
Ou-Yang et al. BMC Bioinformatics  (2016) 17:100 
DOI 10.1186/s12859-016-0939-3

RESEARCH ARTICLE Open Access

A two-layer integration framework for
protein complex detection
Le Ou-Yang1,2,5, Min Wu3, Xiao-Fei Zhang4, Dao-Qing Dai2*, Xiao-Li Li3* and Hong Yan5

Abstract

Background: Protein complexes carry out nearly all signaling and functional processes within cells. The study of
protein complexes is an effective strategy to analyze cellular functions and biological processes. With the increasing
availability of proteomics data, various computational methods have recently been developed to predict protein
complexes. However, different computational methods are based on their own assumptions and designed to work on
different data sources, and various biological screening methods have their unique experiment conditions, and are
often different in scale and noise level. Therefore, a single computational method on a specific data source is generally
not able to generate comprehensive and reliable prediction results.

Results: In this paper, we develop a novel Two-layer INtegrative Complex Detection (TINCD) model to detect protein
complexes, leveraging the information from both clustering results and raw data sources. In particular, we first
integrate various clustering results to construct consensus matrices for proteins to measure their overall co-complex
propensity. Second, we combine these consensus matrices with the co-complex score matrix derived from Tandem
Affinity Purification/Mass Spectrometry (TAP) data and obtain an integrated co-complex similarity network via an
unsupervised metric fusion method. Finally, a novel graph regularized doubly stochastic matrix decomposition model
is proposed to detect overlapping protein complexes from the integrated similarity network.

Conclusions: Extensive experimental results demonstrate that TINCD performs much better than 21 state-of-the-art
complex detection techniques, including ensemble clustering and data integration techniques.

Keywords: Protein complex, Protein interaction data, Co-complex matrix, Consensus matrix, Matrix fusion,
Matrix decomposition

Background
Understanding the structural and functional architec-
ture of the cell has been a fundamental task for systems
biology [1]. As vital macromolecules, proteins do not act
individually, but work by interacting with other partners
[2]. Almost all of the functional processes within a cell
are carried out by protein complexes which are formed
by interacting proteins [3]. Therefore, detecting protein
complexes from protein-protein interaction (PPI) data is
crucial for elucidating the modular structure within cells
[4, 5]. In recent years, high-throughput screening (HTS)
techniques have been designed to detect protein-protein
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interactions, e.g., yeast two-hybrid (Y2H) [6] and Tandem
Affinity Purification/Mass Spectrometry (TAP) [7]. Such
HTS techniques have already generated a large amount
of PPI data, which facilitate the development of computa-
tional methods for protein complex detection [8–21].
Generally, computational methods for protein complex

detection utilize two types of data, namely, the binary pro-
tein interaction data detected by HTS techniques such as
Y2H method, and the data for co-complex interactions
among proteins [22, 23] from TAP experiments. Here, we
denote the above two types of data as PPI data and TAP
data respectively. PPI data is usually modeled as a graph
(i.e., PPI network) where nodes represent proteins and
edges represent protein interactions. A number of graph
clustering algorithms have been proposed for detecting
protein complexes from PPI networks, such as MCODE
[9], CFinder [24], MCL [8], RNSC [25], COACH [26] and
ClusterONE [15]. On the other hand, raw data from TAP
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experiments is a list of bait proteins along with their corre-
sponding prey proteins that they pulled out (purification
records), which could be modeled as a bipartite graph
(in which the two node sets are composed of bait pro-
teins and prey proteins, and the edges between the two
node sets represent bait-prey connections). Several algo-
rithms have been proposed to identify protein complexes
from TAP data as well [27–31]. A common strategy is to
first define affinity scores between proteins based on the
purification records [5, 32, 33] and then convert the TAP
data to a PPI network by using a threshold method to
keep those reliable interactions for further analysis. Since
convert the original TAP data into a binary PPI network
not only introduces errors but also loses useful informa-
tion in the raw data [23], another alternative strategy is
to detect complexes from the TAP data directly, such as
CACHET [31].
As diverse sources of protein interaction data are avail-

able, data integration becomes a common methodology
to reduce the noise in PPI and TAP data (address false
positive issue) [34] and to improve the coverage (address
false negative issue) for protein complex detection. For
example, DECAFF [35] exploited theGeneOntology (GO)
annotations to assess the reliability of PPI data and then
detected protein complexes from the refined PPI data;
MATISSE [36] and CMBI [37] integrated gene expres-
sion data with PPI data to increase the confidence of
interactions for protein complex detection. InteHC [17]
integrated four data sources (i.e., PPI data, gene expres-
sion profiles, GO terms and TAP data) and significantly
improved the complex detection. In particular, InteHC
calculated a score matrix for each of the four data sources
and took their weighted sum, which relies on additional
supervision information to learn a weight for each data
source, as an integrated matrix. However, due to noise
in different data sources, the direct fusion of several
original datasets may exacerbate the problems of noise.
Moreover, how to correctly estimate the co-complex rela-
tionships between proteins based on their functional
annotations and gene expression profiles is still an open
problem.
Nevertheless, with various methods proposed for

protein complex detection, we are thus able to gener-
ate a series of clustering results for each type of data.
Clearly, given one type of data, each method has its
own advantages and limitations in capturing co-complex
relationships between proteins [38]. Ensemble cluster-
ing, which exploits the complementary nature of indi-
vidual methods by leveraging their clustering outputs,
is thus promising to improve the detection for protein
complexes [18, 39, 40]. Particularly, ensemble clustering
methods usually first reconstruct a consensus matrix (or
consensus network) which shows the co-complex propen-
sity among proteins from a series of clustering results

and then apply a specific algorithm [18, 41] to detect
protein complexes from the consensus matrix. However,
the consensus network, based solely on the result-level
integration (integrate the clustering results of different
methods on a single type of data), may miss the under-
lying complex information which exist in other types
of data. It is thus necessary to combine the consensus
matrices derived from multiple types of data to generate
a more comprehensive and reliable co-complex similar-
ity matrix, which may facilitate the detection of protein
complexes.
Different from Y2H experiments that are prone to

identify direct physical interactions, TAP experiments
already provide useful information about protein com-
plexes and TAP data describe the co-complex propensity
among proteins. However, as TAP data cannot be con-
verted into co-complex interactions in a straightforward
manner, several scoring methods have been proposed to
estimate the affinity scores between proteins based on the
purification records (e.g., bait-prey and prey-prey rela-
tionships) provided by TAP data, such as C2S scores
[30]. As such, we are able to integrate heterogeneous
matrices, i.e., the consensus matrices derived from dif-
ferent types of data and the co-complex score matrices
derived from TAP data, to better understand the co-
complex relationships among proteins. However, as these
heterogeneous matrices may have different scales, noise
rates and importance levels, focusing only on common
patterns can miss valuable complementary information.
It would be challenging to merge them into a final co-
complex matrix automatically in an unsupervised man-
ner. In addition, once we obtain the integrated matrix,
it is still difficult for us to design an efficient algorithm
to detect overlapping complexes from this integrated
matrix.
To address the above challenges, we propose a

novel Two-layer INtegrative Complex Detection (TINCD)
model to predict protein complexes as shown in Fig. 1,
which leverages the information from both clustering
results and raw data sources. In the first layer integration,
we utilize an ensemble method to construct consensus
matrices for different types of data to measure the co-
complex propensities between proteins based on various
clustering results. In the second layer integration, we com-
bine the consensus matrices derived from different types
of data with the score matrix derived from TAP data
and obtain an integrated similarity network via a simi-
larity network fusion (SNF) method. SNF is an iterative
process to fuse heterogeneous networks or matrices by
capturing both shared and complementary information
among them [42]. Finally, a novel graph regularized dou-
bly stochastic matrix decomposition model is proposed to
detect overlapping protein complexes from the integrated
similarity network. We have conducted comprehensive
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Fig. 1 Schematic overview of our proposed TINCD model. TINCD first constructs two consensus matrices (C(1) and C(2)) based on the complex
knowledge discovered by various graph clustering algorithms from PPI and TAP data. Second, a similarity network fusion (SNF) strategy is employed
by TINCD to combine these two consensus matrices with the score matrix obtained from TAP data (C(3)) to obtain a final co-complex score matrix.
Finally, a novel graph regularized doubly stochastic matrix decomposition model is proposed to detect overlapping protein complexes from the
final score matrix

experiments to evaluate the performance of our proposed
TINCD algorithm. A comprehensive comparison with 21
existing methods shows that our two-layer integration
strategy generates protein complexes with better coverage
and accuracy. All the experimental results and code
can be downloaded from https://github.com/Oyl-CityU/
TINCD.

Methods
In this section, we describe our TINCD model as shown
in Fig. 1 in details. We first demonstrate the two-layer
integration and then present the graph regularized doubly
stochastic matrix decomposition algorithm for protein
complex detection.

First layer integration: result-level integration via
ensemble clustering
As diverse types of data are available and various com-
putational methods have been designed to detect protein
complexes from them, we are thus able to generate a series
of base clustering results (i.e., employing different meth-
ods on a particular type of data will generate multiple
clustering results). A straightforward way to measure
the co-complex affinities among proteins is to build the
consensus matrices by integrating the above abundant
clustering results.
Suppose all the data sources used in this study cover

N proteins and we have obtained np clustering results
which are generated by applying np different methods on

https://github.com/Oyl-CityU/TINCD
https://github.com/Oyl-CityU/TINCD
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a specific type of data. Here, a clustering result refers to a
set of clusters generated by a certain method. A consensus
matrix C(m) is a N × N matrix. In C(m), the entry C(m)

ij is
the number of clustering results where the proteins i and
j are assigned to the same cluster, divided by the number
of clustering results np. As such, each entry C(m)

ij indicates
the probabilities that protein i and j are involving in the
same complexes. If protein i is not assigned to any clusters
or is not included in them-th data source, the i-th row and
i-th column of C(m) are set to zero. Note that the coverage
and quality of different data sources would be different.
We thus build a corresponding consensusmatrix indepen-
dently for each type of data. In this study, we focus on two
data sources, namely, PPI data and TAP data. Therefore,
the consensus matrices corresponding to these two types
of data are denoted by C(1) and C(2) respectively (please
refer to Fig. 1).

Second layer integration: integrating heterogeneous
co-complex matrices via similarity network fusion
Unlike PPI data, the TAP data is designed to capture the
co-complex relationships between proteins. In addition to
the above consensus matrices, we also calculate an affin-
ity score matrix to capture the co-complex relationships
directly from the TAP data (in the raw data level). For
TAP data, several scoring methods have been proposed to
measure the affinity between proteins based on the purifi-
cation records [5, 30, 32, 33]. For example, C2S method
[30] has been recently developed for measuring the co-
complex relationships among proteins. In this paper, we
further process the C2S scores by discarding the negative
scores (according to the definition of C2S scores, protein
pairs with negative scores are not likely to be co-complex)
and taking exponential transformation for the positive
scores (normalized to [0,1] from original values), and gen-
erate a matrix C(3). Assume that C2Sij is the original score
between the proteins i and j, C(3)

ij is our refined score as
follows.

C(3)
ij =

{
1 − exp(−C2Sij), if C2Sij > 0,

0, if C2Sij ≤ 0. (1)

Let C(m) (m = 1, . . . ,M) denote all the consen-
sus matrices from the ensemble clustering and the
score matrix derived from the TAP data (in this
study, M = 3). All of these M matrices describe
the co-complex similarities among proteins, but in
different scales and with different noise rates. We
next introduce the similarity network fusion (SNF)
method [42] to integrate these M heterogeneous
matrices.
After defining similarity matrices C(m), the normalized

weight matrices A(m) are defined in Eq. (2). The normal-
ization here is free of the scale of self-similarity in the

diagonal entries and avoids numerical instabilities and it
satisfies

∑
j A

(m)
ij = 1.

A(m)
ij =

⎧⎨
⎩

C(m)
ij

2
∑

v�=i C
(m)
iv

if j �= i,
1
2 , if j = i

(2)

Local neighborhoods are further exploited to measure
the local affinities among proteins. Let V (m)

i denote the L
(the value of L is set to be 20 by default in [42]) nearest
neighbors of protein i in the matrix C(m) (m = 1, . . . ,M).
To measure the local affinity, the local kernel matrix B(m)

is defined in Eq. (3). By this operation, the L most simi-
lar proteins for each protein are kept and those neighbors
with low similarities are filtered out. Therefore, B(m) cap-
tures the local structure of similarity network correspond-
ing to C(m). Overall, A(m) carries the full information
about the similarity of each protein to all the others, while
B(m) only encodes the similarity to nearby proteins.

B(m)
ij =

⎧⎪⎨
⎪⎩

C(m)
ij∑

v∈V (m)
i

C(m)
iv

if j ∈ V (m)
i ,

0, otherwise
(3)

Let W (m)
t=0 = A(m)(m = 1, . . . ,M) represent the initial

status matrices at t = 0. SNF is an iterative process to
update the status matrixW (m) in Eq. (4) as follows:

W (m)
t+1 = B(m) ×

⎛
⎝ 1
M − 1

∑
v�=m

W (v)
t

⎞
⎠ ×

(
B(m)

)T
. (4)

Another way to think of the updating rule (4) is:

W (m)
t+1(i, j) =

∑
h∈V (m)

i

∑
l∈V (m)

j

B(m)

i,h

×
⎛
⎝ 1
M − 1

∑
v�=m

W (v)
t

⎞
⎠

h,l

× B(m)

j,l .
(5)

Note V (m)
i represents the neighborhood of protein i in

matrix C(m) (m = 1, . . . ,M). If proteins i and j have com-
mon neighbors in C(m) or their neighbors in C(m) have
high similarity scores in other similarity matrices, their
co-complex similarity will be augmented through these
cross diffusion processes and vice versa. Therefore, even
if protein i and j are not very similar in one data type,
their similarity can be expressed in other data types, and
this similarity information can be propagated through the
fusion process. We perform normalization on W (m)

t+1 as in
Eq. (2) after each iteration [42]. After t steps (W (m) are
converged), we can automatically obtain the integrated
similarity matrix W that fuses all these heterogeneous
matrices in Eq. (6) where M is 3. Since A(m) is normal-
ized and B(m) retains the local similarities (m = 1, . . . ,M),
the cross diffusion processes in Eq. (4) are free of the scale
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and robust to the noise. Hence, the final similarity scores
encoded inW would be more comprehensive and reliable.

W = 1
M

M∑
m=1

W (m)
t . (6)

Detecting protein complexes via graph regularized doubly
stochastic matrix decomposition model
In the above sections, we obtain the integrated simi-
larity matrix W via a two-layer integration framework.
Next, we present the graph regularized doubly stochastic
matrix decomposition model to detect protein complexes
fromW.

Model formulation
Our objective is to infer P(k|i) fromW, which is the proba-
bility of assigning protein i to the predicted k-th complex.
If we cluster all proteins into K complexes, the complex
assigning probabilities represent the single-step random
walk probabilities from proteins to complexes. Without
preference to any particular proteins, we impose uniform
prior P(i) = 1/N over the proteins. In this way, the
reversed random walk probabilities can be calculated by
the Bayes formula:

P(i|k) = P(k|i)P(i)∑N
z=1 P(k|z)P(z)

= P(k|i)∑N
z=1 P(k|z) .

Taking into account the probability of two-step random
walks from protein i to protein j via all complexes:

P(i|j) =
K∑

k=1
P(i|k)P(k|j) =

K∑
k=1

P(k|i)P(k|j)∑N
z=1 P(k|z) .

This probability defines the similarity between two pro-
teins, Ŵij = P(i|j), according to their memberships with
respect to all complexes. Note that W represents the
observed similarity between proteins that arise from their
co-complex relationships, the learning target is to find a
good approximation betweenW and Ŵ . In this study, we
use generalized Kullback-Leibler (KL) divergence, which
is suitable for the approximationW ≈ Ŵ , to measure the
difference between Ŵ andW [43]. The objective function
is defined as the following optimization problem:

⎧⎨
⎩
min
θ≥0

DKL(W ||Ŵ ) = ∑
ij

(
Wij log

Wij
Ŵij

− Wij + Ŵij

)
.

s.t.
∑K

k=1 θik = 1, i = 1, . . . ,N .
(7)

where θik = P(k|i) and Ŵij = ∑K
k=1

θikθjk∑N
z=1 θzk

.
Moreover, as each element Wij of the similarity matrix

W reflect the observed co-complex similarity between
protein i and j, protein pairs with high value of Wij are
supposed to have similar propensities to be involved in the
same complexes. As a popular manifold learning method,

graph Laplacian is widely used in semi-supervised learn-
ing to enforce smooth regularization for nodes with high
similarities [44]. Given the similarity matrixW, the Lapla-
cian regularizer for the value of θ is defined as follows:

R = 1
2

N∑
i=1

N∑
j=1

Wij
K∑

k=1

(
θik − θjk

)2
= Tr

(
θTDθ

) − Tr
(
θTWθ

)
.

(8)

where Tr(·) denotes the trace of a matrix and D is a diag-
onal matrix defined by Dii = ∑N

j=1Wij. By minimizing R,
we wish the co-complex relationships inherent inW could
transfer to the estimator of θ .

Graph regularized doubly stochastic matrix decomposition
model
Taking into account the above two factors in Eqs. (7) and
(8), and dropping those constants, we present a novel
Graph regularized Doubly Stochastic Matrix Decomposi-
tion model with the following objective function:

⎧⎪⎨
⎪⎩
min
θ≥0

J (θ) = ∑
ij

(
−Wij log Ŵij + Ŵij

)
+λ

(
Tr(θTDθ) − Tr(θTWθ)

)
s.t.

∑K
k=1 θik = 1, i = 1, . . . ,N .

(9)

where λ ≥ 0 is the tradeoff parameter that controls the
balance between the two factors.
Since the above objective function (9) is non-convex, we

employ a relaxedMajorization-Minimization algorithm to
find a good local minima [43]. The update rule for θ is
shown in Algorithm 1. Please refer to Additional file 1 for
more details. Since the optimal solution θ̂ik is a continuous
value which describes the probability of assigning protein
i to the predicted k-th complex, we need to discretize θ̂

into a final protein-complex assignment matrix θ�. In this
study, to get overlapping protein complexes, for each pro-
tein i, we first sort θ̂ik , k = 1, . . . ,K in descending order,
then we retain the top Ki complexes if the gap between the
Ki-th and (Ki + 1)-th element is the largest. θ�

ik = 1 if k
belongs to the top Ki complexes, and θ�

ik = 0 otherwise.
Here, θ�

ik = 1 represents protein i is assigned to the pre-
dicted k-th complex while θ�

ik = 0 indicates protein i does
not belong to the predicted k-th complex. In this study,
we only consider predicted complexes with at least three
proteins [15].

Results
In this section, we first introduce the experiment set-
tings, i.e., experiment data and evaluation metrics. Then,
we demonstrate an extensive comparison study between
our proposed TINCD method and various existing
approaches for protein complex detection.
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Experiment data and evaluation metrics
In this study, two types of data (PPI data and TAP data)
for yeast have been employed for evaluating the perfor-
mance of various complex detection methods. The binary
PPI data is downloaded from the DIP database [45], which
involves with 17,201 interactions among 4,930 proteins. In
addition, we consolidate the data from both [5] and [46] as
our TAP data, which consist of 6,498 purifications involv-
ing 2,996 bait proteins and 5,405 prey proteins. Overall,
the PPI data and TAP data cover 5,929 proteins.
We employ 3 benchmark complex sets as gold-standard

to evaluate the complexes predicted by various methods,
namely CYC2008 [47], MIPS [48] and SGD [49]. In par-
ticular, CYC2008 consists of 408 complexes, MIPS with
203 and SGD with 323, respectively. For all the reference
sets, to avoid selection bias, we filter out the proteins that
are not involved in the input PPI and TAP data. More-
over, we only consider complexes with at least 3 proteins
as suggested by Nepusz et al. [15].
We utilize the sensitivity (Sn), positive predictive value

(PPV), Accuracy (Acc) [30] and FRAC [15] to evaluate the
predicted protein complexes. Given a benchmark complex
xi and a predicted complex yj, the Sn and PPV are defined
in Eq. (10), and Accuracy is the geometric mean of Sn and

Algorithm 1 Pseudocode for detecting protein complexes
using graph regularized doubly stochastic matrix decom-
position model

• Input:
co-complex similarity matrix W, parameters K, λ.

• Output:
Q. // The set of predicted protein complexes.

1: begin:
2: t=1;
3: Initialize matrix θ randomly; // Initialization
4: while |J (t−1)−J (t)

J (t) | > ε and t ≤ MaxIterationsdo
5: sk = ∑N

z=1 θzk

6: Zij =
(∑K

k=1
θikθjk
sk

)−1
Wij

7: ∇+
ik = (θTZθ)kks−2

k + 2
∑N

j=1 θjks−1
k + 2λ(Dθ)ik

8: ∇−
ik = 2(Zθ)iks−1

k + ∑N
i,j=1 θikθjks−2

k + 2λ(Wθ)ik

9: ai = ∑
v

θiv
∇+
iv
, bi = ∑

v θiv
∇−
iv

∇+
iv

10: θik ← θik
∇−
ik ai+1

∇+
ik ai+bi

11: t = t + 1;
12: J (t) = ∑

ij

(
−Wij log Ŵij + Ŵij

)
+

λ
(
Tr(θTDθ) − Tr(θTWθ)

)
;

13: end while
14: Obtain the final protein-complex assignment matrix θ�.
15:Output: Q, the set of predicted protein complexes.

PPV. Using Accuracy is better than Sn and PPV individ-
ually, as it can provide a balanced view of the prediction
performance.

Sn =
∑

imaxj Ti,j∑
i |xi|

,PPV =
∑

j maxi Ti,j∑
j | ∪i (xi ∩ yj)| ,

Accuracy = √
Sn × PPV (10)

where Ti,j is the number of proteins shared by xi and yj,
i.e., |xi ∩ yj|. Fraction of matched complexes (FRAC) [15]
is an indicator for prediction coverage, which measures
the percentage of benchmark complexes that are matched
by the predicted complexes. Given xi and yj, we consider
them to be matching if |xi∩yj|2

|xi||yj| ≥ ω (Similar to majority
of the detection methods, we set ω as 0.2 in our exper-
iments). FRAC is defined in Eq. (11), where X is the set
of benchmark complexes and Q is the set of predicted
complexes.

FRAC =
∣∣{xi|xi ∈ X ∧ ∃yj ∈ Q, yj matches xi

}∣∣
|X| . (11)

Parameter settings
There are two parameters K and λ in our model, where
K is the number of possible complexes and λ controls
the effects of the Laplacian regularizer. Since we usually
do not have any prior knowledge about the number of
complexes in real-world situations, it is hard to decide
the value of K. Fortunately, we have introduced a graph
regularization to force proteins with high co-complex sim-
ilarity scores to have similar memberships. By controlling
the effect of this regularization term, wemay be able to fil-
ter out the irrelevant dimensions of θ . If so, we can fit our
model with a large value of K as our model is able to deter-
mine the number of complexes adaptively. Therefore, to
test how these two parameters affect the performance of
our model, we have performed the sensitivity studies. Par-
ticularly, we consider all combinations of the following
values: {1500, 2000, 2500} for K and {2−5, 2−4, . . . , 27} for
λ, and assess how well the complexes predicted by our
model match with reference sets.
The performance of TINCD is measured by Accuracy

with respect to MIPS gold standard. As shown in Fig. 2,
for a fixed value of K, as the value of λ increases, the
value of Accuracy fluctuates slightly in the beginning and
then increases steadily until converge. Overall, TINCD
obtains competitive Accuracy scores when λ ∈[ 25, 27].
On the other hand, when the value of λ is less than 2,
the larger the value of K, the worse the effect of TINCD.
We can also find that with the increase of the value of
λ, the influence of K is waning. A possible reason would
be that we use graph regularization to force proteins with
high co-complex similarity scores to have similar mem-
berships. When the value of λ is large enough, irrelevant
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Fig. 2 The effect of λ and K. Performance of TINCD on protein complex detection with different values of λ and K measured by Accuracy with
respect to MIPS gold standard. The x-axis denotes the value of log λ, the y-axis denotes the value of Accuracy

latent indexes always obtain lower associations. There-
fore, TINCD is not very sensitive to the value of K when
λ is large enough. In this case, the value of K could be
relatively large since irrelevant clusters will be automati-
cally filtered out. Based on the above sensitivity analysis
as shown in Fig. 2, K = 2000 and λ = 25 would be the
optimal setting for parameters K and λ on MIPS data. To
avoid overestimating the performance of TINCD, we will
also set K = 2000 and λ = 25 as the default values on
other benchmark sets (e.g., CYC2008).

Similarity network fusion (SNF) vs. matrix averaging
In the experiments, the consensus matrices are built
via integrating various base clustering results from PPI
data and TAP data. In particular, 11 state-of-the-art
approaches are applied to PPI data to generate complexes,
including CFinder [24], CMC [50], COACH [26], Clus-
terONE [15], DPClus [51], IPCA [52], MCL [8], MCODE
[9], RNSC [25], RRW [53] and SPICi [54]. In this study,
optimal parameters are set for CFinder, CMC, COACH,
DPClus, IPCA, MCL, MCODE, RRW and SPICi to gen-
erate their best results while ClusterONE and RNSC
have used the default parameters set by the authors. For
detailed parameter settings of these algorithms, please
refer to Additional file 1. The consensus matrix based on
these 11 base clustering solutions is denoted as P. We
also collect the complexes predicted from TAP data by 5
existing methods, including BT [29], C2S [30], CACHET
[31], Hart [27] and Pu [28]. Protein complexes predicted
by these 5 methods are downloaded from http://www.
ntu.edu.sg/home/zhengjie/data/InteHC/. The consensus
matrix based on these 5 solutions for TAP data is denoted
as T. In addition, P+T denotes the combination of two
consensus matrices P and T. SNF is thus applied to inte-
grate the C2S matrix with the consensus matrices (e.g.,
P, T and P+T). In addition, a natural way to integrate
these matrices is to take an average for them, and we
denote this method as Matrix Averaging. Next, we will

take Matrix Averaging as baseline and compare it with the
SNF method.
Figure 3 shows the performance of our TINCD with

the fused similarity matrix generated by SNF and Matrix
Averaging, in terms of Accuracy and FRACwith respect to
CYC2008. SNF performs consistently better than Matrix
Averaging when we combine C2S matrix with T, P and
T+P, respectively. The reason is that simple fusion tech-
niques such as Matrix Averaging are sensitive to the noise
in the data, while SNF as a cross diffusion process is robust
to the noise. More importantly, SNF can capture both
shared and complementary information from the hetero-
geneous matrices. We obtained similar results evaluated
on two other benchmarks MIPS and SGD (Additional file
1: Figures S1 and S2) and please refer to Additional file 1
for more details.
Moreover, we have two observations by comparing the

performance of different consensus matrices as shown in
Fig. 3.
Firstly, integrated with C2S matrix via SNF, the consen-

sus matrix P performs much better than T. For example
with reference data CYC2008, C2S+P and C2S+T obtain
comparable Accuracy, while C2S+P has a higher FRAC
than C2S+T (0.770 for C2S+P vs. 0.706 for C2S+T). The
rationale behind this finding would be that T is redundant
with C2S to some extent (both from TAP data), while P
complements C2S well (PPI and TAP) to achieve better
performance.
Secondly, by adding T to C2S+P, C2S+P+T achieves

better performance than C2S+P. Comparing C2S+P
with respect to CYC2008, the Accuracy of C2S+P+T is
increased by 1.7% from 0.763 to 0.776 while its FRAC
is increased by 5.58% from 0.770 to 0.813. As shown in
Additional file 1, both Accuracy and FRAC of C2S+P+T
are improved on SGD benchmark complexes, i.e., the
Accuracy improves by 4.1% from 0.711 to 0.740 and the
FRAC increases by 9.4% from 0.678 to 0.742. Overall, we
would think that C2S+P+T performs better than C2S+P

http://www.ntu.edu.sg/home/zhengjie/data/InteHC/
http://www.ntu.edu.sg/home/zhengjie/data/InteHC/
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Fig. 3 SNF vs. Matrix Averaging. Performance of SNF and Matrix Averaging in terms of a Accuracy and b FRAC with respect to CYC2008

and C2S+T, and our TINCD refers to the clustering over
C2S+P+T thereafter.

Clustering the integrated matrix
Once we obtained the integrated matrix (i.e., C2S+P+T),
we are able to apply various clustering methods to gen-
erate protein complexes in our framework, e.g., Non-
negative Matrix Factorization (NMF) and Agglomerative

Hierarchical Clustering (HC). Since the integrated matrix
corresponds to a weighted network, and only few meth-
ods can deal with large scale weighted networks. In this
section, we will compare our proposed graph regular-
ized doubly stochastic matrix decomposition model with
NMF, HC, ClusterONE and SPICi. All of these four algo-
rithms are able to detect complexes from weighted PPI
networks directly and output the results in a reasonable
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time. In particular, NMF is a popular clustering algo-
rithm which can be related to a generalized form of many
clustering methods (i.e., Kernel K-means clustering and
spectral clustering.) [55]. In this study, NMF is solved
by DTU:Toolbox [56] via multiplicative update method.
For HC, it first considers all singleton proteins as initial
clusters, then it iteratively merges two clusters with the
highest similarity in each iteration. The iterative algorithm
terminates when quality function of the detected clusters
has achieved its maximal value. Similar to [17], three qual-
ity functions are used to measure the quality of a set of
clusters, the corresponding results are thus denoted by
HC-Q1, HC-Q2 and HC-Q3 respectively. For more details
about these three quality functions, please refer to [17].
For a fair comparison, optimal parameters are set for these
four algorithms to generate its best results (For NMF, the
number of clusters is chosen from 1000 to 2000 with 100
as increment. For SPICi, we try different values of den-
sity threshold, ranges from 0.1 to 1 with 0.1 as increment.
ClusterONE has used the default parameters set by the
authors.).
Figure 4 shows the Accuracy and FRAC of TINCD,

NMF, HC with various quality functions (i.e., HC-Q1,
HC-Q2 and HC-Q3), ClusterONE and SPICi. We observe
in Fig. 4 that TINCD performs better than NMF, HC-
Q1, HC-Q2, HC-Q3, ClusterONE and SPICi. For exam-
ple, the Accuracy of TINCD with respect to CYC2008
is 0.776, which is 3.5% higher than the second best
Accuracy 0.750 achieved byHC-Q1. In addition, the FRAC
of TINCD with respect to CYC2008 is 0.813, which is
10.5% higher than the second best FRAC 0.736 achieved
by NMF. The integrated similarity network describes the
probabilities of random walks from each protein to other
proteins based on their co-complex relationships, which

Fig. 4 Clustering the integrated matrix. Accuracy and FRAC of TINCD,
NMF, Hierarchical clustering with 3 different quality functions (i.e.,
HC-Q1, HC-Q2 and HC-Q3), ClusterONE and SPICi with respect to
CYC2008

is consistent with the model assumption of our proposed
graph regularized doubly stochastic matrix decomposi-
tion model. Thus, our TINCD could more accurately
discover the complex information from the integrated
similarity network (similar results obtained with respect
to MIPS and SGD benchmarks are shown in Additional
file 1: Figure S3).

Comparisons with base clustering solutions
As introduced above, we collected 16 base solutions (11
for PPI data and 5 for TAP data) to generate protein
complexes. Next, we compare TINCD with these 16 base
solutions in terms of their Accuracy and FRAC over 3
benchmark complex sets.
Table 1 demonstrates the comparison between TINCD

and 16 base solutions with respect to CYC2008. For exam-
ple, DPClus and C2S achieve the highest FRAC 0.680 and
0.664 among the base solutions for PPI data and TAP
data, respectively. TINCD achieves a FRAC 0.813, which
is 19.6% and 22.4% higher than DPClus and C2S. In addi-
tion, COACH achieves the highest Accuracy 0.650 among
PPI base solutions while C2S is 0.761. Thus, TINCD with
Accuracy 0.776 is 2.0% and 19.4% higher than C2S and
COACH, respectively. Overall, TINCD performs much
better than all the base solutions in terms of both FRAC

Table 1 Comparison between TINCD and state-of-the-art
methods with respect to CYC2008

Methods No. of complexes No. of covered proteins Acc FRAC

TINCD 1562 5846 0.776 0.813

EC-BNMF 457 2105 0.751 0.677

CMBI 618 1041 0.459 0.349

InteHC 684 3400 0.748 0.634

CFinder 245 2008 0.518 0.319

CMC 562 1651 0.643 0.655

COACH 746 1838 0.650 0.664

ClusterONE 342 1366 0.584 0.438

DPClus 651 2140 0.639 0.680

IPCA 816 1621 0.617 0.575

MCL 600 4101 0.644 0.536

MCODE 108 666 0.485 0.311

RNSC 541 2095 0.619 0.506

RRW 248 1174 0.571 0.511

SPICi 412 2113 0.607 0.502

BT 409 1286 0.728 0.591

C2S 1035 4500 0.761 0.664

CACHET 449 964 0.674 0.553

Hart 390 1307 0.720 0.600

Pu 400 1504 0.732 0.579
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and Accuracy (similar results obtained with respect to
MIPS and SGD benchmark are shown in Additional file 1:
Table S1).
An observation in Table 1 is that 5 base solutions for

TAP data are much better than those 11 base solutions
for PPI data. The consensus matrix P generated by these
weaker base solutions for PPI data, however, performs
much better than T as shown in Fig. 3. This observation
highlights once again that the consensus matrix P from
PPI data is a good complement to C2S score matrix for
protein complex detection.

Comparison with ensemble clustering
We further compared TINCD with EC-BNMF (Ensemble
Clustering via Bayesian Nonnegative Matrix Factoriza-
tion), which generated ensemble clusters from the above
16 base clustering solutions. For a fair comparison, opti-
mal parameters are set for EC-BNMF to generate its
best results. For detailed parameter settings of EC-BNMF,
please refer to Additional file 1. Figure 5 shows the
Accuracy and FRAC of TINCD and EC-BNMF with
respect to CYC2008.
In Fig. 5, TINCD achieves higher Accuracy than EC-

BNMF (0.776 for TINCD vs. 0.751 for EC-BNMF).
In addition, TINCD achieves a FRAC 0.813, which is
20.09% higher than EC-BNMF (0.677). Hence, TINCD
outperforms the ensemble clustering method EC-BNMF
in terms of both Accuracy and FRAC (similar results
obtained with respect to MIPS and SGD benchmarks are
shown in Additional file 1: Table S1).

Comparison with data integration techniques
In addition to ensemble clustering techniques which
integrate clustering results, another type of integrative
techniques aims to integrate diverse data sources for
protein complex detection. For example, CMBI integrates

Fig. 5 Comparison with ensemble clustering. Accuracy and FRAC of
TINCD and EC-BNMF with respect to CYC2008

PPI data, gene expression profiles and essential protein
information to detect protein complexes, while InteHC
integrates PPI data, TAP data, gene expression profiles
and gene ontology annotations for protein complex pre-
diction. Next, we compare our TINCD with data inte-
gration techniques CMBI and InteHC. Protein complexes
predicted by CMBI and InteHC are downloaded from
http://www.ntu.edu.sg/home/zhengjie/data/InteHC/.
Figure 6 shows the Accuracy and FRAC of CMBI,

InteHC and TINCD with respect to CYC2008. Both
InteHC and TINCD perform much better than CMBI,
and we then focus on the comparison between InteHC
and TINCD. Overall, TINCD outperforms InteHC with
respect to CYC2008. For example, theAccuracy and FRAC
of TINCD with respect to CYC2008 are 0.776 and 0.813,
which are 3.7% and 28.2% higher than that of InteHC,
respectively (similar results obtainedwith respect toMIPS
and SGD benchmarks are shown in Additional file 1:
Table S1).
InteHC integrates various data sources and utilizes

some supervision information to assign them different
weights according to their importance. Among various
raw data sources, TINCD integrates only the C2S scores
with consensus matrices in an unsupervised manner and
thus is more preferable. The overall better results achieved
by TINCD in the more challenging unsupervised setting
demonstrate that TINCD is able to achieve better FRAC
(by two layer integration), at the same time to maintain
a high Accuracy. In the future, it would be promising
if we integrate more data sources (e.g., gene ontology
annotations) into our TINCD framework.

A case study: the FBP degradation complex
Figure 7 shows how the FBP degradation complex is
found by the clustering algorithms we have studied. This
complex in CYC2008 involves 8 proteins. Proteins that

Fig. 6 Comparison with data integration techniques. Accuracy and
FRAC of CMBI, InteHC and TINCD with respect to CYC2008

http://www.ntu.edu.sg/home/zhengjie/data/InteHC/
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Fig. 7 Examples of benchmark protein complexes predicted more accurately by TINCD. The FBP degradation complex as detected by different
computational methods. The shadow area shows the complex predicted by each method, red circle nodes represent subunits of the FBP
degradation complex in CYC2008, and blue rectangle nodes represent proteins belong to other complexes. In addition, dash lines represent
physical interactions and solid lines refer to the pairs with positive C2S scores
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have binary interactions are connected by dash lines,
while proteins that do not have binary interactions but
have positive C2S scores are connected by solid lines.
TINCD is the only algorithm that could correctly cover
all the proteins in this complex. All other algorithms
make various mistakes as follows. First, ClusterONE and
COACH are designed to detect protein complexes from
PPI data (binary interactions). They are only able to
detect part of the whole complex (i.e., ClusterONEmissed
3 proteins while COACH missed 2) and both of them
misclassify the protein YBL049W into the FBP degrada-
tion complex. Second, C2S and CACHET are designed
to detect complexes from TAP data. Similarly, they are
only able to detect part of the whole complex, e.g., C2S
missed 1 protein while CACHET missed 3. Third, CMBI,
EC-BNMF and InteHC are designed to integrate either
different clustering results or diverse data sources for pro-
tein complex detection. They missed 2, 1 and 2 proteins
in the FBP degradation complex respectively. For more
examples, see Additional file 1.

Discussions and conclusions
In this work, we have proposed a novel two-layer inte-
gration framework TINCD to identify protein complexes.
First, TINCD constructs consensus matrices for proteins
and measures their co-complex propensity based on the
complex knowledge discovered by various graph cluster-
ing results. Second, a similarity network fusion (SNF)
strategy is employed by TINCD to combine consensus
matrices and score matrix obtained from TAP data to
obtain a final co-complex score matrix. Finally, a novel
graph regularized doubly stochastic matrix decomposi-
tion model is proposed to detect overlapping protein
complexes from the final score matrix.
Experiment comparisons show that TINCD signifi-

cantly outperforms 21 existing state-of-the-art protein
complex identification methods in terms of Accuracy and
FRAC. In addition, our model is a flexible and generic
framework, which allows us to include more data sources
(i.e., functional information) by simple matrix operations.
When evaluating the predicted clusters over a reference
set, other commonly used evaluation metrics include Sen-
sitivity, Specificity and f -measure. The detailed definition
of these three measures and the evaluation results of vari-
ous algorithms in terms of these three measures are listed
in Additional file 1. As shown in Table 1, our TINCD
predicts 1,562 complexes covering 5,846 proteins, which
is very close to the size of input data with 5,929 pro-
teins. We note that the data set used in our study contains
5,929 proteins, while the three gold standard sets (i.e.,
CYC2008, MIPS and SGD) cover 1,324, 1,171 and 1,154
proteins. That is, the gold standard sets are far from com-
plete. Thus, most of our predicted complexes are not able
to match the benchmark complexes and TINCD achieves

a low Specificity (the results are shown in Additional
file 1: Table S3). However, predicted protein complexes
that do not match with reference complexes are not nec-
essarily undesired results and they would probably be
novel protein complexes [15, 30]. Therefore, optimizing
Specificity and f -measure will somehow prevent us from
detecting novel complexes. On the other hand, as dis-
cussed in [15, 30], Accuracy and FRAC are more suitable
to evaluate the performance of an overlapping protein
complex detection algorithm. Furthermore, we also ana-
lyze the importance of an individual base clustering solu-
tion for TINCD, and investigate the correlation between
the number of base clustering solutions and the per-
formance of TINCD. However, since TINCD not only
perform result-level integration, but also perform data-
level integration, as shown in Additional file 1: Table S4,
the effect of removing a base solution in result-level inte-
gration will be attenuated by the further operations in
data-level integration. As shown in Additional file 1: Table
S5, the performance of TINCD does not change a lot when
the consensus matrix of PPI data are constructed using 5
base clustering solutions. Thus, the correlation between
the number of methods and the performance of TINCD
depends on the quality of the used methods. Ideally, we
would think that we are able to construct more accurate
consensus matrices and TINCD can generate more accu-
rate prediction results, provided that more base clustering
solutions with good performance are available. In sum-
mary, compared with existing methods, our model has the
advantages as follows.

• Our TINCD model, leveraging the information from
both the clustering results and raw data sources,
generates more comprehensive and reliable results.

• The similarity network fusion (SNF) model,
integrating heterogeneous matrices into a final
co-complex score matrix, is free of scale and robust
to the noise in the data.

• The graph regularized doubly stochastic matrix
decomposition model considers the sparse similarities
and thus ensures relatively balanced clusters.

• TINCD generates the overlapping protein complexes,
which clearly reflect the biological reality on proteins’
multi-functional roles.

• Finally, TINCD is unsupervised and is thus generic
enough for the integration of different types of data
sources.

The computational complexity for updating θ in
Algorithm 1 is O(EK + NK), where E is the number of
non-zero items in W, N is the number of proteins in
the data and K is the pre-defined number of complexes.
Therefore the overall time cost of the graph regularized
doubly stochastic matrix decomposition model is O((E +
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N)KIter), where Iter is the number of iterations. In the
experiments, we implement the algorithm usingMatlab in
a laptop with Intel 2 CPU (2.10 GHz× 2) and 12 GB RAM.
The time cost of calculating the final co-complex score
matrix is at most 785 seconds (since the efficiency of SNF
has been discussed in [42], we do not discuss its compu-
tational complexity here). Each update of θ costs at most
21 seconds and the entire estimation takes less than 4,200
seconds when the maximum number of iterations is set to
200. Frankly, our TINCD has a relatively higher computa-
tional cost compared with some base solutions. However,
we would think that the running time for TINCD is still
affordable for the following reasons. First, our primary
task is to predict protein complexes with better accuracy
and coverage. To achieve this goal, we integrate multi-
ple data sources for clustering and it makes sense that
we will higher computational cost as a sacrifice. Second,
as discussed in [40], in the context of understanding and
exploiting the structure of PPI networks, cluster analysis
is usually used as an “offline” process to provide a com-
prehensive set of clustering results. It is thus acceptable
that “offline”, processes have longer running time. Third,
PPI data is indeed growing in recent years. The computing
power of hardware (e.g., multiple CPU cores) is also under
a rapid development. Moreover, we can also consider to
parallelize the integration process for speedup.
Regarding the future works, we plan to design an algo-

rithm that could incorporate other data sources (i.e.,
functional or structural information of proteins) [34] in
addition to protein interaction data for protein complex
detection.We would expect higher prediction accuracy by
considering more features for proteins.
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