; . . . ; tm�1 and predict the next probable event
em.

3. Joint model for event detection and prediction

In this section, we present the proposed neural model for Joint
Event Detection and Prediction (JEDP) in detail. As illustrated in
Fig. 1, our model JEDP consists of two sub models: event detection
network and event prediction network, which are based on shared
event representation. We stack the two sub models by feeding the
hidden neural layers of the event detection network as additional
input features to the event prediction network. During training,
the errors of event prediction can thus be propagated to event
detection, so that information is better shared between the prede-
cessor detection and successor prediction. Both the sub models are
based on the shared event representation.

In the following, we will first introduce the shared event repre-
sentation learning. Then we describe event detection network
which classifies the events to predefined types. Finally, we detail
the successor sub model for next event prediction with a novel
hierarchical attention mechanism, capturing the important infor-
mation at both word level and event level.

3.1. Shared event representation

We apply a standard Long Short-Term Memory (LSTM) model
[6] to learn the shared event representation between different
tasks. Let em ¼ ðwm;1;wm;2; . . . ;wm;Nm Þ be an event (note that each
event is padded with an END token in the end to mark the endings
of an event), the LSTM encoder reads the words within the event
sequentially and updates its hidden state iteratively. The encoder
calculates the hidden vector hw

m;n at each word position as follows:

hw
m;n ¼ LSTMðhw

m;n�1;wm;nÞ; n ¼ 1; . . . ;Nm ð2Þ

in which LSTM refers to the standard LSTM function[6], hw
m;n indi-

cates the hidden vector generated at the n-th word in m-th event.
The initial hidden state of LSTM network is set to zero hw

m;0 ¼ f0g,
the same with the initial word state wm;0 ¼ f0g. wm;n refers to the
input embeddings of word tokens. After consuming the last word
of a given event, the hidden state hw

m;Nm
is supposed to capture

order-sensitive information within a typical event. We consider it
as the final event representation em. Note that we can also use other
alternative RNNmodels, such as GRU [7] and Bi-LSTM [6], we do not
discuss this since it is not our point in this paper.

3.2. Event detection

Event detection is a multi-class classification task, which can be
dealt with a multi-layer perceptron. Formally, given the input vec-
tor of an event em, a hidden layer is used to induce a set of high-
level features Hm:

Hm ¼ rðWem þ bÞ ð3Þ
Afterwards, Hm is used as inputs to a softmax output layer:

P ¼ softmaxðW0Hm þ b0Þ ð4Þ
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Fig. 1. Illustration of our JEDP model. JEDP consists of two sub models: event
detection network and event prediction network. They are based on the shared
event representation. The sub models are stacked to enable information sharing
between the two tasks.
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Here, W; W0; b; b0, are model parameters. P denotes the probabil-
ities of em belonging to each type.

3.3. Next event prediction

Event prediction is a highly related successor subtask of event
detection since the salient information are universal between the
two tasks. The detected event types are also beneficial for next
event prediction. For better integration between event detection
and event prediction, we additionally feed the hidden feature vec-
tor Hm of event detection with event embeddings to the event pre-
diction network, as shown in Fig. 2. We first introduce the event
sequence encoder which applies another LSTM to project the exist-
ing event sequence into a fixed-length embedding. Then we pre-
sent the hierarchical attention mechanism to capture important
information at both word level and event level for improving next
event prediction. Finally, we introduce the next event decoder
which generates a short text from the sequence encoder, describ-
ing the next probable event.

3.3.1. Event sequence encoder
The event sequence encoder takes the representations of exist-

ing events ðe1; e2; . . . em�1Þ as well as the hidden vectors
ðH1;H2; . . . ;Hm�1Þ of event detection as input and calculates a
sequence of recurrent states:

he
m ¼ LSTMðhe

m�1; em �HmÞ; ð5Þ
where em �Hm is a concatenation of the event embedding em and
the hidden state of event detection for the event Hm. Hm offers infor-
mation about the type of the event, which is useful for predicting
the next event. It connects the detection and prediction steps, so
that information sharing is enhanced between them and back prop-
agation is enabled for upgrading all the model parameters. We set
he
0 ¼ f0g; e0 ¼ f0g for initialization. The sequence encoder com-

putes the current hidden state he
m after consuming the current m-

th event and the hidden state of the previous time step he
m�1, and

thus updates its internal state iteratively. After consuming all the
events in the sequence, the last hidden state is taken as the final
representation of the event sequence, which is believed to contain
the information of all the observed events.

3.3.2. Hierarchical attention mechanism
To consider the different importance of information at both

word level and event level, we propose a hierarchical attention
mechanism including word-level attention which puts different
weights on words within an event and event-level attention which
quantifies the importance of previous events within a sequence. By
incorporating the importance of both individual words and events,
we are supposed to get better results of event prediction.
Word-level attention. The word-level attention is designed
here to encourage the model to stress valuable words in the input
sequence, instead of limiting to the last few words which is a sev-
ere constraint suffered by the LSTM models [6]. It forces the model
to attend over specific parts over input word sequences. By linking
the output of current decoding step with word tokens in previous
input events, this attention mechanism highlights the words which
play a key role in next event generation.

As demonstrated in Fig. 2, during event representation learning,
the LSTM network reads word sequences and generates a hidden
state for each word. The strength indicator at;ðm;nÞ is calculated

between the hidden state hw0
t at the current decoding step t and

the hidden word state hw
m;n of the word wm;n. Formally,

awt;ðm;nÞ ¼ UTf ðW1 � hw0
t þW2 � hw

m;nÞ ð6Þ
We penalize the input words that have already obtained high scores
for generating a certain word in the decoding step according to

a0wt;ðm;nÞ ¼
expðaw

t;ðm;nÞÞ if t ¼ 1
expðaw

t;ðm;nÞÞPt�1

j¼1
expðaw

j;ðm;nÞÞ
otherwise

8><
>: ð7Þ

Then, the normalized attention weight aw
t;ðm;nÞ is calculated across all

the words in the input events.

aw
t;ðm;nÞ ¼

a0wt;ðm;nÞPM
i¼1

PNi
j¼1a

0w
t;ði;jÞ

;m 2 ½1;M�;n 2 ½1;Nm� ð8Þ

In the end, the word-level attention vector at each decoding step
can be calculated by adding the multiplications of attention weights
with corresponding word hidden vectors. The attention vector is
believed to contain the information about key words for next event
prediction. Formally,

attwt ¼
XM
m¼1

XNi

n¼1

aw
t;ðm;nÞ � hw

m;n ð9Þ

Event-level attention. Similarly, event-level attention aims to
suggest which events are more responsible for next event predic-
tion. Specifically, at current decoding step t, the event-level
strength indicator aem is calculated as follows.

aet;m ¼ U0Tf ðW0
1 � hw0

t W0
2 � he

mÞ ð10Þ
We penalize events that have already obtained high scores for gen-
erating a certain word in previous decoding steps. Formally,

a0et;m ¼
expðaet;mÞ if t ¼ 1

expðaet;mÞPt�1

j¼1
expðae

j;m
Þ

otherwise

8<
: ð11Þ

The normalized attention weight ae
t;m is calculated across all the

events in input sequence.

ae
t;m ¼ a0et;mPM

i¼1a
0e
t;i

;m 2 ½1;M� ð12Þ

We compute the event-level attention vector attet indicating which
events play a critical role for next event prediction, at each decoding
step t:

attet ¼
XM
m¼1

ae
t;m � he

m ð13Þ
3.3.3. Next event decoder
After encoding the sequence of events ðe1:m�1Þ, an LSTM decoder

is designed to interpret the compressed information into word
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Fig. 2. Illustration of event prediction network. First, the shared event representations and the hidden feature vector Hm of event detection are fed together into the event
sequence encoder to obtain sequence representation. Then, a hierarchical attention mechanism including word level attention (shown in red line) and event level attention
(in purple) is incorporated with the sequence representation to capture critical information for next event prediction. Finally, a next event decoder is used to generate a short
text describing the next possible event. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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tokens describing the next probable event em. At each decoding
step t, the hidden state of the decoder is updated with:

hw0
t ¼ LSTMðhw0

t�1;wt�1Þ ð14Þ

The initial hidden state of the decoder, hw0
0 ¼ he

m�1. The initial
word state w0 ¼ f0g. In the training process, the decoder is fed
with the ground-truth word tokens in the next event,
ðw1;w2; . . .wt ; . . .Þ [8].

Incorporating Hierarchical Attention. To pay attention to
valuable words and events, we further incorporate the hierarchical

attentive information by concatenating the output of decoder hw0
t

with the dual-level attention vectors, namely word-level attention
vector attwt and event level attention vector attet at each decoding
step. Afterwards, a Softmax layer is used to generate the final dis-
tributions of word tokens at each decoding step t based on:

PðwtÞ ¼ SoftmaxðŴ½hw0
t kattwt kattet � þ b̂Þ ð15Þ

Instead of sampling by greedy strategy, we adopt random sam-
pling technique according to the probability distribution PðwtÞ. At
test time, our model terminates until generating the ‘‘END” symbol.
3.4. Model training

Our training objective is to minimize the cross-entropy loss and
negative log likelihood corresponding to the tasks of event detec-
tion and event prediction, respectively. Formally, given existing
events e1:m�1, the objective function is defined as follows:

L ¼ �
XStrain
s¼1

XM
m¼2

Xm�1

i¼1

yilogðyiÞ þ logPðesmjes1:m�1Þ
 !

ð16Þ

where Strain is the total number of news series each containing a
sequence of events, yi 2 T denotes the true type of the event ei.
We get the optimal model parameters h� by minimizing the L.
ADAM [9] was adopted for optimization.
1 https://pypi.org/project/jieba/.
4. Experiments

In this section, we validate the effectiveness of our proposed
model through experiments on a real-world dataset.
4.1. Dataset

We evaluate our proposed model JEDP on a large-scale real-
world Chinese Sina News Series dataset, which is the same dataset
used in [4]. The dataset contains 15,254 news series, and each ser-
ies includes about 50 news articles in average (the title of a news
article is regrated as the description of an event in this paper). They
cover 15 event types including politics, sports and so on. Following
[4], we sort the news articles in chronological order and use a win-
dow of size 5 to segment the news articles to get non-overlapping
news sequences. Finally, we obtain order-sensitive news sequence
set, containing 155,358 news sequences in total. We adopt JIEBA
tool1 to perform Chinese word segmentation. We remove the stop-
words and further prune the vocabulary V by dropping the words
that occur less than 100 documents. Finally, we get a vocabulary
of size 8,107, including an ‘‘END” symbol.

We randomly split our dataset into three parts, 80% for training
set, 10% for testing set and 10% for validation set. In detail, the
training set contains 124,288 news series, and 607,090 events.
There are 15,535 news series and 75,802 events in the validation
set. While we have 15,535 news series, with corresponding
75,957 events in the test set.

4.2. Implementation details

Baselines. Six state-of-the-art baseline models are imple-
mented here to demonstrate the effectiveness of our proposed
model. For all the n-gram language models, we choose n ¼ 5. In
addition, we also implement two variants of our proposed model
JDEP to study the effect of the hierarchical attention mechanism
and reinforcement learning separately.

� Backoff N-gram [10]: An N-gram language model using backoff
smoothing.

� modified Kneser-Key [10]: An N-gram language model using
Kneser-key smoothing.

� Witten-Bell Discounting N-Gram [10]: An N-gram language
model using Witten-Bell Smothing.

� LSTM [4]: This model is implemented by the basic LSTM
sequence, which treats all the words in previous events as a
whole sequence, and generates next probable event after con-



Table 1
Comparison of different models on event prediction. We report the results in terms of
Perplexity and BLEU.

Model Perplexity BLEU

Backoff N-gram [10] 884 9.1
Modified Kneser-Ney [10] 870 9.3
Witten-Bell Discounting N-Gram [10] 835 9.1
LSTM [14] 588 21.3
HLSTM [4] 526 22.3
CH_LSTM [4] 483 24.5
JEDP (ours) 293 29.7

Table 2
Comparison of our model with variants.

Model Perplexity BLEU Accuracy

JEDP w/o Att 427 25.1 0.86
JEDP w/o Joint 316 28.3 0.93
JEDP 293 29.7 0.95
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suming all the words in previous events.
� HLSTM [4]: A hierarchical LSTM model which is implemented
with dual-level encoder and a next event predictor.

� CH_LSTM [4]: A model incorporating topic information into
HLSTM model.

� JEDP w/o Att: A variant of our proposed JEDP model without the
hierarchical attention mechanism.

� JEDP w/o Joint: A variant of our proposed JEDP model without
joint learning of event detection and prediction.

We set the dimension of LSTM hidden state and word embeddings
as 300D for all of the models discussed herein. The word embed-
dings are uniformly initialized with a range of ½�0:8;0:8� and
updated during training. The learning rate is initialized as 0:0005
and the batch size is set as 32. To avoid over-fitting, we set the
dropout rate to 0:2. We evaluate the model on the validation set
and select the model with the best BLEU score as our model.

Evaluation Metrics.We choose two metrics, the perplexity [11]
and the BLEU to evaluate the effectiveness of our model for next
event prediction.

Perplexity is a standard metric in information theory [12]. It
measures how well a model fits the data and thus can perform bet-
ter prediction. Lower perplexity indicates a better model. Formally,
the per-word perplexity of a model is defined as follows.

Perplexity ¼ exp � 1
Nw

XStrain
s¼1

logPðesmjes1:m�1

 !
ð17Þ

To further analyse the readability and coherency correlated
with human judgement, we adopt BLEU score to evaluate the gen-
erated results. BLEU is proposed to automated understudy to
skilled human judges, which claims a high correlation with human
judgements of quality [13]. Specifically, we adopt standard BLEU.
Higher scores on these metrics indicate better performance of
the models.

For event detection which classifies each event to predefined
types, we use the metric of accuracy to evaluate the performance.

4.3. Experiment results

We report the performance of different models for event predic-
tion on the Chinese Sina News Series dataset in Table 1. We can see
that all neural network based models significantly outperform tra-
ditional n-gram language models by a large margin. Among all the
methods, our proposed JEDP model yields the best performance,
reducing the perplexity by around 40 % and improving the BLEU
score by around 21% compared to the state-of-the-art method
CH_LSTM.

4.4. Comparison of variants of JEDP

We also compare our model with several variants to validate
the effectiveness of our proposed hierarchical attention mecha-
nism and joint modeling. As we can see from Table 2, without
attention, the performance of our model drops significantly on
both event detection and event prediction. It demonstrates that
the hierarchical attention can capture important information at
both word level and event level for event prediction, which further
benefits the joint task, i.e. event detection. We can also see that
removing joint modeling also depresses the performance on both
tasks, especially on event prediction.

4.5. Illustration of hierarchical attention

To further illustrate the effect of the proposed hierarchical
attention mechanism, as shown in Fig. 3, we present two heat
maps to visualize what information the proposed model JEDP put
emphasis on during the decoding process. The top of the figure
shows the attention of JEDP on the previous events and words
when decoding the first word ‘‘France”. The bottom shows the
attention of JEDP on the events and words when decoding the last
word ‘‘Chaos”. As we can see from the left bar, when generating the
first word ‘‘France”, the model pays attention to the events e1; e3.
Specifically, the model stresses on the word tokens including
‘‘France”, ‘‘Paris”, and ‘‘National”. While decoding the last word
‘‘Chaos”, the model pays more attention to the events e1; e2. Partic-
ularly, it emphasizes the word tokens, ‘‘Explosion”, ‘‘Hostage”,
‘‘Emergency” and ‘‘Terror”. The heat maps show that by incorporat-
ing the hierarchical attention mechanism, our JEDP model can cap-
ture valuable information from both word-level and event-level to
improve next event prediction.
4.6. Case study

In this subsection, we provide a qualitative analysis for the gen-
erated output events of the models. We take a news series about
‘‘11.13 Paris Terror Attack” for example. As shown in Table 3, we
list the previous observed events, the next event (ground-truth)
and the predicted events generated by the models. We compare
our JEDP with state-of-the-art model CH_LSTM and two variants
of JEDP (i.e., without Att or without Joint).

From Table 3, we can see that, for news series ‘‘11.13 Paris Ter-
ror Attack” case, the next event generated by the state-of-the-art
model CH_LSTM contains limited information since it only capture
two key concepts the ‘‘France” and ‘‘Terror Attack”. Our model and
its variants provide more plentiful information. Furthermore, the
next event generated by our model JEDP, predicting the ‘‘chaos”,
is most consistent with the ground-truth.

It demonstrates the effectiveness of our model with the hierar-
chical attention mechanism and joint modeling of event detection.
4.7. Next event ranking

Following [4], we also evaluate our model on next event ranking
task. Given a news series, this task is to find the most probable next
event within in a candidate set. Ideally, our model is expected to
assign the ground-truth event with the highest probability within
the candidate set.

Detailed Process. To obtain the dataset for this task, we merge
the validation set and the test set, containing 31,070 news series in
total. Following [4], we randomly divided the dataset (31,070 news



Table 3
An example of generated outputs of different models for the news series ‘‘11.13 Paris Terror Attack” given the existing events e1:4.

Fig. 3. Heat maps illustrating the attention of our proposed JEDP on previous events and words for prediction.
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series) into 621 non-overlapping subsets with each containing 50
news series except the last one which contains remaining 20 series
(i.e., 31,070 = 621 ⁄ 50 + 20). For each news series (consisting of a
few events) in a subset, we aim to choose the best last event given
its previous events. The candidate set is composed of the last
events of all the series in the corresponding subset. We use the
measurement his@n which indicates the BKI8probability of the
correct events within the top n ranked events.

Result Analysis. Table 4 illustrates the performance of our
model compared with state-of-the-art neural models, in terms of



Table 4
The performance of different models on next event ranking task in terms of
hits@1; hits@5; hits@10.

Model hits@1 hits@5 hits@10

LSTM 23.04 51.23 67.36
HLSTM 26.99 56.97 71.23
CH_LSTM 28.03 57.12 72.34
JEDP w/o ATT 28.10 57.53 72.81
JEDP w/o Joint 29.54 58.03 73.51
JEDP 29.89 58.11 73.90
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hits@1, hits@5, hits@10. The results are consistent with Table 1.
Our models and variants all outperforms existing neural models,
which shows the effectiveness of joint modeling and hierarchical
attention. It is worth noting that our model JEDP has significant
improvement (around 2%) compared to the baseline models in
terms of the most important metric hits@1. Compared to the vari-
ants without attention or joint modeling, our model achieves the
best performance. In summary, the results demonstrate the effec-
tiveness of our joint model JEDP with a hierarchical attention
mechanism.
5. Related work

In this section, we review the related literature. Our work is
mainly related to event detection and event prediction.

5.1. Event detection

Event detection in the Topic Detection and Tracking (TDT) pro-
gram [1] aims to discover new or previously unidentified events in
an unsupervised manner. Many works focused on detecting events
of interest from social media [15,16] since social media is more
instant. A lot of researches on ACE event detection task extracted
events with entities from sentences [17–19]. Different from these
event detection tasks, we study the problem of categorizing each
event (represented by a news title) to predefined types, which
can be formalized as a text classification problem.

Traditional text classification methods such as SVM [20] are
based on feature engineering. The most commonly used features
are BoW and TF-IDF [21]. With the proliferation of neural net-
works, neural models have been successfully applied in text classi-
fication [22]. Two representative deep neural models such as RNNs
[23] and CNNs [24,25] have shown their power for text representa-
tion in many NLP tasks, including text classification and so on.

5.2. Event prediction

Although great effort has been dedicated to event detection
based on social media [26,27] and search engines [28], a relatively
few works have been proposed to predict future events.

The work on event prediction can be divided into two cate-
gories. On one hand, some work learn the causal relations of two
events for prediction [2]. For instance, Radinsky et al. [2] extracted
generalized causality relations of two events (i.e., ‘‘x causes y”)
from past news and applied them to predict the next possible
event given a current event. Granroth-Wilding et al. [3] extracted
typical sequences of events from texts [29] and used a composi-
tional neural network to learn the coherence score of two events.
They aim to predict the next event by learning the strength of asso-
ciation between two event.

On the other hand, some work focus on mining event sequence
pattern for prediction. For example, Radinsky et al. [30] extracted
event chains from news documents for predicting the happening
of target events. In this work, we focus on non-targeted event pre-
diction. Along this line, Manshadi et al. [31] learned a n-gram lan-
guage model of event sequences from Internet Web log stories.
Pichotta and Mooney [14] developed a LSTM based model for
learning scripts which represents knowledge of prototypical event
sequences. They represented an event as a predicate with several
arguments and are limited to predict the events from candidates.
Hu et al. [4] proposed a context-aware hierarchical LSTM predic-
tion model which directly learns event representations and gener-
ate next event with a sequence to sequence network.

In this work, we propose a novel neural model for joint event
detection and prediction. In our model, we apply a new hierarchi-
cal attention mechanism to capture important information at both
word level and event level.
5.3. Attention mechanism

The concept of ‘‘attention” has gained popularity recently in
neural networks, allowingmodels to learn alignments between dif-
ferent modalities. It has been successfully applied in a wide range
of tasks, including image captioning [32], image classification [33]
and machine translation [34] etc. Attention mechanism quantifies
the related degree of different parts in the input sequence with tar-
get sequence in order to compute a representation of the input
sequence. A lot of works have adopted attention mechanism to
improve the model’s performance. For example, Cheng et al. [35]
use LSTM and attention mechanism to facilitate the task of
machine reading. Sankaran et al. [36] propose an intra-temporal
attention on input sequences to prevent the model from attending
over same parts of the input during different decoding step. Nalla-
pati et al. [37] prove that this mechanism can alleviate repetition
problem in long document summarization. Some works found that
purely building models with attention mechanism, dispensing
with recurrence and convolutions entirely, can also achieve com-
petitive performance. Vaswani et al. [38] propose the transformer
model, which is purely built on attention mechanism and shows
powerful performance on machine translation. Shen et al. [39] pro-
pose an RNN/CNN-free sentence-encoding model, which intro-
duces the reinforcement learning to hybrid hard-attention with
soft attention. Some works have noticed the effect of structured
attention. Lin et al. [40] propose an representation learning model
for extracting sentence embedding by structured attention. Zhang
et al. [41] present a user-guided hierarchical attention network to
hierarchically attend both visual and textual modalities.

Differently, we present a novel hierarchical attention mecha-
nism to attend both word-level and event-level information for
event prediction task.
6. Conclusion and future work

In this paper, we propose a novel neural attention model JEDP
for joint event detection and prediction, which boosts both tasks
through information sharing between the two tasks. Our model
takes the sequence of previous events as input, and classifies these
events to predefined types as well as predicts the next probable
event by generating a short text describing it. Additionally, we pro-
pose a hierarchical attention mechanism which enables the model
to capture important information at both event-level and word-
level for predicting the next event. Empirical experiments on a
real-world dataset demonstrate the superior performance of our
model over state-of-the-art methods on both tasks, especially on
event prediction.

In future work, we will explore the effectiveness of our model
on other tasks such as document summarization.
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