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Abstract—Blind channel identification has generated much
interest in signal processing and communications. Although ex-
isting cross relation based blind channel identification algorithm
can achieve promising results, one of the drawbacks is the
performance degradation in a noisy environment. In this work,
we show that the degradation in convergence performance of
MCLMS is due to an implicit constraint imposed by the cross
relation cost function. This constraint requires the estimated
impulse responses to be of the same energy which is often untrue
in practice. We next propose a new algorithm exploiting revised
cost function to improve the robustness of MCLMS to noise.
Monte Carlo simulation results show that the proposed algorithm
can gain significant improvement in steady-state performance.

Index Terms—Blind channel identification, adaptive algo-
rithms, cross relation.

I. INTRODUCTION

Channel identification involves the estimation of an un-
known system by analyzing its input/output using a mathemat-
ical model [1]. This problem of fundamental interest arises in a
variety of signal processing [2], wireless communications and
body area network applications [3][4][5]. The self-recovering
identification or blind channel identification problem was orig-
inally proposed by Sato [6]. Since then, this research problem
has drawn wide attention by many researchers [7][8]. Although
these algorithms provide satisfactory estimation results in
certain scenarios, they often require relatively large number
of data samples, which may limit their tracking performance
in a highly time-varying environment [9]. To address this
issue, many second-order statistics based algorithms have
been proposed. For example, subspace algorithms utilize the
null subspace of the data matrix [10][11] while the two-
step maximum likelihood algorithm exploits an orthogonal
complement matrix of the generalized Sylvester matrix [12].

According to [13], a blind channel identification algorithm
should satisfy the following design requirements: adaptivity,
fast convergence and low complexity. Therefore, adaptive
blind channel identification algorithms are of high interest.
It is also useful to note that a higher-order statistic (HOS)
cost function is barely concave which leads to slow conver-
gence. In addition, HOS-based algorithms cannot be computed
accurately from a small number of observations [1]. Based
on Karhunen-Loeve transform and exploiting its separation
property, authors of [14] proposed a general framework to
identify a large class of nonlinear systems. The least-squares
approach [9] to blind channel identification, on the other hand,
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introduces the concept of cross relation. It has also been shown
that, to uniquely identify the channels, the necessary and
sufficient conditions include the polynomials of the channels
being co-prime (they do not share any common roots) and
that the auto-correlation matrix of the source signal being full
rank [9][15].

Based on the cross relation concept, an adaptive mul-
tichannel least-mean-squares (MCLMS) algorithm has been
proposed [16]. The MCLMS algorithm follows a least-mean-
square (LMS) framework and similar to most of the adaptive
algorithms, it suffers from performance degradation in a noisy
environment. Exploiting similar cross relation concept, the
authors of [17] proposed to solve the linear and non-linear
parts of a single-input multiple-output (SIMO) system by
kernel Hilbert space and canonical correlation analysis, respec-
tively. It is interesting to note that the normalized multichannel
frequency-domain LMS (NMCFLMS) [1], which is a direct
extension of MCLMS, also suffers from the misconvergence
problem in a noisy environment [18]. This noise robustness
problem is due to the fact that direct minimization of the cost
function does not necessarily imply good channel estimates.
Although algorithms have been proposed to address this noise
robustness problem and to improve the convergence perfor-
mance of NMCFLMS [19][20], it is still unclear how noise
affects the cross relation cost function of MCLMS.

In this paper, we analyze how noise affects the cost function
of MCLMS. This analysis allows one to gain new insights
into the performance of the algorithm and we show that noise
degrades the convergence performance by forcing the esti-
mated channels to have equivalent /o —norm, which is untrue
in practice. We then proceed to propose a joint optimization
problem to mitigate the cross relation error due to noise,
therefore overcoming degradation in convergence performance
of MCLMS in a noisy environment. Results obtained from
Monte Carlo simulation illustrated in Section IV show that
the proposed improved MCLMS (IMCLMS) algorithm can
achieve higher noise robustness and can gain significant im-
provement in steady-state performance.

II. PROBLEM FORMULATION

We consider a SIMO finite impulse response (FIR) system
shown in Fig. 1. The observed signal of the ith channel is

yi(n) = xz;(n) + vi(n), i=1,..., M, (D
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Fig. 1. Illustration of the relationship between the input s(n) and the
observations z;(n) in a SIMO FIR system.

where M is the total number of channels, v;(n) is the
(uncorrelated) additive noise,

z;(n) = hl's(n), i=1,...,M,

is the received signal, h; = [hio h;1---hir—1]7 is the ith
channel impulse response, s(n) = [s(n) s(n—1)---s(n—L+
1)] T, and L is the length of the channel while [-]7 denotes the
transpose operator. The aim of blind channel identification is
to estimate the channels h;, ¢ = 1,..., M without any prior
knowledge of s(n).

The MCLMS algorithm begins by considering the cross
relation [16]

Li=1....Mi#j (2

if the noise is absent. Expressing (2) in vector notation, we
obtain

yi(n) * hj = y;(n) * hy,

yi (n)h; = yT (n)h;, 3)

where y;(n) = [yi(n) yi(n—1)---y(n— L+ 1)}T. However,
in the presence of uncorrelated noise, the above cross relation
no longer holds and an error function can be defined as

eii(n) = { Vi By —yi(mh, i G g =1.. M,
kS 0, i=j4,4,5=1,...,M.

Therefore, a cross relation based cost function is obtained as

and minimizing (7) results in the MCLMS algorithm

given by [16]

o+ 1) = B0~ WIR@RC) —x(mh()] o
Ih(n) = 2u[R(n)h(n) = x(n)h(n)]2
where p is the step-size, and
RyLyL (n) = yi (n)yiT(n),
-Z Ryzm (’I‘L) _Ryzyl (n) _RyMyl (n) 1
i#1
_Rylyz (n) Z Ryz‘yi (n) _RyMyz (n)
R(n) = i#2
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III. THE IMPROVED MCLMS ALGORITHM

x(n)

eij(n) =

M-1 M
o> e, (4)

i=1 j=i+1
y7 (n)h;(n) — yT (n)h;(n). )

A. Analysis of MCLMS in a noisy environment

We now investigate the effect of noise on MCLMS by
considering v;(n) # 0. For clarity of presentation, we consider
the un-normalized cost function x(n), since normalization
in (7) only affects the norm of the solution. The error function
given by (5) is first expanded as

éi(n) [xi(n) +vi(n)] " hy(n) — [x;(n) +v;(n)] hi(n)

= &;(n) +ej(n), (10)
where x;(n) = [z;(n) zi(n—1)---z;(n— L+1)]", vi(n) =
[vl(n) vi(n—1)--v;(n— L+ 1)}T,

eti(n) = x{ (m)h;(n) = %] (n)hy(n) (11)
is the cross relation error due to input signals while
&j(n) = vi (n)h;(n) = v (m)hs(n) (12)

is the cross relation error due to noise. Defining

&) = [ehm) o) Ty
() = [ehan) () By u()]
e(n) = €°(n)+¢€e"(n)

~ ~

= [e1a(n) 13(n)"'e(1V171)M(n)]T

and employing E{€Z(n)é,(n)} = 0, the expectation of the

The channel impulse responses can be estimated by min-
imizing (4). In order to avoid a trivial estimate with all
zero elements, a unit-norm constraint is imposed on h(n) =

(07 (n) Bf (n) - 0% (n)]" at all time iterations such that the
error signal becomes

€i5(n) = €5(n) /II(m)||2 (©)

The corresponding cross relation based cost function becomes

anM_1 3 e?»nzz(in) @)
" ;j:zi;-l S Ih(n)[13

cost function (4) can be expressed as

E{x(n)} =

where
M-1 M

E{e"(n)e(n)}

E{xz(n)} + E{xu(n)}, (13)

M-1 M

=33 @m)’ =3 Y (@ m).

i=1 j=i+1

i=1 j=i+1

It can therefore be observed that minimizing (13) is equiv-
alent to having E{(éfj(n))Q} — 0 and E{(é;”j(n))Q} -0,



which can subsequently be written as

h? (n)Ry,0,h;(n) — b (n)Ry,0,hi(n) — 0
— hy(n) =h,, (14)

hY (n)Ry,0,h;(n) — b (n) R0, hi(n) — 0
= ||hi(n)[l2 = [[h;(n)]2, (15)

where R,.2, = E{x;(n)x!'(n)}, R0, = E{vi(n)vl(n)}
and we have assumed R,,,, = R,,,;. We note that while (14)
is desirable, (15) may not be satisfied, since ||h;||2 # ||h;[|2 in
general. This implies that minimizing the cross relation error
due to noise is leading the algorithm to an undesired solution
with [|hy(n)|y = ||h (n)||2, it is therefore expected that the
noise will degrade the convergence performance of MCLMS.

Figure 2 illustrates the convergence performance of
MCLMS under different signal-to-noise ratios (SNRs). The
normalized projection misalignment (NPM) is adopted to
quantify the distance between the estimated and true impulse
responses and is defined by [21]

)z /b2,

where a(n) = [hTﬁ(n)]/[ﬁT(n)fl(n)} is the projection
factor which computes the NPM up to a scaled factor between
h(n) and h. In this illustrative example, we have used the
same simulation setup as [16] where M = 2. A white
Gaussian noise (WGN) source signal was first convolved with
two third-order randomly generated impulse responses with
|[hi|l2 = 3.23 and ||hal]2 = 2.72. A WGN was next added to
each received signal to achieve SNR = oo, 50, 40, 30, 20 and
—10 dB. The step-size of MCLMS was fixed as 0.01.

As observed from Fig. 2, when no noise isApresented,
MCLMS converges towards —oo implying that h;(n) con-
verges to h; consistently in a noise free case. It can also
be observed from Fig. 2 that the performance reduces with
increasing noise as_expected. Our simulation revealed that,
although ||[hT( ) hT( )%l = 1 (due to the unit-norm
constraint) for all the SNR conditions, we have by (n)|2 =
0.6781 and ||h2( )]l2 = 0.735 for SNR = 50 dB while
[hy(n)]l2 = |Iha(n)|l2 = 0.731 for SNR = —10 dB, which
justifies the validity of (15).

NPM(n) = 20log,, |h — a(n)h(n (16)

B. The proposed improved MCLMS (IMCLMS) algorithm

We overcome the problem due to cross relation error of
noise as described in (15) by proposing to estimate the
channels via a joint optimization problem given by

M—-1

LI&I)IE{ Zl ;111 -(n)ﬁi(n)}, (17)
s t. E{ le > [y J-T(n)ﬂi(n)r} =0,
i=1 j=i+1

~ ~ ~ ~ T
where h(n) = [th(n) hi(n)---hi; (n)] . To understand why
the above joint optimization problem can address the cross
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Fig. 2. The NPM performance of MCLMS with various SNRs.

relation error due to noise, we first note that Ry,,, = Ry, 4, +
R,,»,, and therefore (17) can be expressed as

mlnE{ Z Z h! -(n)ﬁi(n)}

h(n) =1 j=i+1
M—

1
Z hT RxeJ + RUJUJ]hi(n) (18)

h(n) =1 j=i+1

subject to the constraint

M-—-1

{Z Z [yl yf(n)ﬁl(n)}Z}
=1 j=i+1
= 3> (B )Rewi By (0) — BT (1) Ray e, i)
i=1 j=i+1

+h7 (n)Rauyu; by (n) — BY (0) R0, ﬁi(n)] =0. (19

Exploiting R,,,;, = Rq,ﬂ,J
simultaneously and obtain

we minimize (18) and (19)

M-1 M

Z (ﬁlT (n) [szzj + R”J”j} ﬁl (n)

i=1 j=it+1

min

I (20)
h(n)

+[B] (0 Ra 2By (0) = BT ()R, ()

+ minz_ > (ﬁf (n)Ru, v, h;(n) + hY (n)ijwjhi(n)).

The above minimization is therefore equivalent to

h? (n)Ry,0,h;(n) — WY (n)Ry, ., hi(n) = 0,
= h;(n) = h;,
h7 (n)Ry,0,h;(n) + h! ()R, hy(n) — 0,
— hy(n) =07,
since Ry,,, and R, are positive definite matrices. It is

important to note that the trivial solution h (n) = 0L« can



be avoided by the unit-norm constraint as described in (6). It
can now be seen that the condition [/h;(n)||2 = [[h;(n)|2, as
described in (15), has been avoided and therefore the proposed
IMCLMS algorithm based on (17) is expected to achieve

robustness against noise.
To derive the update equation, we continue from (17) and
the proposed cost function can be constructed as

M-1 M
)= 3" > [B () Ry by (n) = BY ()R, b ()]
i=1 j=i+1
M-1 M =N N
+ Z Z h;‘r(n)Ryjyjhi(n)v

i=1 j=it1

2n

3

where the subscript ‘p’ in x,(n) denotes for the proposed
algorithm. Similar to MCLMS in (7), a modified cost func-
tion exploiting the unit-norm constraint can subsequently be

obtained as N
() = xp(n) /IIBO)I3.

It is important to note that the unit-norm normalization is
introduced in (22) to avoid the null estimate. The update
equation of the proposed IMCLMS is then given by

h(n+1) = h(n) — 1V Jp(0) i) (23)
lAl(n) — ,u[ﬁ(n) —x(M)Ipmoxmr — 2MRa]IA1(n)
Hﬁ(n) - ,u[ﬁ(n) = X(M)Imrxmr — 2MR,] E(W)H2

(22)

where In/r«asr 1S @ ML X ML identity matrix,

Ry, O 0
0 R,. -~ 0

Ra = . y.2y2 . * ! (24)
0 0 RyMyM MLxML

x(n) and R(n) have been defined in (4) and (9), respectively.

IV. SIMULATIONS

In the following simulations, and similar to that of [16],
we have used M = 2 and h; = [l — 2cos(n/10) 1]7,
hy = [1 — 2cos(m/5) 1]T. In addition, noise is added to
the channel observations to achieve SNR of 20 and 12 dB.
Following the same simulation setup as [16], a WGN was
adopted as the source signal to verify the performance of the
algorithms. Monte Carlo simulations using different source
signals were carried out for MCLMS and IMCLMS. Their
step-sizes were fixed as p = 0.01 to ensure the convergence.

Figure 3 illustrates the convergence performance of
MCLMS and IMCLMS for SNR = 12 and 20 dB. Each
of these plots was averaged across one hundred trials of
simulations. As can be seen from Fig. 3, IMCLMS achieves
an improvement in steady-state NPM of approximately 5 dB
compared to MCLMS when SNR = 20 dB. Similar simulation
results can be observed when SNR = 12 dB using the
same simulation parameters. It can be seen from Fig. 3 that
the proposed IMCLMS algorithm exhibits noise robustness
and gains approximately 3 dB improvement in steady-state
performance compared to MCLMS when SNR = 12 dB. We

MCLMS, SNR=12 dB

5 MCLMS, SNR= 12 dB 1
IMCLMS, SNR=20 dB
CLMS, SNR= 20 dB
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Fig. 3. The NPM performance of MCLMS and proposed IMCLMS
algorithms using Monte Carlo simulations while SNR = 12 and
20 dB and N = 100.
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Fig. 4. Variation of steady-state NPM for MCLMS and the proposed
IMCLMS algorithms using Monte Carlo simulations with 100 trials
from SNR = 6 to 24 dB.

also note that at a high noise level of SNR = 12 dB, both
MCLMS and IMCLMS suffer from a higher gradient noise as
expected. Figure 4 illustrates the variation of steady-state NPM
with different SNRs averaged over 100 trials. As can be ob-
served from Fig. 4, the proposed IMCLMS algorithm achieves
noise robustness and consistently outperforms MCLMS by
achieving lower steady-state NPM values. These results justify
the effectiveness of proposed joint optimization.

V. CONCLUSION

In this paper, the cost function of the MCLMS algorithm has
been analyzed in a noisy environment and we showed that the
additive noise can mis-lead the adaptive algorithm to a trivial
solution. This trivial solution requires the estimated channels
to have equal /s—norm which may not be true for real chan-
nels. It has been shown in the proposed IMCLMS algorithm
that minimizing the revised cost function can mitigate the cross
relation error due to noise thus achieving noise robustness.
Monte Carlo simulations under different SNRs have verified
that the proposed IMCLMS algorithm is more robust to noise
compared to the existing MCLMS algorithm.
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