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Abstract. In this paper, we develop a novel strategy for the privacy
budget allocation on answering a batch of queries for statistical databases
under differential privacy framework. Under such a strategy, the noisy
results are more meaningful and achieve better utility of the dataset.
In particular, we first formulate the privacy allocation as an optimiza-
tion problem. Then derive explicit approximation of the relationships
among privacy budget, dataset size and confidence interval. Based on
the derived formulas, one can automatically determine optimal privacy
budget allocation for batch queries with the given accuracy requirements.
Extensive experiments across a synthetic dataset and a real dataset are
conducted to demonstrate the effectiveness of the proposed approach.

1 Introduction

Differential privacy (DP), is a promising strategy for providing privacy for data
publishing and data queries [6,8]. A simple but feasible method to achieve dif-
ferential privacy is to insert noises to the query outputs [4]. Currently, most
of the related work focus on privacy protection but don’t further analyze how
useful of the noisy results. If these noise results show what level of accuracy
can be achieved, they will help data analysts further investigate and improve
the effectiveness of them. Moreover, the privacy allocation is very important to
how useful of the noisy results. To answer multiple queries, a simple way is to
allocate the privacy budget to these queries equally [7]. However, such a strategy
may cause some noisy results to be unmeaningful due to large noise magnitude
relative to the original results.

We use the following intuitive example to illustrate the problem. The Adult
dataset, extracted from UCI machine learning repository [2], has 32, 561 indi-
viduals. Suppose we want to use two queries q = [q1, q2] on the Adult dataset
to infer the real values of the whole population, where q1 is the proportion
of individuals with Sex=“Male”, Race=“Black” and Income=“>50K” over the
number of individuals with Sex=“Male” and Income=“>50K”, which is equal
to 0.0446; q2 is the proportion of individuals with Sex=“Male”, Race=“White”
and Income=“>50K” over the number of individuals with Sex=“Male” and
Income=“>50K”, which is equal to 0.9140.

We observe that the returned real value from q1 (i.e. 0.0446) is much smaller
than that from q2 (i.e. 0.9140). Under the aforementioned “uniformly split”
strategy, equal budgets will be assigned to q1 and q2, e.g. each gets a budget 0.5.
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Table 1. Statistics of the Adult dataset

Income
Sex Race > 50K <= 50K

Male Amer-Indian-Eskimo 24 168

Male Black 297 1272

Female Other 6 103

Male White 6089 13085

· · · · · · · · · · · ·

Correspondingly, the noise magnitude for q1 will be larger compared with its
smaller value, making its noisy result less useful, although the q2’s noisy result
could be relatively close to its true value. Ideally, we should assign a higher
budget for q1 and lower budget for q2, such that the lower noise magnitude will
be added to q1, making both of them are useful. As such, how to reasonably
allocate the limited privacy budget to multiple queries is a crucial problem to
ensure the overall accuracy guarantee for all the queries.

For the impact of noise on the noisy results, while most existing work provide
the analysis of the upper error bound [3,17] in implementing differential privacy,
this is not sufficient for the utility evaluation of the noisy results. From data mining
perspective, it will be helpful for data analysts to understand the utility of the noisy
results if they can visualize the level of accuracy achieved after adding noise.

The objective of this research is thus to design a framework to allocate privacy
budget among the queries with differential privacy and further provides analysis
of how useful of the noisy results. We have further investigated the framework
proposed by A. Smith [14]. We consider the problem of multiple queries with
ε-differential privacy under this framework, where the queries studied in the
paper are the ratios of multiple subsets to the given dataset. The contributions
of this paper can be summarized as follows:

– We formulate the optimization problem with accuracy guarantee in terms
of confidence interval (CI). This enables data analysts to better understand
what are the accuracy guarantee of the noisy statistical results.

– We formulate the noisy results with normal-Laplace distribution. This prop-
erty enables us to derive its cumulative distribution function (i.e. cdf).

– We further approximate the minimum privacy budget required for given level
of accuracy with explicit formulas.

The remaining parts of the paper are organized as follows: First, section 2 pro-
vides a brief discussion about the related work. Then, we describe the background
information in Section 3. Next, section 4 presents the differential privacy frame-
work and discusses the normal-Laplace distribution. Section 5 introduces our novel
approximation formulas for accuracy guarantee. Finally, we evaluate the proposed
approach and conclude the paper in section 6 and section 7 respectively.
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2 The Related Work

Currently, most of existing work studied the noise reduction in terms of sen-
sitivity. For example, a data publishing technique, Privelet, based on wavelet
transforms, was proposed in [16]. Privelet not only ensures ε- differential privacy,
but also guarantees that the variance of the noisy results is polylogarithmic in
terms of m where m denotes the number of queries. There are some database/
data mining applications, where the given dataset is a correlated time-series data
or the dataset is distributively collected. For such types of the applications, a
differential privacy framework, PASTE, was proposed in [12]. To provide dif-
ferential privacy for time-series data, PASTE developed a Fourier perturbation
algorithm. For the case of absence of a trusted central server, PASTE used a
distributed Laplace perturbation algorithm to guarantee differential privacy. In
order to publish cuboids for data cubes with small noise, an efficient method
was proposed in [5]. The proposed method ensures that the maximal noise in
all published cuboids will be within a factor (ln |L| + 1)2 of the optimal, where
|L| is the number of cuboids to be published. To handle the problem of differen-
tial private data release for a class of counting queries, a new computationally
efficient method based on learning thresholds was proposed in [9].

We notice that privacy budget has important impact on the noise magnitude.
A few related work on this topic have been investigated. For example, K. Nissim
et al. have proposed a framework, subsample and aggregate, to reduce the noise
magnitude [11,14]. In such a framework, the dataset is first divided into k groups.
Then it estimates theparameters based on thek results.Comparedwith traditional
Laplace mechanism in [8], the framework reduces the error dramatically, where the
errors decreasewith the increasingnumber of data.TheGUPTwasproposed in [10]
to allocate the privacy budget by ensuring the samenoisemagnitude for each query.

3 Background

Definition 1 ([15]). Two databases x, x′ ⊆ Dn are neighbouring databases if
they differ on exactly one record, i.e.,

x = {x1, . . . , xi, . . . , xn} and x′ = {x1, . . . , x
′
i, . . . , xn}

From the definition, note that two neighbouring databases differ only one record
while they have the same cardinality. Before discussing the Laplace mechanism,
we first give the definition of ε-differential privacy proposed by Dwork [8].

Definition 2 ([8]). With ε > 0, a randomized algorithm K : Dn → R
l is said to

satisfy ε-differential privacy, if for any two neighbouring databases x, x′ ⊆ Dn

and for any subset of outputs S ⊆ Range(K), the following condition holds:

Pr(K(x) ∈ S)
Pr(K(x′) ∈ S)

≤ exp(ε) (1)

where the probability is taken over the randomness of K.
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A simple way to achieve ε-differential privacy is to insert noise to the true
value. For instance, the Laplace mechanism (LM) generates the noise by using a
random variable of Laplace distribution with mean equal to 0 and scale param-
eter equal to ST /ε,where ST is the sensitivity of T (X).

Definition 3 ([11]). The sensitivity of a function T : Dn → R
d is

ST = max
x,x′:d(x,x′)=1

‖T (x)− T (x′)‖. (2)

Lemma 1 (Laplace Mechanism [8]). Given ε > 0, a statistic T (X) ∈ R
l and

its sensitivity ST , the noisy result

T ∗(X) = T (X) + Lap(ST /ε)) (3)

satisfies ε-differential privacy.

For the convenience of discussion, we define the Laplace mechanism with accu-
racy guarantee as follows.

Definition 4 (Accuracy Guarantee). Let θ ∈ R
l be the true value of the

statistic T (X). Suppose Φ(W ) is the cumulative distribution function of a ran-
dom variable of Laplace distribution with mean equal to 0 and scale parameter
equal to ST /ε. If there exist d = (d1, . . . , dl) > 0 and α = (α1, . . . , αl) ∈ (0, 1)
such that

Φ(di) ≥ 1− αi/2,∀i = 1, 2, . . . , l,

then the noisy results obtained from Eq. (3) is at least 100(1− α)% to be ±d of
the true value θ.

Note that the accuracy achieved by LM may be smaller than the required
accuracy since there exists estimation error between the statistic T (X) and the
true value θ but the error is not considered for the accuracy estimation (i.e., only
the variance of the Laplace noise is considered here). We need to find a more
accurate formula to describe the relationships among the accuracy achieved and
other related parameters in order to ensure the accuracy achieved is close to the
required accuracy. Specifically, we focus on the maximum likelihood estimator
(MLE), which is obtained by maximizing the likelihood function.

Theorem 1 (Asymptotic Distribution). Let x1, x2, . . . , xn be independently
identically distributed with density f(x|θ), θ ∈ Θ and let θ0 denote the true value
of θ. Suppose the MLE estimator of θ0 is T (x). Then the probability distribution
of √

nI(θ0)(T (x)− θ0)
tends to be a standard normal distribution, i.e.,

√
nI(θ0)(T (x))− θ0) D−→ N(0, 1)l, (4)

where I(θ0) is Fisher information.
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4 Differential Privacy Framework

In this section, we first formulate the optimization problem and then show the
relationship between the problem and normal-Laplace distribution.

4.1 Problem Definition

The scenarios we consider in the paper is illustrated in Figure 1. Users first send
queries with accuracy requirements to the database server, then the database
server passes the requirements to the computing server to optimize the param-
eters such as privacy budget and confidence interval in order to minimize the
expectation of the errors in Eq. (5). Finally, the database server executes queries
based on the optimized parameters and returns users the noisy results with
accuracy description.

Fig. 1. The query execution model

Given a dataset x = (x1, . . . , xn) ∈ Dn, the value of xi in D is a real number,
where D is a value space of xi. Here, we use the capital letter X = (X1, . . . , Xn)
to denote a random vector variable and lower case x = (x1, . . . , xn) ∈ Dn to
denote a specific value in Dn. Suppose X = (X1, . . . , Xn) is drawn according to
the distribution f(x|θ), where θ ∈ R

l is unknown parameter vector. Let

T (X) = [T1(X), . . . , Tl(X)]

be the estimator of θ. In this paper, we study the problem of how to ensure that
the parameter estimations under ε-differential privacy satisfy the given level of
precision. In other words, we wish to estimate θ using an estimator based on the
given dataset x = (x1, . . . , xn) ∈ Dn with α = [α1, . . . , αl] confidence interval to
be ±d, where d = [d1, . . . , dl], of the true value θ0. Here, we want to minimize
the expected squared deviation from the real parameter θ. Specifically, we wish
to minimize the following objective function:

min Jθ(T ∗(X)) = E{‖T ∗(X)− θ‖2} (5)
s.t Pr(|T ∗i (X)− θi| ≤ di) ≥ 1− αi,∀i ∈ {1, 2, . . . , l} (6)

∑
εi = εtotal,∀i ∈ {1, 2, . . . , l} (7)

0 < k ≤ n (8)
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where εtotal is the total privacy budget and k is the number of blocks. In order
to solve this problem, we need to derive explicit formula to characterize the rela-
tionships among the privacy budget, the number of blocks, the statistics of the
data and accuracy guarantee. Without loss of generality, we assume the solution
of the problem in Eqs. (5)-(8) always exists. Specifically, the multiple queries we
consider in this paper are the ratios of multiple subsets to the given dataset.

Specifically, suppose users send queries Q1(q,χ), where q = [q1, . . . , ql] deno-
tes the query vector while χ represents the corresponding accuracy constraints.
The database server then passes the queries with privacy budget, Q2(q,χ,ϑ,
εtotal), where ϑ denotes the required statistics of related dataset for parameter
optimization, to the computing server. It optimizes the privacy budget among the
queries by solving the problem in Eqs. (5)-(8) and returns the execution queries
with optimized parameters, Q3(q,χ, ε, ς), where ε = [ε1, . . . , εl] denotes the pri-
vacy budget allocation for the query vector q and ς is the number of blocks, to the
execution server. Finally, the execution server executes the queries according to
given optimized parameters and returns the noisy results, R(q,χ′), where χ′ is
the accuracy obtained, to users. In order to illustrate the model clearly, we use an
example to show how is the process of our proposed model.

Example 1. Consider the Adult dataset. Suppose users are interested in two que-
ries q = [q1, q2] where q1 is the ratio of individuals with race=“black”, sex=
“female” and income=“> 50K” to those with sex=“female” and income=“>
50K” and q2 is the ratio of individuals with race=“white”, sex=“female” and
income=“> 50K to those with sex=“female” and income=“> 50K. The corre-
sponding accuracy requirement for the two queries is χ = [χ1, χ2], where χ1

is that the noisy result should be ±d1 with d1 = 0.05 of the true value with
α1 = 95% and χ2 denotes that the noisy result should be ±d2 with d2 = 0.1
of the true value with α2 = 90%. Suppose εtotal = 1. The database server will
pass Q2(q,χ,ϑ, 1) to the computing server after it receives the queries Q1(q,χ).
Here ϑ may include the mean and variance of an estimator, sample size and the
sensitivity of a query. The computing server then optimizes the privacy bud-
get between the two queries by solving the problem in Eqs. (5)-(8). Finally, the
database server returns users the query results, R(q,χ′).

4.2 Differential Privacy Framework

In this paper, we apply the differential privacy framework proposed by [14],
called “sample and aggregate” [11]. It is an effective method to decrease the
noise magnitude, where it randomly divides the data set into k blocks with size
roughly equal to n/k. Then the estimation is applied in each block and finally the
estimates are aggregated by using a differentially private function. Especially,
the MLE estimator developed by Algorithm 1 [15] can asymptotically appro-
ach the true value θ0.

Lemma 2 ([15]). Algorithm 1 satisfies ε-differential privacy.
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Algorithm 1. An ε-Differential Privacy Algorithm
Input: x = (x1, . . . , xn) ∈ Dn, ε > 0
Output: T ∗i (x), i = 1, . . . ,m
1: Let Γ be the range of Ti(x) or diameter of the parameter space
2: Suppose T1(x), . . . , Tm are the sufficient statistics for a set of parameters
θ1, . . . , θm.

3: Calculate Ti, i = 1, . . . ,m based on the input data x
4: for i = 1 to m do
5: Draw a random observation Ri from a laplace distribution with mean 0 and

standard deviation
√

2Γ/(nε)
6: end for
7: Output T ∗i (x) = Ti(x) +Ri

4.3 The Normal-Laplace Distribution

Suppose an MLE estimator is used to estimate the ratios of multiple subsets
to a given dataset in Algorithm 1. Then the output T ∗ is the summation of
two independent random variables Z and Y , where Z is drawn from the normal
distribution with N(Eθ(T (X)),Var(T (X))) and Y is drawn from the Laplace
distribution with Lap(λ). The distribution of T ∗ is called normal-Laplace distri-
bution [13]. In general, let W = Z+Y , where Z and Y are independent random
variables with Z ∼ N(μ, σ2) and Y with following an asymmetric Laplace dis-
tribution with pdf

fY (y) =

{
η
2 e

ηy, for y ≤ 0
η
2 e
−ηy, for y > 0

The distribution of W is called normal-Laplace distribution. We use

W ∼ NL(μ, σ2, η, η)

to denote such a distribution.
From the properties of characteristic function [1], we can derive the mean

and variance of W as

E{W} = μ, and Var(W ) = σ2 + 2/η2.

A closed-form expression for the cumulative distribution function of the normal-
Laplace distribution can be expressed as [13]

F (W ) = Φ(
W − μ
σ

)− φ(
W − μ
σ

)
R(ϕ1)−R(ϕ2)

2
(9)

with ϕ1 = ησ − (W − μ)/σ and ϕ2 = ησ + (W − μ)/σ, where Φ and φ are the
cdf and the pdf of a standard normal random variable, respectively. R is Mill’s
ratio.
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5 Accuracy Guarantee

Suppose μ and σ are the mean and standard deviation of variable X. Let
T1(X) = 1

n

∑n
i=1Xi be the estimator of μ. The noisy result is derived from Algo-

rithm 1. We approximate the minimum privacy budget required for given level
of precision requirement according to Eq. (9). In general, constructing an exact
confidence interval requires complete information about the distribution of the
variable. However, this information is not available in practice. Note that it is
not easy to derive Wα/2 such that F (Wα/2) = 1−α/2 in Eq. (9). A feasible way
is to construct confidence interval based on the large sample theory. Suppose√

nI(θ̂)(θ̂− θ0) is approximately the standard normal distribution, then we get

Pr(−yα/2 ≤
√

nI(θ̂)(θ̂ − θ0) ≤ yα/2) ≈ 1− α.
That is, we can get an approximate 100(1− α)% confidence interval such that

θ̂ − yα/2
1

√

nI(θ̂)
≤ θ0 ≤ θ̂ + yα/2

1
√

nI(θ̂)
.

Infinite Case. Consider the population is infinite. Let X be a variable. Assume
X has a normal, bell-shaped frequency distribution. We wish to estimate the
mean of the population subject to the following constraint

Pr(θ̂ − yα/2sθ̂ < θ < θ̂ + yα/2sθ̂) = 1− α,
where sθ̂ = 1√

nI(θ̂)
is the estimated standard deviation. We can determine the

sample size by

n = (
yα/2s

d
)2,

where d is the desired absolute error and s is the standard deviation. Suppose
X ∼ NL(μ, σ2

n ,
kε
Γ ,

kε
Γ ). Then we get Y ∼ NL(0, 1, kεσ

Γ
√

n
, kεσ

Γ
√

n
). Here, we can

characterize the accuracy guarantee as

yα/2 ·
√
σ2

n
+

2Γ 2

k2ε2
≤ d.

Given accuracy requirement and dataset size, minimum the privacy budget
ε required is expressed as

ε = φ1(n, σ2, Γ, d, yα/2) =
Γ

k
·
√

2
(d/yα/2)2 − σ2/n

. (10)

Finite Case. When the population is finite, the accuracy guarantee is different.
Suppose the population is N . We need to derive explicit formula to express the
relationships among those parameters discussed above for given level of precision
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1−α. Let x1, . . . , xN be the population and X1, . . . , Xn be the variables selected
for estimation. Let pi ∈ {0, 1} be the indicator variable. pi = 1 if xi belongs to
a given sample. Then we can see that

∑n
i=1Xi =

∑N
i=1 pixi. Therefore,

E{1/n
n∑

i=1

Xi} = 1/n · n/N
N∑

i=1

xi = m.

Let X ∼ NL(μ, σ2

n · N−n
N−1 ,

kε
Γ ,

kε
Γ ). If Y = (X − μ)/( σ√

n
·
√

N−n
N−1 ), then we have

Y ∼ NL(0, 1, kε
Γ · σ√

n
·
√

N−n
N−1 ,

kε
Γ · σ√

n
·
√

N−n
N−1 ). The accuracy guarantee can be

expressed as

yα/2 ·
√
σ2

n
· N − n
N − 1

+
2Γ 2

k2ε2
≤ d.

Here, we also derive similar function such that

ε = φ2(n, σ2, Γ, d, yα/2) =
Γ

k
·
√

2
(d/yα/2)2 − σ2 · (N − n)/(n · (N − 1))

(11)

for the minimum privacy budget required.
Wehavederived explicit formulas to describe given accuracy guarantee in terms

of the privacy budget, number of blocks and dataset size. These formulas charac-
terize how the parameters affect mutually. Thus, we can solve the optimization
problem in Eqs. (5)-(8)) based on Lagrangian method. In the following section, we
conduct simulations to demonstrate the effectiveness and feasibility of them.

6 Empirical Evaluations

In this section, we evaluate the performance of the proposed algorithm (denoted
as NL) by comparing it with two state-of-the-art mechanisms, including LM
and GUPT, which are proposed in [8] and [10] respectively. Particularly, we first
evaluate the effectiveness and feasibility of the proposed algorithm based on a
synthetic data and a real dataset. Then we further study the privacy budget
allocation for the optimization problem in Eqs. (5)-(8).

6.1 Approximation Formulas Evaluation

We evaluate the relationships among accuracy, dataset size and privacy budget
for the infinite case through synthetic data. We first generate the synthetic data
with binomial distribution and dataset size n1 = 200 and n2 = 100 by Monte
Carlo method. Two cases are considered, where p = 0.4. We wish to estimate
the mean here. Then we test the cumulative accuracy of noisy results derived
from Algorithm 1 falling into the given interval with d = 0.05, where the number
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Fig. 2. Comparison of privacy budget, ε, versus accuracy for the infinite case

of generations is set to 1000. The results are shown in Figure 2, where NL and
MC denote the theoretical results obtained by the proposed algorithm and the
true results obtained by Monte Carlo method, LM and GUPT are the results
obtained by Laplace mechanism and the GUPT algorithm, respectively.

From the above figure, the accuracy increases with the increase of ε. The
results obtained by NL are the most close to those of MC. Especially in the case
of high accuracy. In contrast, the theoretical accuracy obtained by LM is much
higher than the true accuracy while the theoretical accuracy obtained by GUPT
is much lower. This demonstrates that NL is able to achieve higher accurate
estimation than the two state-of-the-art techniques.

Next, we employ a real dataset, (i.e., Adult dataset from UCI dataset), to
further prove the correctness of the approximation for finite case. Consider the
estimation of the proportion of individuals with race=“black” and sex=“females”
with income=“> 50K” in terms of race=“black” and income=“> 50K”. The
total number of individuals with race=“black” and income=“>50K” is N =
387. We first randomly select n1 = 100 and n2 = 200 samples from the 387
individuals. Then we calculate the theoretical accuracy by using NL, LM and
GUPT for different privacy budget.

The results are shown in Figure 3. The results are very similar to the infi-
nite cases, as shown in Figure 2. This means that the proposed NL algorithm
accurately characterizes the relationships among the three parameters.

6.2 Privacy Budget Allocation for Multiple Queries

We further investigate the expected squared estimation errors of multiple queries
from the optimization problem in Eqs. (5)-(8)). We consider two queries q = [q1, q2]
with α = (0.05, 0.1) and d = (0.05, 0.1). Figure 4(a) shows the comparison of the
cases with different dataset size. It can be observed that the expected squared
errors obtained from different cases decrease with the increasing εtotal. Partic-
ularly, given a εtotal, the expected squared errors decrease with the increasing
dataset size. Figure 4(b) shows the comparison of the corresponding privacy bud-
get allocation under different datasets for the two queries. It can be seen that the
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Fig. 3. Comparison of privacy budget, ε, versus accuracy for the finite case
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Fig. 4. Performance comparison of privacy budget allocation

privacy budget allocated to q2 linearly increases with the privacy budget allocated
to q1. Moreover, given a total privacy budget εtotal, when the dataset size increases,
the privacy allocated to it decreases while the privacy allocated to q2 increases.

In summary, the above simulation results demonstrate that the proposed NL
algorithm accurately describes the relationships among the parameters, namely
the privacy budget, dataset size, accuracy and confidence interval, as well as how
the privacy budget varies with the accuracy requirement.

7 Conclusion

In this paper, we have investigated the problem of how to allocate privacy budget
among a batch of queries under the differential privacy framework. Particularly,
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we formulated the level of accuracy in terms of privacy budget and dataset
size, and we proposed a novel NL algorithm to determine the optimal privacy
budget for the given accuracy guarantee. We further derived explicit formulas
to accurately characterize the relationships among three parameters.
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