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Abstract—One major problem of using location data collected
from mobile cellular networks for mobility modelling is the
oscillation phenomenon. An oscillation occurs when a mobile
phone intermittently switches between cell towers instead of
connecting to the nearest cell tower. For the purpose of mobility
modeling, the location data needs to be cleansed to approximate
the mobile device’s actual location. However, this constitutes a
challenge because the mobile device’s true location is not known.

In this paper, we study the oscillation resolution problem. We
propose an algorithm framework called DECRE (Detect, Expand,
Check, REmove) to detect and remove oscillation logs. To make
informed decisions DECRE includes four steps: Detect, to identify
log sequences that may contain oscillation using a few heuristics
based on the concepts of stable period and moving at impossible
speed; Expand, to look before and after suspicious records to
gain more information; Check, to check whether a cell tower is
observed repeatedly (which is a strong indication of oscillation);
and REmove, resolving oscillation by selecting a cell tower to
approximate the mobile device’s actual location.

Our experimental results on travel diaries show that our
oscillation resolution approach is able to remove records that
are far from mobile device’s ground-truth locations, improve the
quality of the location data, and performs better than an existing
method. Our performance study on large scale cell tower data
shows that the MapReduce implementation of our approach is
able to process 1 Terabyte of cell tower data in five hours using
a small cluster.

I. INTRODUCTION

There is much focus today on understanding the semantics
of location logs. Many applications aim to derive insights from
mobility data to understand human dynamics to support ap-
plications such as customer behaviour, location-based service
delivery, urban planning and targeted marketing [9], [16], [17].
Such data are an ideal source of information to understand
human dynamics and segmented customer behavior [1], [10].
Direct applications include urban planning [9], targeted mar-
keting [16], [17] and human mobility profiling [3], [4], [11],
[13], [14].

The three main sources of location data are typically: WiFi,
GPS and cellular tower data. The first two types of data require
users’ engagement through connecting to a WiFi network or
turning on specific applications with adequate settings. WiFi
and GPS data can be as accurate as 5-10 meters. However
they can only capture an incomplete picture of mobile device
location because of limited WiFi coverage, GPS line of sight
and battery drainage [15].

On the contrary, the cellular tower data is passive and does

not require subscriber engagement [7]. Whenever a mobile
phone subscriber triggers an activity like making a call, the
mobile phone operator (i.e., company) automatically logs the
identifier of the cellular tower the mobile phone is connected
to. The locations of the cellular towers can be used to ap-
proximate the mobile device’s locations, thus much richer and
comprehensive location data can be obtained using cellular
technologies when compared with WiFi and GPS [2].

However, due to dynamic changes in signal strength and
various transmission conditions, significant noise can be ob-
served in cellular tower data. One of the key challenges of
analysing with cellular tower data is the problem of cellular
tower oscillation [2], [3], [12]. An oscillation occurs when a
communication transaction oscillates between multiple cellular
towers even though the mobile device is not moving. Se-
quences of oscillation events may be observed and this clearly
introduces undesirable noise, which may potentially reduce
the accuracy of the data, and ultimately limit the quality of
analytics based on such data.

Addressing the oscillation problem is very challenging
because the mobile device’s real location is not known. The
oscillation resolution method has to make probabilistic infer-
ences of where the mobile device roughly is, based on observed
logs associated with the cellular towers, and then use that to
detect and remove oscillation logs.

In contrast with existing methods that rely on semantic
tags (that need to be contributed by external parties) of the
cellular towers and merge the cellular towers into clusters to
represent mobile device location [2], [12], we want to design
oscillation resolution techniques and strategies that do not rely
on other data sources and use cellular tower location (rather
than cellular clusters) to represent the mobile device location.
Our techniques are designed for logs data collected by cellular
towers rather than data collected on mobile devices.

We design an algorithm called DECRE to detect and
resolve oscillation. The algorithm consists of four steps called
Detect, Expand, Check, and REmove.

In the Detect step we find sequences of logs that con-
tain oscillations. We propose a few heuristics to detect such
sequences of logs. The heuristics are based on the notions
of stable periods and moving at impossible speed. A stable
period is a duration when the mobile phone is consistently
communicating through one cellular tower. It strongly indicates
that the mobile device is close to that cellular tower during that
period. Moving at impossible speed means that a mobile device



cannot travel very far in a very short period of time (e.g., travel
5 km in one minute).

Some of the detected sequences are quite short and do not
contain enough information for making informed decision. We
therefore introduce an Expand step where we look before and
after the sequence until certain conditions are satisfied. Then in
the Check step we test whether the expanded sequence contains
logs that switches quickly between cellular towers which is a
strong indication of oscillation. Finally the Remove step selects
a cellular tower to represent the mobile device’s location for
the detected sequence and removes the oscillation logs.

The contributions of this paper are:

• We study the challenging problem of oscillation reso-
lution in mobile phone cellular tower data.

• We propose oscillation resolution techniques based on
the ideas of stable period and moving at impossible
speed (defined in section IV), as well as an algorithm
called DECRE that is able to detect and resolve
various kinds of oscillation.

• We study the performance of our techniques and
strategies on user travel diaries. Results show that
our method successfully filtered out data points which
were significantly erroneous, in the sense that those
data points were 2 to 8 times more distant from
the ground truth locations when compared with non-
filtered data. To our knowledge this paper is the first
work that uses travel diaries to study the performance
of an oscillation resolution technique.

• We confirm the scalability of our techniques through
applying a MapReduce implementation on 1 Terabyte
of cellular tower data.

For this research project, a sample dataset of 3 months
mobile network data is used. Mobile network data is the service
log when a mobile phone is connected to the mobile network.
It contains snonymised ID, latitude, longitude, TimeStamp and
service type. The anonymised ID is a machine generated ID
via a two-step non-reversible AES Encryption and Hashing
process. Hence it is impossible to trace back to the original
ID. There is no personal information about mobile subscribers
in the dataset, nor any content of calls or SMSs. The location
information in the dataset is mobile cell tower’s location.

The rest of the paper is organized as follows: In Section II
we survey the related work. We introduce the cellular tower
data in Section III. We present our ideas and algorithms in
Section IV. Section V shows the results of our performance
study. We finally conclude this paper in Section VI.

II. RELATED WORK

The problem of cell oscillation is to some extent related
to the filtering of trajectory data from noisy GPS traces. For
GPS trajectories approaches such as Mean and Median Filters,
Kalman filter or particle filters [5], [8] are usually applied
depending on the nature of the data and requirements of the
output. A discussion of such approaches for GPS data can be
found in [18]. However, cellular tower data are usually sparser
both in time as well as geographically and thus more specific
approaches are required.

There is a small amount of work that focus on the cell
oscillation problem. In [2] Murat Ali Bayir et al. propose a

framework for discovering mobile user profiles from mobile
phone data. As part of this framework a cell clustering method
is proposed to deal with cell oscillations in mobility paths.
The method creates clusters by using majority voting over
the location tags of its cellular towers. For untagged cellular
towers, the frequency of these towers oscillating pairs is
calculated. If a cellular tower pair (without order) appears
at least three times in a mobility path, it is regarded as an
oscillating pair and the two cells are put into a cluster. In
Section V we compare our technique with this method.

The resolution of cell oscillation is also investigated in
[12]. The method relies on semantic tag of locations that is
used to identify the cellular tower locations which normally
overlapped to the same semantic location. This can address
the cell oscillation problem for cellular towers appearing at the
same semantic location within a short period of time, where the
pairs most likely represent a switching due to load balancing
or handover effect. For cellular towers not semantically tagged,
their method makes use of Location Area Code and cellular
tower’s radius information to cluster the cellular towers. If
the distance between the pairs is less than the sum of their
coverage radius and the stay time is less than a threshold time
then the cells are clustered together. We do not compare with
this method in experimental study because we do not have
cellular tower’s Location Area Code and radius information.

Both the method in [2] and the one in [12] are designed
for cellular tower dataset collected using application on mobile
phones that ask subjects to give semantic tags to cells. The
method in [12] further relies on Location Area Code infor-
mation of the cells. In fact, both [2] and [12] are based on
the Reality Mining Dataset [6] that contains semantic tag and
cellular tower Location Area Code.

Another work that is closely related to this work is [3]. In
[3], clustering of consecutive records is used to identify minor
oscillations. In particular, a sequence of records is regarded
as a cluster if the maximum spatial distance between any two
records in it is smaller than a threshold (e.g., 1 km). After the
clustering, the centroid of the points in a cluster is used to
represent the location of the cluster.

What distinguishes our work from them is that we limit
our methods to the spatial and temporal information that is
readily available such as the location of the cellular towers and
the time stamps of the logs. We do not want to rely on data
sources that are hard to collect and verify (such as semantic
tags provided by users) or unreliable information (such as
cellular tower coverage radius). Furthermore, since the output
of our cleansing method needs to be fed into further analysis
steps that assume a fixed set of cellular tower locations, our
method cannot introduce new locations such as clusters of
cellular towers. In other words, our method is designed for
cellular tower logs collected passively and we need to meet
practical constraints such as efficiency and output format.

III. CELLULAR TOWER DATA AND OSCILLATION

The mobile phone cellular tower data include subscribers’
mobile device activity logs. Each log in the sequence contains
the time of the cellular event (e.g., making/receiving a call,
sending/receiving a SMS) and the identifier of the cellular
tower that the mobile phone is connected to when that event
happens. Each cellular tower has a unique identifier and its
location (i.e., latitude and longitude) is known. By joining



Fig. 1: Example of cellular tower data. Each log contains the
timestamp of an event, the id and location of the cellular tower the
mobile phone is connected to when the event happens. Values of cell
ID and location are masked in this paper to protect business data.

the cellular tower data with cellular tower’s location based
on cellular tower identifier, we get a mobile device’s cellular
location data at given time. Figure 1 shows some logs of a
mobile device. Each line in this figure is a log and it contains
datetime, cellular tower identifier, latitude and longitude.

Cellular tower data of a mobile device can be used to
approximate the mobility trace of mobile phone subscribers.
In the ideal case a mobile phone will connect to the nearest
cellular tower whenever an event happens. In such cases the
cellular tower data will be the best approximation of the
subscriber’s true trajectory we can get from the cellular event
data. However, a mobile phone is not always connected to
the cellular tower that is nearest to its actual location due to
mobile phone network load balancing and other factors such as
raining or proximity to water bodies (e.g., river, lake and sea).
As a result, we often observe cell towers in a mobile device’s
log are very far from its actual location. Furthermore, even
when the mobile device is stationary, his/her mobile phone
can frequently switch between cell towers. These make the
raw cellular tower data contain a lot of locations that do not
reflect the mobile device’s actual location.

The main objective of this research is to design an algo-
rithm that detects logs that are far away from a mobile device’s
true location without knowing the its true location. We also
want to detect the logs that switch between a few cell towers
in a very short period of time. Such sequences of logs contain
noise (in terms of modeling the location of the mobile device)
and we want to remove such noisy logs.

Table I lists the symbols we will use and their meanings.
TABLE I: Symbols

Symbol Meaning
Cj cellular tower j where j is the identifier of the cellular

tower
Cj .lat latitute of the cellular tower Cj

Cj .lon longitute of the cellular tower Cj

Ri log i
Ri.cid cell id of log i
Ri.t date time of log i
Distance(Cj , Ck) spatial distance between cell towers Cj and Ck

TimeDiff(Ri, Rl) time difference between Ri.t and Rl.t
Distance(Ri, Rl) spatial distance between the cell towers in log Ri and

log Rl

Speed(Ri, Rl) Distance(Ri, Rl)/TimeDiff(Ri, Rl)
SPi a stable period
SPi.cid cell id of the logs in stable period SPi

SPi.first the first log in a stable period
SPi.last the last log in a stable period

IV. DECRE ALGORITHM

We design an algorithm called DECRE (Detect, Expand,
Check, and REmove) to find and remove oscillation logs. The
DECRE algorithm has four steps. In the first “Detect” step
we use four heuristics to find log sequences that contain
oscillation logs. For some of the sequences we then use an
“Expand” process to consider what are observed before and
after the suspicious sequence. In the “Check” step we test
whether the logs contain a cycle (defined in Section IV-C)
that is a strong indication of oscillation. If the suspicious
sequence is confirmed to contain oscillation logs, we delete
the oscillation logs with a “Remove” step.

A. Detect
We use four heuristics to detect log sequences that may

contain oscillation logs. Our heuristics are based on two
concepts called stable period and moving at impossible speed.

1) Stable Period: A stable period is a time frame that is
long enough and the mobile device continuously communicates
with one cellular tower.

One of our fundamental understandings of the cellular
tower data is that an individual log only tells us that the mobile
device is within the coverage of that cellular tower at that
particular time point. A single log is not enough for us to assert
that the mobile device is close to the location of the cellular
tower. However, if a mobile device continuously communicates
with one cellular tower in a period that is long enough, it is
very likely that the mobile device is close to that cellular tower.

Based on this, our first idea is to find a sequence of
continuous logs that are associated with a same cellular tower.

Definition 1: given a sequence of log R1 to Rn of a mobile
device ordered by datetime, the same-cell sequences are the
continuous sequences of logs where the cellular tower is the
same, i.e., R1.cid = R2.cid, ...,= Rn.cid . The duration of a
same-cell sequence is the time duration from the time in the
first log to the time in the last log of the same-cell sequence,
i.e., TimeDiff(R1, Rn).

Figure 2 is an illustration of same-cell sequences in a
sequence of logs. In this example there are 18 logs and four
same-cell sequences are observed, namely SC1, SC2, SC3,
and SC4. The first same-cell sequence SC1 contains three
logs associated with cellular tower C1. The second same-
cell sequence SC2 contains four logs associated with cellular
tower C1. The third same-cell sequence SC3 contains two logs
associated with cellular tower C4, and the fourth same-cell
sequence SC4 contains four logs associated with cellular tower
C7. Note that although both SC1 and SC2 contain logs with
C1 they are separated by a log with C2.

Fig. 2: Illustration of same-cell sequences and stable periods. SC1,
SC2, SC3, and SC4 are the same-cell sequences. SP1, SP2, and SP3
are stable periods.

Definition 2: if the time duration of a same-cell sequence
is long enough (e.g., longer than a threshold L such as 10
minutes), we call such a same-cell sequence as stable period.



For example, in the four same-cell sequences of Figure 2
we may find three stable periods, shown as SP1, SP2, and SP3.
Note that SC3 is not a stable period because its time duration
is not long enough.

2) moving at impossible speed: Impossible movements are
observed when the spatial distance between consecutive logs
are too far for the mobile device to travel in the time duration
between the logs.

Through visual analytics we notice that there are many
instances where the mobile phone suddenly connects to a
cellular tower that is very far from whether the mobile device
is. Figure 3 shows an example of such event that happened
when a mobile device moves from east to west by a train1.
There was a sudden jump from cellular tower 254 (at time
18:50:16) to 477 (at time 18:54:20) and then jumps to cellular
tower 1608 (at time 18:55:58). Clearly, an oscillation happened
in this example. In fact, we observe many such cases when we
visualize the data.

Fig. 3: An example where moving at impossible speed is observed.
Cellular identifiers are removed to make room for distance, time, and
speed information.

Another kind of moving at impossible speed is observed
in log sequences where a mobile device has several logs from
different cellular towers in just one minute or even a few
seconds. For example, in Figure 1 we observe five logs in the
one minute of 09:32 associated with four cellular towers (C4,
C5, C3 and C6). A specific heuristic (heuristic 4) is designed
to capture such sequences.

3) Heuristics: Based on the concepts of stable period and
moving at impossible speed we design the following four
heuristics to detect log sequences that exhibit moving at
impossible speed and therefore contain oscillation logs.

Heuristic 1
If two consecutive stable periods’ cell is the same and the

time difference between them is short enough (e.g., shorter
than a threshold L1T = 2 minutes), the logs between the two
stable periods are very likely due to oscillation. Let SPi and
SPi+1 be two two consecutive stable periods, the condition in
this heuristic can be expressed as

(SPi.cid == SPi+1.cid)

1We know the ground truth for this example because the data were
contributed by one of the authors.

AND
(TimeDiff(SPi.last, SPi+1.first) < L1T )

For example as shown in Figure 4, stable periods SP1
and SP2 are with the same cellular tower C1, and the time
difference from SP1 to SP2 is short, so we are sure the log
between them (i.e., C2) is due to oscillation.

The intuition is that both the first stable period and the
second stable period tell us that the mobile device is close
to cellular tower C1, and the time between them is not long
enough for the mobile device to move close to C2 and return
to C1, so the log with C2 is very likely an oscillation log.

Fig. 4: Illustration of stable period based heuristic 1.

Heuristic 2
If shortly after a stable period there is a log whose cell is

far away from the stable period’s cell, that log is very likely
due to oscillation. Let Rj be an immediate log after stable
period SPi, let L2T and L2D be two thresholds for time and
distance, the condition in this heuristic can be expressed as

(TimeDiff(SPi.last, Rj) < L2T )

AND
(Distance(SPi.last, Rj) > L2D)

The intuition behind this heuristic is that the stable period
tells us that the mobile device is close to the cellular tower in
SPi, and that the time between the stable period and the log
is not enough for the mobile device to travel to a location that
is close to the cellular tower of Rj .

Although it seems we can combine the conditions
as Distance(SPi.last, Rj)/T imeDiff(SPi.last, Rj) >
L2D/L2T and use a threshold of speed to replace L2D/L2T ,
we do not do so for the following reason. Time difference can
be very small, and therefore the derived speed can be very large
even when distance is actually small. Such derived speed can
be misleading. For example, if Distance(SPi.last, Rj) is 200
meters and TimeDiff(SPi.last, Rj) is 1 second, this will
result in a speed of 720 km/h. If we use speed as threshold,
such log will be regarded as oscillation. But in reality such log
is possible when the mobile device enters the coverage of a
new cellular tower. By using thresholds on time and distance
we avoid removing many false positives.

Figure 5 shows an example of applying this heuristic. The
time difference between stable period SP3 and the log of C8
is very short (e.g., 1 minute) but the distance between C7 and
C8 is very far (e.g., 5 KM), according to the heuristic we are
confident that the log of C8 is due to oscillation.

Fig. 5: Illustration of stable period based heuristic 2.



Heuristic 3
This heuristic is designed to capture the long jumps illus-

trated in Figure 3. Based on the knowledge of domain experts
and also our insights gained from visual analytics of the data
we know that such oscillation typically happens in a sequence
of three logs. The second log suddenly jumps to a cellular
tower that is far away from the cellular tower in the first log,
and the third log jumps back to a log which is the same as (or
close to) the first log.

Formally the heuristic for capturing such oscillation logs
can be expressed as follows where V is a threshold for speed
and L3 is a threshold for distance.

(Speed(Ri, Ri+1) > V ) ∧ (Speed(Ri+1, Ri+2) > V ) ∧
(Distance(Ri, Ri+1) > L3) ∧ (Distance(Ri+1, Ri+2) >
L3) ∧ (Distance(Ri, Ri+2) < L3/2)

Note that we need the conditions on distance to make sure
a long distance jump happened. It is a very strong evidence of
oscillation. As explained in heuristic 2, condition on speed
itself is not enough because the computed speed can be
misleading if the time difference between two logs is extremely
short (e.g., a few seconds).

We also notice that sometimes the time difference between
two logs can be reasonably long and it makes the computed
speed looks normal although a long distance oscillation hap-
pened. For instance, in Figure 3 the speed from cell 254 to cell
477 is 163km/h which is not very odd. However the speed from
cell 477 to cell 1608 is close to 500km/h. We capture such
cases by changing the condition to the following expression.

(Speed(Ri, Ri+1) ∗ Speed(Ri+1, Ri+2) > V ∗ V ) ∧
(Distance(Ri, Ri+1) > L3) ∧ (Distance(Ri+1, Ri+2) >
L3) ∧ (Distance(Ri, Ri+2) < L3/2)

Heuristic 4
Most of the oscillations happen in a short period of time

and they are not adjacent to any stable period. They exhibit
moving at impossible speed but do not satisfy heuristic 3
because the distance between cellular towers in consecutive
logs is not long enough. Such oscillations typically happen
among cellular towers that are close to each other.

We use the following criterion to identify such sequences:
within a short period of time (e.g., a=1 minutes) there are
at least a few (e.g., b=3) logs from at least a few (e.g., c=2)
cellular tower. We call a continuous sequence of logs satisfying
the above condition as suspicious sequence identified using
parameters a, b, and c.

Note that not all suspicious sequences identified by this
heuristic contain oscillation logs. We understand such se-
quences are possible and can be even reasonable when the
mobile device is moving fast (e.g., driving on highway).
We use the “Expand” and “Check” steps to find suspicious
sequences that do contain oscillation logs. We ensure we only
remove logs that we are confident that they are oscillations.

B. Expand
By running the heuristic 4 on cellular tower data we

discover that most of the suspicious sequences contain 3 or
4 logs, and typically 2 or 3 cellular towers are involved. Since
such sequences contain only one or two logs from each cellular
tower and all happen in a short period of time, hence the logs in
such suspicious sequences do not contain enough information

to determine which of the cellular towers best represent the
mobile device’s location. So we decide to look before and
after the suspicious sequence to gain more information (or
evidence). We call this step “Expand”.

Given a suspicious sequence detected using time window
a (minute), we expand the sequence by looking at most
a minute(s) before the suspicious sequence and at most a
minute(s) after the suspicious sequence. The look-back (or
look-after) process stops when it encounters a log whose
cellular tower did not appear in the suspicious sequence.

The reason we limit the “Expand” process to a minute(s)
before and after the suspicious sequence and limit it to the
cellular tower that appeared in the suspicious sequence is that
oscillation is typically a short term event (e.g., due to load
balancing of the cellular network) and we want to focus on
the cells that are involved in the suspicious sequence.

After the “Expand” step the suspicious sequence typically
will have a few more logs, but still from the same set of
cellular towers. As a result, we have more reliable information
to decide on which cellular tower probably best approximates
the mobile device’s location.

C. Check
From the domain experts we also find out that an important

characteristic (or evidence) of oscillation is that cycle of
cellular towers is often observed in a short period of time.
Here a cycle is defined as a continuous sequence of logs whose
first log and last log have the same cellular tower and there is
at least one log from other cellular tower between them. For
example, a sequence of log C1C2C1 exhibits the cycle from
C1 to C2 and then back to C1. On the contrary, C1C1C2 does
not contain a cycle.

For each suspicious sequence identified by heuristic 4 and
expanded by the “Expand” process, the “Check” step tests
whether the sequence contains a cycle of events. If it has a
cycle, we confirm that there is oscillation in the sequence.
Otherwise we claim that the suspicious sequence is due to fast
movement and will not remove the logs from it. For example,
when a mobile device drives through an area with high density
of cellular towers, it is possible to observe a few logs from a
few cellular towers in a short period of time. Basically, this
“Check” step ensures that we only remove oscillation logs for
which we have enough evidence (i.e., a cycle is observed in a
very short period of time).

D. Remove
For the oscillations detected by heuristics 1, 2, and 3, it is

clear which logs are oscillation and they should be removed.
However, for the suspicious sequences identified by heuristic
4 and further confirmed with the Expand and Check steps,
we need to decide which logs in the sequence are oscillation
logs and which cellular tower should be used to represent the
location of the mobile device for this sequence.

We design a score based algorithm to select the cellular
tower to approximate the location of the mobile device. Each
cellular tower contained in the suspicious sequence gets a score
based on its frequency in the sequence and its average distance
to other cells appeared in the sequence. We want to favor the
cellular tower that appears frequently in the sequence and is
close to other cells.



After determining the cellular tower that will be used to
represent the mobile device’s location, we remove the logs
from other cells in the suspicious sequence. Basically they are
regarded as oscillation logs. Algorithm 1 lists the details of
this remove process.

Data: oscillation sequence
Result: a sequence of logs where oscillation logs are

removed
C = the set of cells in the sequence ;
for each cell c in C do

Fc = the number of times c appears in the
oscillation sequence;
Dc = the average distance from c to cells in
C − {c};
Scorec = Fc/Dc

end
Ch = the cell with the highest score;
remove logs whose cells are not Ch;
return logs

Algorithm 1: Remove oscillation logs

Figure 6 shows an example where a suspicious sequence
C9C10C9C11C9C11 is identified and it contains cycles (i.e.,
C9C10C9, C9C11C9, and C11C9C11). Figure 7 shows the
relative locations of the cells involved in this sequence. The
distance between C9 and C10 is 0.9 KM. The distance between
C9 and C11 is also 0.9 KM. The distance between C10 and
C11 is 0.1 KM. They are in a busy commercial area where
density of cellular towers is high.

The algorithm counts the number of times each
cell appears and get Fc9=3, Fc10=1, Fc11=2. Then it
calculates the average distance from each cell to other
cells. Since distance(C9,C10)=0.9, distance(C9,C11)=0.9,
distance(C10,C11)=0.1, we get Dc9=(9+9)/2=0.9,
Dc10=(9+1)/2=0.5, Dc11=(9+1)/2=0.5. Then the score
for each cell is calculated as Scorec9=3/0.9, Scorec10=1/0.5,
and Scorec11=2/0.5. As a result, cell C11 is selected as the
mobile device location for this oscillation sequence.

Fig. 6: An example of suspicious sequence discovered by the “De-
tect”, “Expand”, and “Check” steps.

Fig. 7: The location of cellular towers in the example shown in Fig-
ure 6. We do not have cellular tower radius (or coverage) information,
so we do not draw the circles around the towers.
E. Discussion

The DECRE algorithm is designed in a modular manner
so that each step of the algorithm can be replaced with

new algorithm in the future. For example, the heuristics in
the “Detect” step can be replaced with more sophisticated
detection criterion. As another example, if the radius of the
cells are known, we can design a new REmove algorithm
by taking that into account and then plug the new REmove
algorithm to the DECRE algorithm.

V. PERFORMANCE EVALUATION

In this section we describe the experiments we performed
to study the effectiveness and efficiency of our oscillation res-
olution techniques. For effectiveness, we want to see whether
the records after oscillation resolution approximate the mobile
device’s true trajectory better than the original data. For
efficiency we want to find out whether the methods can handle
Big data. We report results on both travel diaries and large
scale cellular data. We also compare our technique to the
oscillation resolution method used in [2]. The comparison
study is presented in Section V-C2.

Due to space limit we do not report the results of exper-
iments that study the effect of the heuristic parameters. The
results reported below are based on parameters values we used
in the examples in Section IV-A3.

A. Performance Metric
The performance metric we use to measure effectiveness

of the methods is the distance between location in cellular data
and the mobile device’s true location at corresponding time.

Recall that each cellular tower log LOGi contains the time
information LOGi.t. Suppose we have the true location of the
mobile device at time LOGi.t and denote it as LOGl

i, we can
compare the location in log LOGi to LOGl

i and calculate the
distance between them as distance(LOGi, LOGl

i).
Given a set of cellular tower records of a mobile device and

the ground-truth locations at corresponding times, we define
the average distance between locations in cellular records
and corresponding true locations as the measure of how the
records approximate the mobile device’s real mobility
trace. Formally, suppose N is the number of records, the
performance metric is∑N

i distance(LOGi, LOGl
i)

N

Recall that our methods remove some of the cellular
tower records that are regarded as oscillation records. Let
us use LOGoriginal and LOGcleansed to denote the records
before and after oscillation resolution respectively. We use
LOGremoved to denote the records that are removed. Thus
we have LOGcleansed = LOGoriginal - LOGremoved.

We compute the performance metric for LOGoriginal,
LOGcleansed, and LOGremoved. We can conclude that our
methods are effective if

• LOGcleansed is closer to the ground-truth than
LOGoriginal is; and

• LOGremoved is much farther away from ground-truth
than both LOGoriginal and LOGcleansed are.

B. Data Collection and Correction
Since we compare the locations in the cellular records

to the actual locations of the subjects at the corresponding



Fig. 8: Average distance (in meters) from records to subject’s true
locations.

timestamps, we need to have the actual locations of the subjects
as the ground-truth for comparison.

Initially, we asked a number of subscribers to collect GPS
data as ground-truth. However, GPS data can only be collected
when the mobile phone is outdoor. GPS data are also very
unreliable when the mobile device is in a bus or a train. As
a result, very limited amount of GPS data (in terms of time)
could be collected.

Consequently, we decided to ask the subjects to manually
correct their cellular tower data as their travel diaries rather
than trying to collect GPS data. For each point in the cellular
data (that corresponds to a cellular tower location at a time
point) the subject checks whether that point is close to his/her
real location at that time point based on his memory and
journal. If they do not match well, the subject simply changes
(by dragging on a map) the location in the cellular log to
the actual location. Therefore, after this process we obtained
a trace with ground-truth locations and timestamps matching
the original cellular tower trace.

A number of subjects help in correcting their cellular
records collected for a period of 2 weeks. The traces include
a wide range of activities such as staying at home, working
at office, commuting, visiting shopping malls, transportation
hubs, airport, theme parks, etc.

C. Results on Travel Diaries
1) Performance of DECRE algorithm: Figure 8 shows the

distance (in meters) between different sets of records and the
ground-truth for four randomly selected subjects. Each bar
represents the distance between the records previously defined
and the ground-truth. Note that different subject’s records
exhibit different characteristics. For example, subject U1’s
records generally approximate the real locations quite well.
The records removed from his/her records are very far from
the real locations. Such characteristics are subject dependent
because they depend on where the subject lives and works and
where he/she went during the two weeks.

We observe that the records in the cleansed set is closer
to the ground-truth than the original records. Overall we gain
about 10% improvement in terms of average distance. The
reason it is not so significant is that most original records
are not removed as oscillation records. This is as expected
because most of the time our mobile phones are connected
to the nearest cellular towers. Only about 5% of records are
removed, therefore the average distance to ground-truth won’t

Fig. 9: Average distance (in meters) from cleansed records to subject’s
true locations. The shorter, the better.

be affected significantly.
Comparing the removed records to the cleansed records,

we observe that the removed records are much further away
from true locations. For subjects U2, U3 and U4, the removed
records are about 2-3 times further away than cleansed records.
For subject U1, the removed records are even 10 times further
away than cleansed records. Removing these noisy points
(although the percentage of them is not very high) is very
important for studying subject’s mobility trace.

Using annotated data we confirm that our methods can
effectively identify oscillation records and remove them. As a
result, the records after cleansing can approximate the subject’s
true trajectory better. In particular, the misleading records that
are far away from true locations are removed.

2) Comparison to Existing Method: We also compare our
technique to the oscillation resolution method used in [2]. It
first clusters the cellular towers based on subject’s semantic
tags, then detects oscillation cellular tower pairs without tags
based on the number of times each cellular tower pair appears
together. Since our dataset does not have semantic tags, we
implement the second step of that method which handles
towers without semantic tags. We use “PairFrequency” to refer
to this method. Figure 9 and Figure 10 show the results.

Figure 9 shows the average distances from the datasets
to the ground-truth. For each experimental subject we show
distances from three datasets: the original, after DECRE re-
solves oscillation, and after PairFrequency resolves oscillation.
The shorter the distances, the better. We can see the DECRE
performs much better than PairFrequency. Its improvement is
about two times of that of PairFrequency.

Figure 10 shows the average distances from the records
removed by Human, DECRE and PairFrequency to the ground-
truth. The larger the distances, the better. We can see that Hu-
man performs the best because they remember where they were
and therefore they can easily identify the noisy points. DECRE
performs better than PairFrequency. The points removed by
DECRE are farther away from the ground-truth than the ones
removed by PairFrequency.

Figure 9 and Figure 10 show that comparing to PairFre-
quency our algorithm DECRE is able to retain the points closer
to the ground-truth and remove the points farther away from
the ground-truth, without knowing the ground-truth.



Fig. 10: Average distance (in meters) from removed records to
subject’s true locations. The higher, the better.

D. Results on Large Scale Data
We run our methods on a large scale dataset consisting of

cellular tower data of collected in three months. The size of
the dataset is about 1 Terabyte. A MapReduce implementation
of our method is able to complete the cleansing process in a
few hours using a small four-machine cluster.

In total our technique removes about 6 percent of the
records as oscillation. Figure 11 shows the breakdown of the
percentage of total records removed by the heuristics. We
see that heuristic 4 removes most of the oscillation records
identified. It is because most of the oscillations happen in a
very short period of time and they are not adjacent to stable
periods. They also do not oscillate between cells that are far
away, and therefore they are not captured by heuristic 3 which
has conditions on both movement speed and distance. Note
that heuristic 4 detects most of the oscillation does not mean
that heuristics 1, 2 and 3 are not important. In fact, they are
able to remove points that deviate a lot from ground-truth.

Fig. 11: Percentage of total records that are detected by the four
heuristics.

VI. CONCLUSION

In this paper we study the problem of detecting and
removing the oscillation records from cellular location data.
We propose an algorithm called DECRE that detects and
removes the oscillations to improve the quality of the data
for mobility modelling. We studied the effectiveness of our
methods using a travel diaries dataset. The results show that
our methods are able to detect and remove the records that are
far away from mobile devices’ real location without knowing
the real locations. We test the efficiency of our methods on a

large scale cellular location dataset and show that our program
is able to clean 1 Terabyte data in a few hours.

In the future, we plan to use the cleaned data in mobility
modeling. In particular, the data will be used to identify
important locations, to detect transport mode, and to build
movement prediction models.
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