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Abstract—In this paper, we present a novel approach for
Remaining Useful Life (RUL) estimation problem in prognostics
using a proposed ‘sequential learning Meta-cognitive Regression
Neural Network (McRNN) algorithm for function approxima-
tion’. The McRNN has two components, namely, a cognitive
component and a meta-cognitive components. The cognitive
component is an evolving single hidden layer Radial Basis
Function (RBF) network with Gaussian activation functions.
The meta-cognitive component present in McRNN helps to
cognitive component in selecting proper samples to learn based
on its current knowledge and evolve architecture automatically.
The McRNN employs extended Kalman Filter (EKF) to find
optimal network parameters in training. First, the performance
of the proposed sequential learning McRNN algorithm has been
evaluated using a set of benchmark function approximation
problems and is compared with existing sequential learning
algorithms. The performance results on these problems show
the better performance of McRNN algorithm over the other
algorithms. Next, the proposed McRNN algorithm has been
applied to RUL estimation problem based on sensor data. For
simulation studies, we have used Prognostics Health Manage-
ment (PHM) 2008 Data Challenge data set and compared with
the existing approaches based on state-of-the-art regression
algorithms. The experimental results show that our proposed
McRNN algorithm based approach can accurately estimate
RUL of the system.

I. INTRODUCTION

Prognostic technologies are very crucial in condition based
maintenance for diverse application areas, such as manufac-
turing, aerospace, automotive, heavy industry, power gen-
eration, and transportation. Prognostic technologies predict
the future performance of a component or a subsystem by
accessing the degradation from its expected normal operating
conditions and make their Remaining Useful Life (RUL)
estimation. If we can accurately predict when an engine will
fail, then we can make informed maintenance decision in ad-
vance to avoid disasters, reduce the maintenance cost, as well
as streamline operational activities. This paper describes the
development of a data-driven approach to predict RUL of a
complex system as it degrades from an unknown initial state
to failure. Clearly, data-driven approach for RUL estimation
normally relies on the availability of run-to-failure data,
based on which the RUL can be estimated. In literature, RUL
is estimated either directly through a multivariate pattern
matching process, or indirectly through damage estimation
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followed by extrapolation to the damage progression [1], [2],
[3], [4], [5].

RUL estimation problem requires online, adaptive, and
often real-time operation. Such problem pose a serious chal-
lenge, since most existing algorithms operated in batch, pro-
cessing data off-line and requiring random/multiple access to
training samples. This means that the incorporation of new
data point may be difficult or even impossible to do. Worse
still, the time complexity of the best of these algorithms
scales super-linearly in the number of training samples, and
the evaluation time on new data point often also scales
linearly with the size of the training set. Furthermore, most
of the existing methods are applicable to linear degradation
models. In prognostics, degradation of mechanical systems
is typically non-linear in nature, therefore for better and
real-time estimation of RUL we need a non-linear and
online/sequential learning method.

In a online/sequential learning framework, the training
samples arrive one-by-one and the samples are discarded
after the learning process. Hence, it requires less memory and
computational time during the learning process. In addition,
sequential learning algorithms automatically determine the
minimal architecture that can accurately approximate the true
decision function described by a stream of training samples.
Many sequential learning algorithms in the literature to solve
function approximation problems and depending on training
method of the network and the structure, these learning
algorithms could be broadly classified as belonging to one the
these: error driven algorithms [6], neuron significance based
algorithms [7], extreme learning machine based algorithms
[8], spiking neural networks algorithms [9], kernel least mean
square based algorithms [10], and on-line support vector
machine algorithms [11]. In the families of artificial neural
networks, Radial Basis Function (RBF) neural networks have
been extensively used in a sequential learning framework
due to its universal approximation ability and simplicity of
architecture. Many sequential learning algorithms in RBF
framework are available in the literature to solve function
approximation problems [12], [6], [13], [7], [8].

All the existing sequential learning algorithms for radial
basis function neural networks use all the samples in the
training data set to gain knowledge about the informa-
tion contained in the samples. In other words, they pos-
sess information-processing abilities of humans, including
perception, learning, remembering, judging, and problem-
solving, and these abilities are cognitive in nature. However,
recent studies on human learning have revealed that the



learning process is effective when the learners adopt self-
regulation in learning process using meta-cognition [14].
Meta-cognition means cognition about cognition. In a meta-
cognitive framework, human-beings think about their cog-
nitive processes, develop new strategies to improve their
cognitive skills and evaluate the information contained in
their memory. Meta-cognition present in human-being pro-
vides a means to address what-to-learn, when-to-learn and
how-to-learn, i.e., the ability to identify the specific piece of
required knowledge, judge when to start and stop learning
by emphasizing best learning strategy. In literature, meta-
cognitive algorithms also available in neural networks and
neuro-fuzzy domains [15], [16], [17], [18], [19], [20]. Afore-
mentioned meta-cognitive algorithms were developed for the
classification problems, and may not work well for function
approximation problems. Hence, there is a need to develop
a meta-cognitive neural network regression algorithm for
function approximation problems that is capable of deciding
what-to-learn, when-to-learn and how-to-learn the decision
function from the stream of training data.

In this paper, we propose a Meta-cognitive Regression
Neural Network (McRNN) which employs human-like meta-
cognition to regulate the sequential learning process. Similar
to Nelson and Narens model of meta-cognition [21], McRNN
has two components, namely, a cognitive component and
a meta-cognitive component. The cognitive component of
McRNN is the an evolving single hidden layered RBF
network with Gaussian activation functions in the hidden
layer. As a new sample is presented to the network, the
meta-cognitive component monitors the knowledge in the
current sample to decide on what-to-learn, when-to-learn
and how-to-learn. These three actions are realized by sample
delete strategy, sample reserve strategy, and sample learn
strategy, respectively. During sample delete strategy, a sample
is deleted if similar knowledge exists in the network. Sample
learn strategy proceeds by adding a new neuron to the
network or updating the parameters of the network depending
on the knowledge present in the sample. Sample reserve
strategy will result in the current sample being reserved to
be considered for learning at a later stage.

The performance of McRNN algorithm has been evalu-
ated on five benchmark function approximation problems,
namely, the system identification problem I [22], the system
identification problem II [23], two variants of the Mackey-
Glass chaotic time-series prediction problem [24], and the
Box-Jenkins gas furnace problem [25]. The performance of
McRNN algorithm has been compared to existing sequential
learning algorithms, namely, the Minimal Resource Alloca-
tion Network (MRAN) [6], Growing and Pruning Radial Ba-
sis Function Network (GAP-RBFN) [7] and recently devel-
oped Quantized Kernel Least Mean Square (QKLMS) [10]
algorithms. MRAN algorithm [6] is similar to the Resource
Allocation Network (RAN) algorithm [12]. RAN [12] was
the one of the first sequential learning algorithm introduced
in the literature. RAN evolves the network architecture using
a very simple novelty based neuron growth criterion. While,

MRAN algorithm incorporates error based neuron growing
and pruning criteria. In GAP-RBFN algorithm [7], growing
and pruning criteria of the network is selected based on the
significance of a neuron. QKLMS algorithm [10] is based
on simple online vector quantization method. In QKLMS
algorithm, quantization is applied to compress the input (or
feature) space of the kernel adaptive filters so as to control
the growth of the RBF network structure. The performance
comparison results with these three algorithms show the bet-
ter prediction ability of McRNN on function approximation
problems. Finally, we apply the proposed McRNN algorithm
for practical RUL estimation problem from sensor data. For
RUL estimation problem, we have used Prognostics Health
Management (PHM) 2008 Data Challenge data set [26]. This
data set contains simulated data produced using a model
based simulation program C-MAPSS (Commercial Modular
Aero-Propulsion System Simulation) developed by NASA
[27]. The performance of the proposed McRNN on the
considered data set for RUL estimation is compared with the
results reported in the literature. Results clearly demonstrates
that the proposed McRNN algorithm is accurately predicts
RUL than existing approaches significantly.

This paper is organized as follows: Section 2 describes the
proposed McRNN algorithm. Section 3 presents performance
evaluation of the proposed algorithm on benchmark function
approximation problems. Section 4 presents the application
of the proposed McRNN algorithm to estimate RUL from
sensor data. Section 5 summarizes the conclusions from this
study.

II. META-COGNITIVE REGRESSION NEURAL NETWORK
ALGORITHM

In the sequential learning algorithms, the training sam-
ples are presented to the network only once, and the net-
work adapts the structure and parameters based on the
knowledge difference between existing network and current
training sample. Meta-cognitive Regression Neural Network
(McRNN) consists of two components, viz., a cognitive
component and meta-cognitive component. The cognitive
component of McRNN is an evolving single hidden layered
RBF network with Gaussian activation functions in the
hidden layer, while the meta-cognitive component is a self-
regulatory learning mechanism that controls the learning
ability of the cognitive component. The learning mechanism
is an adaptive sequential learning algorithm that starts with
zero hidden neurons in the cognitive component and builds
the network with sufficient number of hidden neurons based
on the information contained in the training samples.

Given a stream of training data represented as input-output
pair given by {(x(1),y(1)) , · · · , (x(t),y(t)) , · · · } where
x(t) = [x1(t), · · · , xm(t)] ∈ <m is the m-dimensional input
vector of the tth sample, and y(t) = [y1(t), · · · , yn(t)] ∈ <n
is its corresponding n-dimensional output vector. For
large range multi-input and multi-output dynamic
system, the x(t) could be expressed as x(t) =
[y(t− 1), · · · ,y(t− ν − 1);u(t− 1), · · · ,u(t− χ− 1)],
where u is the input to the dynamic system, ν and χ are



the maximum lags of the ouput and input, respectively. The
above relationship could be expressed as:

y(t) = f [x(t)] = f [y(t− 1), · · · ,y(t− ν − 1);

u(t− 1), · · · ,u(t− χ− 1)] (1)

where f [.] is the functional relationship that maps the input
to their respective targets (x→ y). The aim of McRNN is
to approximate f [.] such that for a given input x(t), the
predicted output

ŷ(t) = f̂ [x(t),θ] (2)

is as close as possible to the desired target y(t). It must be
noted that θ represents the parameter vector of McRNN. For
a given training training sample x(t), the predicted output
ŷ(t) = [ŷ1(t), · · · , ŷj(t), · · · , ŷn(t)] of McRNN with K
hidden neurons is

ŷj(t) =

K∑
k=1

wkjφk(x(t)), j = 1, 2, · · · , n (3)

where wkj is the weight connecting the kth hidden neuron
to the jth output neuron and φk(x(t)) is the response of the
kth hidden neuron to the input x(t) is given by

φk (x(t)) = exp

(
−‖x(t)− µk‖2

σ2
k

)
(4)

where µk is the center and σk is the width of the kth hidden
neuron.

The error e(t) = [e1(t), · · · , en(t)] for the tth sample is
defined as the difference between the actual and predicted
output

ej(t) = yj(t)− ŷj(t) j = 1, 2, · · · , n (5)

During the sequential learning, as each sample is presented
to the network, the meta-cognitive component monitors the
knowledge in the current sample (by employing error and
spherical potential) with respect to the knowledge present in
the network to decide whether to delete the sample without
learning (sample delete strategy) or learn the knowledge
in the sample (sample learn strategy) or reserve (sample
researve strategy) the sample for future use.

In order to measure the knowledge difference between the
current sample and the existing network, McRNN employs
two measures: prediction error and spherical potential [28].
The prediction error E(t) for the current sample at instant is
given as

E(t) =

√√√√ n∑
j=1

e2j (t) (6)

Spherical potential[28] is a direct measure of novelty in the
current sample. It is defined as the average distance of the
current sample from already added K hidden neurons in a
hyperdimensional feature space

ψ(t) =
1

K

K∑
k=1

φ (x(t),µk) (7)

The higher value of spherical potential (close to one)
indicates that the sample is similar to the existing knowledge
in the cognitive component and smaller value of spherical
potential (close to zero) indicates that the sample is novel.

In the following section, we present the detailed descrip-
tion of the three strategies.

A. Sample Delete Strategy

The what-to-learn by meta-cognitive component in
McRNN is achieved by the sample delete strategy. If the
predicted error for current sample is less than the delete
threshold βd, then the knowledge content of the sample is
similar to the knowledge present in the network. Hence,
the sample is deleted from the training sequence without
being used in learning. It prevents the network from over-
training. Delete threshold is chosen based on the required
absolute prediction error of the network. A lower value of
this threshold (close to zero) will result in no samples being
deleted, leading to over-fitting, whereas a higher value will
lead to deletion of too many samples from the training
sequence. But, the resultant network may not satisfy the
required absolute prediction error. For the problems chosen
in this work, it is chosen in the range [0.0001, 0.001].

B. Sample Learn Strategy

The how-to-learn by meta-cognitive component in
McRNN is achieved by the sample learn strategy. A sample
is learnt when it contains new knowledge, this strategy works
by either adding a new hidden neuron (Neuron Growth
Criterion) or updating the network parameters (Parameters
Update Criterion).

1) Neuron Growth Criterion: When a sample contains
significant novel knowledge, a new hidden neuron (K+1)th

is added to the network. Novelty measured by the prediction
error and spherical potential. If the prediction error of the
network is very high and the spherical potential is below the
novelty threshold. The neuron growth criterion is given as

E(t) ≥ βa AND ψ(t) ≤ βn (8)

where βa and βn are the self-adaptive addition and novelty
thresholds. A lower value of βn indicates higher resistance
to the neuron growth. In this study, βa and βn are initially
set in the range [0.1, 0.3] and [0.3, 0.7] and when a new
hidden neuron is added to the network, βa is self-adapted
according to:

βa := δβa + (1− δ)E(t) (9)

where δ is the slope that controls rate of self-adaptation and is
set close to 1. βa allows samples with significant knowledge
for learning first then uses the other samples for fine tuning.
In McRNN, when the (K + 1)th hidden neuron is added to
the network the parameters of the new hidden neuron are
initialized as



µK+1 = x(t) (10)
σK+1 = κ min

∀k
‖x(t)− µk‖ k = 1, 2, · · · ,K (11)

wK+1 = e(t) (12)

where κ is a positive constant which controls the overlap of
the responses of the hidden units in the input space, in this
study κ in the range [0.5, 1.0].

2) Parameters Update Criterion: The parameters of the
cognitive component (θ = [w1,µ1, σ1, · · · ,wK ,µK , σK ] ∈
<K(m+n+1)×n) are updated, when the prediction error E(t)
is greater than self-adaptive update threshold βu as given as

E(t) ≥ βu (13)

In this study, βu is initially set in the range [0.001, 0.01].
The βu is adapted based on the prediction error as:

βu := δβu + (1− δ)E(t) (14)

The advantage of self-adaptive thresholds is that, they help
in selecting the samples for adding as a hidden neuron or to
update parameters.

McRNN uses Extended Kalman Filter (EKF) to update the
cognitive component parameters

θ := θ + e(t)GT (15)

where e(t) is the error obtained as defined in Eq. (5) and
G ∈ <z×n is the Kalman gain matrix given by:

G = PB
[
R+BTPB

]−1
(16)

where z = K(m + n + 1), R = r0In×n is the variance
of the measurement noise, P ∈ <z×z is the error covariance
matrix, B is the partial derivatives for the output with respect
to the parameters (θ) given by

B =



φ1In×n, φ1
2w1

σ2
1
(x(t)− µ1)

T ,

φ1
2w1

σ3
1
‖x(t)− µ1‖2,

...
φKIn×n, φK

2wK

σ2
K

(x(t)− µK)T ,

φK
2wK

σ3
K
‖x(t)− µK‖2



T

(17)

The error covariance matrix is updated by

P :=
[
Iz×z −GBT

]
P+ q0Iz×z (18)

The addition of artificial process noise (q0) helps in avoiding
convergence to local minima.

When a new hidden neuron is added, the dimensionality
of error covariance matrix P is increased to[

Pz×z 0z×(m+n+1)

0(m+n+1)×z p0I(m+n+1)×(m+n+1)

]
(19)

where I is the identity matrix, 0 is the zero matrix and p0 is
the initial estimated uncertainty.

C. Sample Reserve Strategy

The when-to-learn by meta-cognitive component in
McRNN is achieved by the sample reserve strategy. If the
current sample does not satisfy sample delete or sample learn
strategy, it is reserved to be considered for learning at a later
stage of the learning process. This is achieved by pushing the
current sample to the rear end of data stream. These samples
may be used at a later stage in learning process by the virtue
of self-regulatory nature of McRNN.

These three strategies are repeated for every sample from
data stream. It helps the McRNN learn and generalize the
knowledge efficiently. The training process stops when no
further sample is available in the data stream or number of
samples in the reserve remains same.

III. PERFORMANCE EVALUATION OF MCRNN
ALGORITHM ON BENCHMARK PROBLEMS

In this section, the effectiveness of the proposed McRNN
is evaluated on a set of benchmark function approxima-
tion problems, namely, the non-linear system identification
problem I [22], the non-linear system identification problem
II [23], two variants of the Mackey-Glass chaotic time-
series prediction problem [24], and the Box-Jenkins gas fur-
nace problem [25]. The performance of McRNN algorithm
is compared with existing sequential learning algorithms
MRAN, GAP-RBFN and QKLMS algorithms. The tunable
parameters including the number of hidden neurons of all the
four sequential algorithms, McRNN, MRAN, GAP-RBFN
and QKLMS sequential algorithms are chosen using standard
10-fold cross-validation procedure based on the training set
only, where we tune their parameter values for training these
models on the randomly selected nine-folds and choose their
final values that give best results in the last-fold. First, we
describe the considered benchmark problems first and then
present the performance comparison results.

A. Non-linear System Identification Problem I

The non-linear system identification problem is a two-
input one-input problem and is given as

y(t+ 1) =
y(t)

1 + y2(t)
+ u3(t) (20)

The objective is to predict the one step ahead output
y(t+1) of the system, based on the current output y(t) and
a sinusoidal input u(t) = sin( 2πt100 ). As suggested in [22],
50200 data samples are generated in the range [-1.5, 1.5],
out of which 50000 data samples are used as training and
remaining 200 as testing.

B. Non-linear System Identification Problem II

The input and output relation of this second non-linear
system identification problem is given as

y(t) =
y(t− 1)y(t− 2)(y(t− 1)− 0.5)

1 + y2(t− 1) + y2(t− 2)
+ u(t− 1) (21)

The objective is to predict the current output y(t) of the
system, based on the input at (t− 1)th instant and output at



(t− 1)th,(t− 2)th instants. Where the input to the system is
given by u(t) = sin( 2πt25 ). 5200 data samples are generated,
out of which 5000 data samples are used as training and
remaining 200 as testing.

C. Mackey-Glass Time-Series Prediction Problem

The Mackey-Glass chaotic time-series data [24] are gen-
erated using the differential equation is given by

∂x

∂t
=

0.2x(t− τ)
1 + x10(t− τ)

− 0.1x(t) (22)

The objective is to predict the future values of the system
based on past and current values. A fourth-order Runge-
Kutta method is used to approximate the numerical solution
of the differential equation. Two different variants of this
problem is considered in this study: 1) Mackey-Glass time-
series problem with six steps ahead prediction (Mackey-
Glass-6); and 2) Mackey-Glass time series problem with 85
steps ahead prediction (Mackey-Glass-85).

1) Mackey-Glass-6 Problem: The objective of this prob-
lem is to predict the value of x(t + 6) based on past four
values:[x(t−18), x(t−12), x(t−6), x(t)]. In order to extract
the data, the following initial conditions are employed:
x(0) = 1.2 and τ = 30. 1000 data samples are generated
in the interval t = 124 to t = 1123, out of which 500 data
samples are used for training and remaining 500 for testing.

2) Mackey-Glass-85 Problem: The objective of this prob-
lem is to predict the value of x(t + 85) based on inputs
[x(t − 18), x(t − 12), x(t − 6), x(t)]. In this variant, the
parameters are set as τ = 17 and x(0) = 1.2. 3000 data
samples are generated in the interval t = 201 to t = 3200
for training and 500 data samples in the interval t = 5001
to t = 5500 for testing.

D. Box-Jenkins Gas Furnace Problem

The objective of this Box-Jenkins gas furnace problem
[25] is to predict the output CO2 concentration from input
gas flow rate in furnace. The system is modeled using a
series-parallel model given by ŷ(t) = f(y(t− 1), u(t− 4)).
This data set consists of 290 data samples, out of which
200 data samples are used for training and remaining 90 for
testing.

E. Performance Measures

In this study, the inputs and targets are normalized in the
range [-1, 1] for all the aforementioned problems and for
all the algorithms considered. In this study, two performance
measures are employed for performance comparison of the
proposed McRNN algorithm with other considered sequential
learning algorithms. The two performance measures are Root
Mean Square Error (RMSE) and the percentage of samples
(PS) used.
• RMSE: It is defined as

RMSE =

√∑N
t=1

∑n
j=1 (y(t)− ŷ(t))

2

N
(23)

where N is the total number of samples.

• Percentage of samples employed in training (PS): It is
given by

PS =
# samples employed in training

# samples available in training data set
×100%

(24)

F. Preliminary Results

TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED MCRNN WITH
EXISTING MRAN, GAP-RBFN AND QKLMS ALGORITHMS ON

BENCHMARK APPROXIMATION PROBLEMS

Data Algorithm No. of PS RMSE
set Neurons % Train Test

Non-linear MRAN 7 100 0.00247 0.00275
System GAP-RBFN 9 100 0.00230 0.00255

Identification QKLMS 41 100 0.05699 0.05551
Problem I McRNN 9 10.79 0.00159 0.00170
Non-linear MRAN 3 100 0.00695 0.00819

System GAP-RBFN 8 100 0.00278 0.00359
Identification QKLMS 26 100 0.01136 0.01138
Problem II McRNN 5 82.22 0.00135 0.00222

Mackey-Glass-6 MRAN 5 100 0.02419 0.01498
Time-Series GAP-RBFN 10 100 0.02008 0.01348
Prediction QKLMS 50 100 0.02588 0.01769
Problem McRNN 7 76.00 0.01649 0.01198

Mackey-Glass-85 MRAN 8 100 0.00669 0.00694
Time-Series GAP-RBFN 10 100 0.00697 0.00727
Prediction QKLMS 79 100 0.01043 0.01079
Problem McRNN 8 76.77 0.00530 0.00538

Box-Jenkins MRAN 3 100 0.08703 0.05610
Gas GAP-RBFN 3 100 0.03687 0.05082

Furnace QKLMS 26 100 0.05996 0.06358
Problem McRNN 3 71.00 0.02527 0.03669

The performance comparison of the proposed McRNN al-
gorithm with the existing MRAN, GAP-RBFN and QKLMS
algorithms on benchmark approximation problems is given
in Table I. Table I gives the number of hidden neurons,
percentage of samples used by each of the algorithm, and
training and testing RMSE values. From the Table I, it
can be seen that on all the considered problems McRNN
chooses less number of data samples for training and attains
a network which produces significantly lower training and
testing errors. In non-linear system identification problem I,
which has more number of data samples compared to other
problems, McRNN used only 10.79% (5399 samples em-
ployed in training out of 50000 samples available in training
data set) and still achieves lowest training and testing errors
compared with MRAN, GAP-RBFN and QKLMS sequential
learning algorithms. Among the four algorithms, on all the
problems QKLMS achieves higher testing error and also em-
ploys more number of hidden neurons in the network. GAP-
RBFN algorithm achieves better performance than MRAN
algorithm on the all the problems except Box-Jenkins gas
furnace problem. It can also be seen that on all the considered



problems McRNN required less or equal number of neurons
compared to the GAP-RBFN and QKLMS algorithms to
achieve significantly better performance. When compared
to MRAN algorithm, on non-linear system identification
problems I & II and Mackey-Glass-6 problem, even though
McRNN requires two more number of neurons in the network
to approximate the complex input-output functional rela-
tionship and achieves significantly better performance than
MRAN. When compared to MRAN algorithm, on Mackey-
Glass-85 and Box-Jenkins gas furnace problems, McRNN
uses exactly same number of neurons as of MRAN and
achieves significantly better performance than MRAN. From
the above comparison results based on the percentage of
samples (PS) employed in training, and training and testing
RMSE values, we can see that the use of meta-cognitive
learning strategies has helped proposed McRNN sequential
learning algorithm and attains better performance than the
other well known sequential learning algorithms.

IV. APPLICATION OF MCRNN ALGORITHM TO
REMAINING USEFUL LIFE ESTIMATION

In this section, we present the application of proposed
McRNN algorithm on RUL estimation problem based on
sensor data and its performance is compared with the
existing approaches based on state-of-the-art regression
algorithms. Clearly, accurate estimation of RUL has great
benefits and advantages in many real-world applications
across different industrial verticals. RUL estimation
problem is the most common task in the research field
of prognostics and health management. In its simplest
form RUL estimation problem in prognostics is similar to
a regression problem. In this study, we have used PHM
2008 Data Challenge data set [26]. This data set contain
simulated data produced using a model based simulation
program C-MAPSS developed by NASA [27]. This data set
can be downloaded from NASA prognostics data repository
web-site (http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-
data-repository/).

PHM 2008 Data Challenge data set consists of training and
testing data sets which are arranged in an l-by-26 matrix
where l corresponds to the number of data points in each
component. Each row is a snapshot of data taken during a
single operating time cycle and in 26 columns, where 1st

column represents the engine number, 2nd column represents
the operational cycle number, 3 - 5 columns represent the
three operating settings, and 6 - 26 columns represent the
21 sensor values. Training data set consists of 218 engines
data and testing data set consists of another 218 engines
data. More information about the 21 sensors can be found in
[29]. Engine performance can be effected by three operating
settings in the data significantly. Each trajectory within the
train and test trajectories is assumed to be life-cycle of an
engine. While each engine is simulated with different initial
conditions, these conditions are considered to be of normal
conditions (no faults). For each engine trajectory within
the training data set, the last data entry corresponds to the
moment the engine is declared unhealthy or failure status.

On the other hand, test data set contains data some time
before the failure and aim here is to predict RUL in the test
data set for each engine (Total 218 engines in test data set,
therefore prediction result of an algorithm on this test data
set must be a vector of length 218). The actual RUL value
of the test trajectories in PHM 2008 Data Challenge data set
is not available.

We performed following data pre-processing steps before
learning the model: Plotting the three operating setting values
in this data set, the data points are clustered into six different
distinct clusters. These clusters are assumed to correspond to
the six different operating conditions. It is therefore possible
to include the operating condition history as a feature.
Hence, operating conditions history is included as 6 extra
features [2]. Next, standard score normalization is applied to
normalize the data points to be within uniform scale range
[2]. Finally, piece-wise linear degradation model (RUL target
function) is used which limits the maximum value of the
RUL function [1]. In this study, we set this maximum value
to 130.

The penalty score function used in this study to compare
the proposed McRNN with existing algorithms is identical to
that used in PHM 2008 Data Challenge. This penalty score
function is illustrated in Eq. (25), where M is the number
of engines in test set, S is the computed score, and h =
(Estimated RUL− True RUL).

S =


∑M
i=1

(
e−

hi
13 − 1

)
for hi < 0∑M

i=1

(
e

hi
10 − 1

)
for hi ≥ 0

(25)

This penalty score function penalizes late predictions (too
late to perform maintenance) more than early predictions (no
big harms although it could waste maintenance resources).
This is in line with the risk adverse attitude in aerospace
industries.

TABLE II
MCRNN ALGORITHM PERFORMANCE ON RUL PROBLEM USING PHM

2008 DATA CHALLENGE DATA SET

Algorithm Penalty
Score

Multi-Layer Perceptron [4] 118338
Support Vector Regression 15886

Relevance Vector Regression 8242
Kalman Filter Ensemble [4] 5590

Gibbs Filtering [30] 4170
Switching Kalman Filter [4] 2922

McRNN 2255

After running the McRNN algorithm to compute the
estimated RUL’s of 218 engines in the test data set, their
RUL’s were then uploaded to the NASA data repository
web-site and a single penalty score was then calculated
by the web-site as the final output. This penalty score of
McRNN and the existing approaches penalty scores in the
literature is given in Table II. Based on the penalty score
results in Table II, we observe that the proposed McRNN



based approach outperforms the other existing approaches
for RUL estimation significantly by producing much lower
penalty score, indicating that the predicted failure time from
our proposed McRNN approach is very near to the actual
failure time or their ground truth values. Also, McRNN based
approach outperforms recently proposed Gibbs filtering [30]
based approach and switching Kalman filter neural network
ensemble [4] based approach. Hence, we can conclude that
McRNN based RUL estimation approach is better than the
approaches based on state-of-the-art regression algorithms.

V. CONCLUSIONS

This paper has presented a novel approach for RUL esti-
mation problem based on sensor data. For this, we have pro-
posed sequential learning Meta-cognitive Regression Neural
Network (McRNN) algorithm for function approximation
problems inspired from human meta-cognitive learning prin-
ciples. McRNN has two components, namely, a cognitive
component and a meta-cognitive component. The cognitive
component of McRNN is an evolving single hidden layered
RBF network with a Gaussian activation functions. The
meta-cognitive component of McRNN has a self-regulatory
learning system that decides what-to-learn, when-to-learn
and how-to-learn. These three actions are realized by sample
delete strategy, sample reserve strategy, and sample learn
strategy, respectively. First, the performance of the proposed
sequential learning McRNN algorithm has been evaluated
on set of benchmark function approximation problems. The
performance comparison with the well-known sequential
learning algorithms in the literature clearly indicates the
better performance of the proposed McRNN on function ap-
proximation problems. Next, the proposed sequential learn-
ing McRNN algorithm has been applied to RUL estimation
problem based on sensor data. The performance comparison
with the literature results on RUL estimation problem based
on PHM 2008 Data Challenge data set indicates that the
predicted failure time from our proposed McRNN approach
is very near to the actual failure time or their ground truth
values.
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