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Abstract Building Energy efficiency has gainedmore andmore attention in last few
years. Occupancy level is a key factor for achieving building energy efficiency, which
directly affects energy-related control systems in buildings. Among varieties of sen-
sors for occupancy estimation, environmental sensors have unique properties of non-
intrusion and low-cost. In general, occupancy estimation using environmental sensors
contains feature engineering and learning. The traditional feature extraction requires
to manually extract significant features without any guidelines. This handcrafted
feature extraction process requires strong domain knowledge and will inevitably
miss useful and implicit features. To solve these problems, this chapter presents a
Convolutional Deep Bi-directional Long Short-TermMemory (CDBLSTM) method
that consists of a convolutional neural network with stacked architecture to auto-
matically learn local sequential features from raw environmental sensor data from
scratch. Then, the LSTM network is used to encode temporal dependencies of these
local features, and the Bi-directional structure is employed to consider the past and
future contexts simultaneously during feature learning. We conduct real experiments
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to compare the CDBLSTM and some state-of-the-art approaches for building occu-
pancy estimation. The results indicate that the CDBLSTM approach outperforms all
the state-of-the-arts.

Keywords Deep learning · Building occupancy estimation · Environmental
sensors · CDBLSTM

1 Introduction

To maintain the thermal comfort of indoor environments, around 40% of the energy
has been consumed in building sectors [28]. Thus, a lot of attention has been paid on
building energy efficiency and sustainable development. To achieve that, a crucial
factor is the building occupancy information, also known as occupant number or
range in buildings. It can be used for building climate and adaptive light control
[28, 36]. Balaji et al. saved 17.8% of energy for HVAC systems relied on actual
occupancy levels in a designed experiment [1]. A light control system developed in
[24] has reported a reduction of 35–75% of energy consumption for building light
control systems. However, to obtain an accurate and robust occupancy estimation
system is a challenging mission and remain unsolved.

Occupancy estimation canbedoneby the use of different sensors. For instance, Liu
et al. present a detection of the absence and presence of occupants via PIR sensors
[27]. It will be more meaningful to obtain the actual occupant number or range
indoors. In order to fulfill that, the methods relied on RFID and wearable devices
were presented in [1, 25]. However, these approaches require users to wear specific
devices, which is intrusive and inconvenient. Accurate occupancy estimation can be
achieved by using cameras [42]. However, camera based solutions often suffer from
the problems of insufficient illumination and high computational load. Besides, they
also have the issue of privacy concerns. Some othermethodologies rely on occupants’
involvement, such as using chair sensors [23] and applicants power usage data [22].
However, occupants that do not involved will not be able to be detected.

Recently, environmental sensors are widely adopted for occupancy estimation,
because they are low-cost and non-intrusive for users [21, 29, 40, 41]. Due to the
complex relationship between environmental sensor measurements and occupancy
levels, physical modeling is with limited performance. An alternativeway is tomodel
the complex relationship by using machine learning techniques which work well
on function approximation. Since, environmental sensor data are with large noise
and not representative for different occupancy levels, the machine learning mod-
els trained with raw sensory data may have limited performance. The common
operation is to perform feature engineering which intends to extract more infor-
mative representations for different occupancy levels [26]. However, the traditional
manual feature engineering does not have a guideline on which features should be
extracted for occupancy inference. In addition, it requires strong domain knowledge
and will inevitably miss implicit and useful features. To solve this problem, this
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chapter presents a Convolutional Deep Bi-directional Long Short-Term Memory
(CDBLSTM) that consists of a convolutional neural network with a stacked struc-
ture to learn useful representations (features) automatically from scratch [11]. The
convolutional network is able to learn some sequential local features from raw envi-
ronmental sensor data. Since the environmental sensory data is a typical time series,
temporal dependencies are of great importance for accurate and robust occupancy
inference. To model the temporal dependencies in data, we adopt a BLSTM network
whose inputs are the sequential local features learned by the convolutional neural
network. We have compared the CDBLSTM approach with some state-of-the-arts in
existing literature by using real evaluation.

2 Literature Review

Many advanced algorithms have been presented for occupancy inferences in build-
ings using environmental sensor data. The authors in [13] presented an occupancy
estimation system for an open office room by using sensor networks that are able to
collect data of CO2, CO, acoustics, PM2.5, motion, illumination, temperature and
humidity. Some statistical features, e.g., moving average of 20-min and 1st order
difference, were manually extracted. Next, the most important features were chosen
via the popular information gain theory. Finally, data-driven methods including Sup-
port Vector Machine (SVM), Artificial Neural Network (ANN) and Hidden Markov
Model (HMM) were utilized for occupancy estimation. They made a conclusion that
the most significant sensors are CO2 and acoustic, and the HMM achieves the best
performance for occupancy estimation.

The authors in [30] employed environmental sensors of temperature, CO2, humid-
ity, and pressure, to estimate occupancy for a tutorial room. They extracted some
similar features used in [13]. An ELM-based wrapper algorithm was developed for
feature selection and occupancy inference.

In [38], the authors investigated various sensors including sound, motion, tem-
perature, door state, CO2, humidity, passive infrared and light to infer occupancy
in both multi-occupant and single-occupant offices via some widely used machine
learning algorithms. Instead of extracting more useful features, they used raw sensor
data as features. Here, the authors applied many informative sensors to guarantee
a satisfactory performance of their proposed method. The contribution of different
sensors (features) were tested by using the theory of information gain. Eventually,
light level, door state and CO2 are shown to be the most important parameters. For
different algorithms, the decision tree (DT) approach has the best performance.

Candanedo et al. developed an occupancy detection systemwith sensors of humid-
ity, CO2, temperature and light levels [3]. They also used the raw sensor data as
features in this work, and utilized some statistical models identify the two states of
absence and presence of occupants. Different combinations of features with distinct
statistical approacheswere tried, and then the best sensors andmodels can be selected.
At last, they made a conclusion which claims that a satisfactory performance is able
to be fulfilled when properly selecting sensors and learning methods.
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Since occupancy dynamics has the Markov property [4, 7, 8], the HMM model
has achieved great success for building occupancy detection and estimation [13].
But, the traditional HMM often suffers from some limitations, such as the use of
mixture of Gaussian model to estimate emission probabilities and the fixed transition
probability matrix. To solve these issues, the authors in [12] presented an IHMM-
MLR for environmental sensor based occupancy inference. Firstly, inhomogeneous
transition probability matrices for capturing occupancy dynamics at distinct time
steps were developed. Then, multinomial logistic regression to produce the emission
probabilities with environmental sensor data was designed. Two schemes, i.e., online
and offline, were formulated to infer occupancy in distinct situations.

Chen et al. presented another system to enhance the performance for occupancy
estimation by considering occupancy properties [6]. They performed a fusion of tra-
ditional machine learning algorithms with a well-developed occupancy model which
is able to show occupancy properties. The sensors they utilized include CO2, humid-
ity, pressure and temperature, which is widely available. The algorithms include
ELM, SVM, ANN, KNN, CART and LDA. They formulated a Bayes filter to fuse
the occupancy model and six data-driven algorithms for the estimation of occupancy.
A detailed survey for occupancy estimation can be found in [5].

Here, we leverage on the environmental sensors including temperature, CO2, pres-
sure and humidity that are popular in normal HVAC systems [14] instead of applying
specific sensors, such as acoustic level [13, 38], motion [19, 38] and light level [3].
Without applying the noisy sensor data as features or using some handcrafted statisti-
cal features, we attempt to automatically extract some useful local sequential features
by using the convolutional neural network with stacked structure. Then, the BLSTM
network is able to encode temporal dependencies for sequential local features during
high-level feature learning. We have made a comprehensive comparison with some
state-of-the-arts by using actual experiments.

3 Methodology

We firstly demonstrate an overview of the CDBLSTM for environmental sensor
based occupancy inference. Then, we introduce the key components in CDBLSTM,
i.e., the convolutional neural network, the DBLSTM, and the classification layers.
Finally, the introduction of the training process of the CDBLSTM approach will be
covered.

3.1 Overview

For environmental sensor basedoccupancy estimation, the keypart is to learndiscrim-
inative representations (features) from rawdata for distinct occupancy levels. Figure1
presents the CDBLSTM framework for environmental sensor based occupancy
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Fig. 1 Framework of the
CDBLSTM approach [11]



340 Z. Chen et al.

inference. Raw input is a sliding window of environmental sensor data. Then, a
convolutional network with multiple filters is applied for learning features of local
sliding windows known as local feature learning, which is of great importance for
distinguishing data from different occupancy levels. Next, the DBLSTM is leveraged
to encode temporal dependencies of local sequential features in forward and back-
ward directions. Finally, the learned high-level features from the DBLSTM are fed
into fully connected and softmax layers for the classification of different occupancy
levels.

3.2 Convolutional Operation

We implement convolutional neural network on environmental sensor data to pro-
duce sequential local features. Generally, it contains a convolutional layer, together
with a pooling layer. Figure2 shows the convolutional and pooling operations on
environmental sensor data. The functionality of the convolutional operation is to use
a sliding window over the raw time-series data to get sequential local features. And
then, the pooling operation is to reduce feature dimension of the sequential local
features. The detailed implementation of the two operations will be presented below.

Convolutional Layer: Suppose that the n input samples are {Xi }, i = 1, 2, . . . , n,
and each input sampleXi ∈ R

r×d is a slidingwindow environment sensor data, where
r is the length of sequence and d is the number of sensors. It can also be represented
as Xi = [x1, . . . , xr ]. The definition of the convolution operation is to multiply a
filter vector v ∈ R

md×1 with a slice of the input xi :i+m−1 ∈ R
md×1 which is shown as

follows
xi :i+m−1 = xi ⊕ xi+1 ⊕ · · · ⊕ xi+m−1 (1)

where m denotes the windows size and ⊕ is the concatenation operation. Next, an
activation function is performed over the multiplied results, shown as

ci = g
(
v�xi :i+m−1 + b

)
(2)

where g(·) is the activation function, b is the bias term and � is the transpose opera-
tion. The widely used ReLU activation function [31] is adopted. By sliding the filter
from the beginning of the input sequence to its end, we can produce a feature map,
shown as follows:

c j = [c1, c2, . . . , cr−m+1] (3)

where j = 1, 2, . . . , k, and k is the number of filters.

PoolingLayer: The pooling operation is to reduce feature dimension, leading tomore
discriminative features [15]. In this work, we adopt the widely used max-pooling
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Fig. 2 Convolutional network structure

which conducts an operation of maximum on s consecutive components of feature
map c j . After pooling operation, the features will be

z j = [z1, z2, ..., z r−m
s +1] (4)

where zi = max (cis−s, cis−s+1, ..., cis−1). Hence, the pooling operationwill generate
compressed feature map z j , j ∈ 1, 2, . . . , k. Eventually, the output of the convolu-
tional neural network will have a feature dimension of

(
r −m
s + 1

) × k.
In general, assume the number of samples n, the input data has a dimension

of n × r × d. The output of the convolutional neural network has a size of n ×(
r −m
s + 1

) × k. It can be found that the length of the input data is compressed from
r to

(
r −m
s + 1

)
. In addition, the data dimension changes from d (number of sensors)

to k (number of filters), where k is much larger than d. This means that the data
becomes more informative. In other word, the convolutional neural network can be
treated as a local feature learnedwhich is able to getmore informative representations
and preserve the temporal information from raw environmental sensor data.

3.3 Deep Bi-directional LSTM

Recurrent Neural Network (RNN) is widely used for the modeling of time series data
thanks to its strong sequential modeling capacity. However, the conventional RNN
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often has the problem of gradient vanishing or exploding during training. This dra-
matically influence the performance of RNN on modeling long-term dependencies
in time-series data [2]. To solve this issue, the authors in [17] proposed a new archi-
tecture, named LSTM, which attempts to use some gates to control the information
for preserving or discarding, such that it is able to capture long-term dependencies
of the sequence. The LSTM network has been successfully employed in a num-
ber of important and challenging tasks, e.g., activity recognition [9, 10] and natural
language processing [34]. The conventional LSTM only considers the sequential
information in one direction, that is the forward direction. This is not adequate for
sequential modeling of environmental sensor data. The future information may also
be useful. To consider both the future and past contexts for occupancy inference, we
adopt the BLSTM which contains a forward layer and a backward layer to process
sequential data in the forward and backward directions.

Recently, deep structures have achieved great success in representation learning
[16]. The Deep Bi-directional LSTM (DBLSTM) which stacked multiple BLSTM
layers is adopted in this study to encode the temporal dependencies and learn high-
level features from the sequential local features extracted by the convolutional neural
network. In addition to that, the DBLSTM is able to make the inputs to propagate
through time and space (layers), simultaneously, such that, the model parameters are
able to distribute over layers instead of enlarging memory size of the network. This
will result a more efficient non-linear operation of the data and is also the ultimate
purpose for stacking multiple layers in deep learning [16]. Figure3 illustrates a
hidden layer l at time step t − 1, t and t + 1 of the DBLSTM network, where the
arrows pointing to the left and right denote the backward and forward operations
respectively. Here, the forward operation from time step t − 1 to t is to capture the
past information, and the backward operation from time step t + 1 to t is to model
the future information. We use one hidden layer l at time step t as an example to
show the detailed operation of the DBLSTMnetwork. Assume that htl−1 is the hidden

state, Ct−1
l is the memory cell state, w f

l , w
i
l , w

C
l and wo

l are the weights, b
f
l , b

i
l , b

C
l

and bol are the biases, and σ(·) denotes the sigmoid activation function. The forward
process shown as → and the backward process shown as ← can be formulated as
follows:

−→
f t
l = σ

(−→w f
l [−→h t−1

l ,
−→
h t

l−1] + −→
b f

l

)

−→
i t

l = σ
(−→w i

l [
−→
h t−1

l ,
−→
h t

l−1] + −→
b i

l

)

−→̃
C t

l = tanh
(−→w C

l [−→h t−1
l ,

−→
h t

l−1] + −→
b C

l

)

−→
C t

l = −→
f t
l ∗ −→

C t−1
l + −→

i t
l ∗

−→̃
C t

l

−→o t
l = σ

(−→w o
l [

−→
h t−1

l ,
−→
h t

l−1] + −→
b o

l

)

−→
h t

l = −→o t
l ∗ tanh

(−→
C t

l

)

(5)
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Fig. 3 Structure of DBLSTM

←−
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l [←−h t+1
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l [
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)

(6)

The final output of the l-th hidden layer at time t of the DBLSTM network is a
concatenation of the forward and backward layers, which can be expressed as

htl = −→
h t

l ⊕ ←−
h t

l (7)

where
−→
h t

l can update the current hidden state by using the past information, that is

the time from 1 to t − 1, and
←−
h t

l can update the current hidden state by using the
future information, that is the time from t + 1 to r .
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3.4 Occupancy Inference Layers

The outputs of the DBLSTM network are high-level features which will be fed into
some fully connected layers to get more abstract representations. The expression of
the fully connected layers can be shown as:

oi = g
(
αiμ

i + βi
)

(8)

whereμi and oi are the input and output of the i-th fully connected layer respectively,
αi and βi are the weights and bias respectively, and g(·) is the activation function.We
choose the activation function of ReLU in this study. Suppose that we have stacked
c fully connected layers, the output of the last fully connected layer, known as oc−1,
is the final representation of the input data. The final feature representations are fed
into a softmax classification layer to obtain the occupancy.

3.5 Training Process of the CDBLSTM

With the outputs of the CDBLSTM and the true labels (occupancy ranges), the errors
can be calculated over all the training data, and then error gradients will be derived
and back-propagated to adjust model parameters for the training of CDBLSTM
[37]. More precisely, given training data with the true occupancy levels, the network
outputs can be calculated. Then, the cross-entropy losses can be derived based on
the network outputs and true occupancy levels. Next, we can get the error gradients
to back-propagate for the adjustment of model parameters via some gradient based
optimization algorithms. In this study, we adopt the popular optimization method of
RMSprop [35]. Precisely, given θt the parameter for optimization, and L(θt ) the loss
function, the parameter update of θt+1 by using the optimizationmethod of RMSprop
can be calculated as:

gt+1 = γ gt + (1 − γ )∇L(θt )
2 (9)

θt+1 = θt − η∇L(θt )√
gt+1 + ε

(10)

where gt is a moving average of the squared gradient at time step t , and the learning
rate η, the parameter γ and the decaying rate ε are chosen to be 0.001, 0.9 and 0,
respectively.

In order to alleviate the overfitting problem, we use the technique of dropout. By
using dropout, we will randomly mask parts of the hidden nodes with probability p
during training. Figure4 illustrate the operation of dropout. During model training,
a thinned architecture will be preserved and trained each time. Given a network
containing n nodes with a dropout probability of p equaling to 0.5, the network
could be treated as an ensemble of 2n thinned networks. Due to the shared structure



Deep Learning for Building Occupancy Estimation … 345

Fig. 4 The operation of dropout. Left: the network without dropout; Right: the network after
dropout. Crossed nodes have been dropped during model training [33]

of these thinned networks, the number of parameters will remain the same. During
testing, the dropout will be switched off and all the network nodes will take effect for
model outputs, which is similar to an ensemble of some distinct thinned networks. In
otherwords, the dropout is used to enlarge training data size. In each training iteration,
randommasking will also create some variants into data, which will make the trained
network more robust. The dropout technique has been shown to be effective for
preventing Overfitting [33]. Therefore, in this study, we leverage on one dropout
layer between the DBLSTM and the first fully-connected layer and another dropout
layer between the two fully connected layers, where the masking probabilities are
chosen to be 0.5 and 0.3 respectively.

4 Evaluation Results

In this section, we firstly introduce the data acquisition process. Then, evaluation
setup and experimental results are presented. After that, the generalization perfor-
mance of the CDBLSTM is analyzed by randomly selecting the data for training and
testing. Finally, to further demonstrate the performance of CDBLSTM for building
occupancy inference using environmental sensors, we demonstrate additional results
of theCDBLSTMusingdata collected fromanother environment, i.e., a tutorial room.
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4.1 Data Collection

The sensor data of CO2, temperature, air pressure and humidity have been collected
from a research lab at a university campus. The lab has an office area which contains
24 cubicles and 11 open seats. Generally, nine postgraduate students and eleven
research staffs will work at the office area. Besides, the lab also has six PCs for
undergraduate students on their final year projects and five PCs for other students.
It is well known that identifying the exact occupancy (number) is very challenging
and may require to use some high-cost sensors in a crowded space. Here, instead of
estimating the exact occupancy, we divide the exact occupancy into ranges of zero,
low, medium and high. These occupancy ranges are enough for common building
control and scheduling systems [18]. To make the four ranges balanced, which will
maximize the impact of state changes, we define the low occupancy as 1–6 subjects,
the medium occupancy as 7–14 subjects, and the high occupancy as larger than 14
subjects.

We measure pressure level by leveraging on Lutron MHB-382SD sensor, and
CO2, temperature, and relative humidity byusing theCL11 sensor fromRotronic. The
sampling frequency is one sample perminute for both sensors.During data collection,
we firstly stored the data in the sensor internal memory and then transmitted to a PC
by using a USB cable. Note that, the area is air-conditioned by the conventional
Variable Air Volume and Active Chilled Beam systems, and is ventilated by Air
Handling Unit (AHU) that will constantly provide fresh air.

Table 1 shows the accuracy and resolution of the sensors. During experiments,
we attach the sensors on supporters with a height of 1.1m from the ground. Figure5
illustrates the layout of the apace which has a size of 20m × 9.3m × 2.6m. We
apply two pairs of sensors in this space. Here, the placements of sensors are intu-
itively selected considering occupant density. To get ground truth occupancy, we
deploy three IP cameras at each door to record occupant movements. Then, the true
occupancy is counted manually with the help of motion detection software which is
able to take pictures when occupants move. The entire space contains three doors.
The main door (placement of camera 1) connects the space with the office area for
administrative staffs. Another door which locates at camera 2 in Fig. 5 opens to a lab
space. And the third door is always closed. Note that, all windows are closed, due to
the operation of air-conditioning and ventilation systems.

Totally, we collected 31days of data in workdays, where the first 26days of data
are utilized for model training and the rest 5days of data is utilized for model testing.
Since building control systems are with slow response, a resolution of 15-min is
enough for occupancy estimation [39]. But the original sensor data and occupancy
have a resolution of 1min, we firstly transfer them into a 15-min resolution by using
the simple averaging. Note that, the number of occupants are an integer value, so that
a rounding operation is conducted after the use of averaging on original occupancy.
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Table 1 The accuracy and resolution the sensors

Sensor Environmental
parameter

Resolution Accuracy

Rotronic CL11 CO2 1 ppm ±5% of the measured value

Temperature 0.05 ◦C ±0.3 ◦K
Humidity 0.1% RH <2.5% RH

Lutron MHB-382SD Pressure 0.1 hPa ±2 hPa

Fig. 5 Layout of the research lab

4.2 Evaluation Setup

To evaluate the performance of CDBLSTM, a comparison has been made between
the CDBLSTM and some state-of-the-arts including the HMM approach with the
information gain based feature selection of some statistical handcrafted features
(Dong’s method) [13], the DT with raw data for features (Yang’s method) [38], the
ELMwith thewrapper based feature selection of some statistical handcrafted features
(Masood’s method) [30], and the LDA with raw data for features (Candanedo’s
method) [3].

The DBLSTM without the convolutional network for local sequential feature
extraction is also implemented for comparison. Since we choose the resolution to
be 15-min and the sampling frequency of sensors is 1-min, the length of the input
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sequence r is 15. With 2 pairs of sensors shown in Fig. 5, the total number of sensors
d is 8. Hence, the input is with a dimension of 15 × 8 for environmental sensor based
occupancy estimation.Weuse cross-validationwith the training data to choose proper
hyperparameters for all the approaches. Specifically, the DBLSTM consists of three
BLSTM layers with hidden nodes of 24, 75 and 100. Then, two fully connected
layers with hidden nodes of 150 and 100 are adopted. For the CDBLSTM approach,
the window size, the pooling size and the number of filters are chosen to be 3, 2,
100, respectively. The CDBLSTM contains three BLSTM layers with hidden size
to be 100, 150 and 200. The two fully-connected layers have 200 and 300 hidden
nodes. The implementation of the deep algorithms, i.e., CDBLSTM and DBLSTM,
is under Keras. The other shallow algorithms are performed using Matlab.

Here, occupancy estimation is regarded as a typical classification problem. Hence,
the criterion of classification accuracy can be adopted for model performance evalu-
ation. Besides, we use another widely used evaluation criterion of Normalized Root
Mean Square Error (NRMSE) which will show the range of classification errors
[38]. As we all know, the absence and presence are of great significance for building
control systems, especially the light control system [32], the detection accuracy of
the two states is also analyzed.

4.3 Evaluation Results

The evaluation results for different methodologies under the defined three evaluation
criteria are shown in Table 2. Candanedo’s and Yang’s approaches which applied the
raw data as features performs the worst. Note that Candanedo et al. [3] and Yang
et al. [38] usedmany sensors in their works to guarantee the satisfactory performance,
which is not practical due to the high cost and the inconvenience caused by constant
maintenance. Masood’s and Dong’s approaches performs better than Candanedo’s
and Yang’s approaches, due to the use of statistical features instead of raw data
for features. These results clearly show that feature extraction is compulsory and
useful, especially with limited sensors. Since Masood’s and Dong’s methods used

Table 2 The Evaluation results of different methods under the three evaluation criteria. P/A rep-
resents Presence/Absence

Criterion Dong’s [13] Yang’s [38] Masood’s
[30]

Candanedo’s
[3]

DBLSTM CDBLSTM

Classification
accuracy (%)

71.46 66.67 72.31 70.21 74.38 76.04

NRMSE 0.1912 0.2509 0.2322 0.2297 0.1574 0.1169

Detection
accuracy of
P/A (%)

93.13 90.21 92.38 88.54 95.21 95.42
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manually extracted features which will inevitably miss useful and implicit features,
the performances of these methods are also limited for environmental sensor based
human activity recognition.

Owing to the deep structures for feature learning and temporal encoding of the
DBLSTM approach, it is able to perform better than all the state-of-the-arts under
these three evaluation criteria. With the powerful local feature extractor fulfilled
by the convolutional network, the CDBLSTM further enhance the performance of
DBLSTM. It outperforms all the approaches where the occupancy estimation accu-
racy, theNRMSEand the detection accuracy are 76.04%, 0.1169 and 95.42%, respec-
tively.

We also illustrate the occupancy estimation results of all the testing days in Fig. 6,
where useful insights can be concluded:

– Candanedo’s and Yang’s approaches perform worse than other approaches, due to
the use of raw data as features. With sensor noise and limited number of sensors,
the raw sensor data is not representative for different occupancy levels. The more
efficient way is to extract some representative features.

– Since Masood’s exhaustively searches the best integration of features with the
proposed wrapper method, it overfits on the testing data. Similarly, Dong’s method
also cannot track occupancy profiles well with the handcrafted features. It can be
concluded that handcrafted features lack a clear guideline and will inevitably miss
useful and implicit features, which limited the system performance.

– One interesting phenomenon is that the estimated occupancy suddenly increases at
midnight for Candanedo’s,Masood’s andYang’s approaches. By checking the data
carefully, it should be caused by a sudden increase of CO2 data. Then, the recorded
videowas checked, andwe find that one subject siting near a pair of sensors usually
walks around to prepare for leaving at that time. The optimal locations sensors
will be considered as one of our future works [20]. Due to the sequential modeling
capacity of HMM and the BLSTM structure, Dong’s approach, DBLSTM and
CDBLSTM can almost immune to this issue caused by the increase of CO2 data.

– With the deep structure for feature learning and the BLSTM network for temporal
encoding, the DBLSTM and CDBLSTM approaches outperforms all the state-of-
the-arts.

– Owing to the convolutional network for local feature extraction, the CDBLSTM
further enhances the performance of DBLSTM, and its better performance over
all methodologies indicates the effectiveness of using CDBLSTM for building
occupancy inference based on environmental sensors.

Time complexity is a big concern about deep learning based methods. To show
the time complexity of the CDBLSTM, we tested its training and testing time during
experiments. Here, the state-of-the-art algorithms all based onmanual feature extrac-
tion and conventional machine learning algorithms have much smaller training and
testing time when compared with CDBLSTM. The CDBLSTM is implemented with
a computer which has dual core CPUs of Intel Xeon(R) E5-2697 v2 2.70GHz and
a GPU of NVIDIA Tesla K40c. Its training time is about 16min and 40s. Although
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Fig. 6 The evaluation results of the testing data for all the methodologies [11]
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this amount of time for training is large, it is still acceptable because the training only
requires to be done once in offline. The testing time of the CDBLSTM for all the
samples (480 samples) is 0.35s. This can be neglected for building control systems
with a resolution of 15min. Hence, we can conclude that the CDBLSTM method
can be used for real-time occupancy estimation with environmental sensors.

4.4 HyperParameters

Some hyperparameters are crucial for theCDBLSTMapproach.Here, the parameters
of the masking probabilities of the two dropout layers and the number of hidden
layers are investigated. We explored three masking probability levels, including high
(0.7), medium (0.5) and low (0.3). Figure7 demonstrates the occupancy estimation
accuracy of the CDBLSTM with different combinations of masking probability. We
can find that the CDBLSTM may underfit with a degraded performance when high
masking probabilities, such as the combinations of [0.7 0.7], [0.7 0.5], [0.5 0.7]
and [0.5 0.5] are used. It is clear that a good selection of this hyperparameter will
enhance the performance of CDBLSTM. The number of hidden layers is another
key hyperparameter for the model. The estimation performance of the model with
distinct number of hidden layers is shown in Fig. 8. When the number of hidden
layers increases from 1 to 3, the model performance improves. But, if the number of
hidden layers is larger than 4 in this study, the model may overfit, resulting a limited
performance.
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Fig. 8 Estimation
performance of CDBLSTM
with varying number of
hidden layers
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4.5 The Impact of Noise

The CDBLSTM approach is able to almost immune to some abnormal and noisy
data as analyzed in Sect. 4.3, due to its ability to consider temporal dependencies in
data. In order to explore the robustness of CDBLSTM on noise data, we manually
include some noise into the raw sensor data. Figure9 presents the performance of all
the approaches with different noise levels. Note that the signal to noise ratio (SNR)
is∞when no noise is added. When the SNR decreases (noisier), the performance of
all the approaches degrade accordingly. Due to the capability of modeling temporal
dependencies in data, the noise impact on the HMM model (Dong’s), DBLSTM
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and CDBLSTM is smaller, which is consistent with the previous conclusion. The
evaluation manifests that the CDBLSTM approach is robust against the noise in data.

4.6 Generalization Performance

In order to verify the generalization performance of the CDBLSTM method, addi-
tional experiments are conducted. Specifically, we randomly select five days of data
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Fig. 10 The evaluation results for the analysis of generalization performance a estimation accuracy,
b NRMSE and c detection accuracy of P/A
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for model testing and the rest for training. Note that, each day of data have equal
probability to be chosen as training or testing, that guarantees the indication of the
generalization capability of the CDBLSTM approach. We performed three times for
the experiments. Figure10 shows the final results. It can be found that the DBLSTM
approach has a better performance than the state-of-the-arts, and CDBLSTM per-
forms the best under the three evaluation criteria. The conclusions are the same as
the previous analysis. This clearly manifests the good generalization performance
of the CDBLSTM method for environmental sensor based occupancy detection and
estimation.

4.7 Additional Evaluation with Data from Another
Environment

To further evaluate the performance of the CDBLSTM, we perform an additional
experiment with the data collected from a tutorial room. Totally, we collected four-
teen workdays of data for evaluation, where we randomly choose eleven days of data
for training and the rest for testing. A more comprehensive illustration of data is
presented in [30]. The evaluation results of all the approaches is shown in Table 3. It
can be found that all the approaches performworse in this scenario. The reason is that
we only deployed one pair of sensors in this large environment. To enhance the per-
formance, more sensors should be deployed. In this evaluation, we can get the same
conclusion. The DBLSTM outperforms all the state-of-the-arts. The CDBLSTM
performs the best. This further manifests the effectiveness and robustness of the
CDBLSTM approach for environmental sensor based building occupancy estima-
tion.

Table 3 Evaluation results in the tutorial room

Criterion Dong’s [13] Yang’s [38] Masood’s
[30]

Candanedo’s
[3]

DBLSTM CDBLSTM

Estimation
accuracy (%)

57.78 54.44 54.22 55.56 58.89 65.56

NRMSE 0.3768 0.3201 0.3214 0.3296 0.2676 0.2383

Detection
accuracy of
P/A (%)

70.00 78.89 85.22 78.89 85.56 87.78
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5 Conclusion

This chapter introduces a deep learning algorithm, termed Convolutional Deep Bi-
directional Long Short-TermMemory (CDBLSTM), for environmental sensor based
occupancy inference in buildings. The CDBLSTM consists of a convolutional net-
work for sequential local feature extraction from the raw environmental sensor data
and a DBLSTM for temporal coding and feature learning. To verify the performance
of CDBLSTM, we perform experiments in a research lab environment and compare
with some existing approaches and the DBLSTM method without the convolutional
operation. The results indicate that DBLSTM outperforms the state-of-the-arts and
CDBLSTMhas the best performance, which indicates themerits of the convolutional
network and the DBLSTM structure for temporal encoding and feature learning. We
also test some hyperparameters of the CDBLSTM with a conclusion that a proper
selection ofmodel hyperparameterswill boost the performance of CDBLSTM.Then,
the impact of noise onmodel performance is evaluated. The results manifests that the
CDBLSTM is able to alleviate the noise effect due to its unique structure. After that,
we test the generalization performance of the CDBLSTMby randomly selecting data
for training and testing. We can obtain the same conclusion in this scenario. Finally,
we perform an additional test in a tutorial room. Similarly, the CDBLSTM achieves
a superior performance over all the other methodologies.
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