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Abstract. Since protein complexes play important biological roles in
cells, many computational methods have been proposed to detect pro-
tein complexes from protein-protein interaction (PPI) data. In this pa-
per, we first review four reputed protein-complex detection algorithms
(MCODE[2], MCLI[21], CPA[1] and DECAFF[14]) and then present a
comprehensive evaluation among them on two popular yeast PPI data®.
We also discuss their relative strengthes and disadvantages to guide in-
terested researchers.

1 Introduction

Multiple-protein complexes are key molecular entities to perform important cel-
lular functions. For example, the complex “RNA Polymerase II” can produce
mRNAs, snoRNAs, and some of the snRNAs. The increasing amount of PPI
data has enabled us to detect protein complexes from the PPI networks. Re-
cently, many algorithms (e.g., [2,12,15,1,14,4]) have been proposed to detect
protein complexes in PPI networks, based on the observation that dense regions
in PPI networks often correspond to protein complexes [20]. All these algorithms
adopt different strategies to detect protein complexes and thus obtain different
results. Therefore, a systematic study is greatly desired for both examining which
algorithm is with superiority in a specific situation and investigating the chal-
lenges in subsequent researches.

Recently, Brohee and Helden [3] conducted a comparison among four algo-
rithms, Molecular Complex Detection (MCODE) [2], Super Paramagnetic Clus-
tering (SPC) [8], Restricted Neighborhood Search Clustering (RNSC) [12] and
Markov Clustering (MCL) [21]. For evaluations, they proposed several new mea-
sures, one of which called “separation” apparently favors non-overlapping clus-
terings. Based on their evaluation measures, their analysis showed that MCL was
most superior. For this reason, some subsequent studies adopt MCL to process
their own PPI data for protein complex detection [13,9]. However, proteins can
be involved in multiple complexes in real biological systems and protein com-
plexes can thus have overlaps with others. Various evaluation measures [2, 14, 9],
which take the overlaps into considerations, have already been utilized to do fair
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comparison. In addition, the incomplete MIPS complex data as reference set will
make their analysis less convincing. As the complex data is now more enriched
and some new methods (e.g., [1], [4] and [14]) emerged, a new evaluation study
for protein complex prediction algorithms is necessary.

In this paper, we also compare four algorithms, namely MCODE, MCL,
and two new algorithms CPA [1] and DECAFF [14]. A more comprehensive
complex data [9] is collected as reference set and different criteria for performance
measurement are used to evaluate the quality of predicted complexes and the
accuracy of the predictions.

2 Review of algorithms

In this section, we first introduce some basic terminologies for graphs and then
review above four algorithms for protein complex detection.

2.1 Terminology

PPI data can be easily modeled as a simple graph G = (V, E), in which a vertex
in vertex set V represents a protein and an edge in edge set E represents an
interaction between two distinct proteins. In G, a walk is a sequence of vertices
where edges exist between two adjacent vertices. The set of all the neighbors
of a vertex v € V is denoted as N, = {u|lu € V,(u,v) € E} and the degree
of v is the cardinality of N,, written as deg(v). The density of G, denoted as
den(G), is defined in equation 1. The neighborhood graph of v is defined as
Gy = (V/,E'), where V' = {v} UN,, and E' = {(u;, u;)|(us,u;) € E,u;,uj €
V'}. The neighborhood graph G, is namely the subgraph which consists of all
v’s immediate neighbors (including v) and all the edges among them. A k-core
is a subgraph in which all the vertices have degrees no less than k& and the order
of a k-core is k if it is not a (k + 1)-core. Given two graphs A = (V4, E4) and
B = (Vp, Ep), the neighborhood affinity between A and B, NA(A, B), is also
defined in equation 1 to measure the similarity between them [2].
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2.2 Algorithms

The four algorithms adopt different strategies to detect dense regions in PPI
networks as protein complexes. We will briefly introduce them and then give a
short summary.

MCODE [2] detects densely connected regions in PPI networks as protein com-
plexes. It first weights every vertex based on their local neighborhood densities,
and then selects seed vertices with high weights as initial clusters and augments
these clusters by outward traversing from the seeds.



In the first step, for a vertex v, MCODE first finds the k-core with the highest
order in the subgraph formed by N,, denoted as gi. The final weight of v is the
product of the order and density of gg.

In the second step, MCODE selects the seed vertex with the highest weight as
an initial cluster and conducts a Depth-First-Search (DFS) from the seed. The
cluster grows by including vertices as follows. Given a vertex v and a cluster C' =
(Ve, Ec), v € Ve, u will be added into C if u € N, and w(u) > (1 —Ty,) x w(v),
where Ty, is the weight threshold for cluster formation. If a cluster can’t grow
any more, it will be removed from the current PPI network. MCODE will repeat
above processes until no more clusters can be detected.

MCODE also has an optional post-processing step. MCODE will filter the
clusters that doesn’t even contain a 2-core. In some clusters, some vertices with
very low weights will also be removed. A “fluff” operation is also introduced for
generating overlapping clusters in this post-processing step.

MCL |[21], which simulates random walks in graphs (e.g., PPI networks), has
recently been used for protein complex detection in [13] and [9)].

MCL takes the adjacency matrix of the PPI network as input. It has two
operators, called expansion and inflation. In each iteration, expansion operates
the matrix by multiplication (e.g., matrix squaring) and inflation by taking the
power for each matrix entry. Expansion operator is for assigning new probabil-
ities for all pairs of nodes, where one node is the starting point of walk and
another is the destination. Inflation operator changes the probabilities for all
the walks, boosting the probabilities of intra-cluster walks and demoting inter-
cluster walks. Finally, iterating expansion and inflation will separate the PPI
network into many segments, which are predicted as protein complexes. In this
way, MCL can only generate non-overlapping clusters.

CPA [1] is proposed to detect protein complexes by keeping track of the periph-
ery information of an augmenting cluster. To form a protein complex, CPA first
selects a seed as the initial cluster and then augments it by including vertices
one-by-one, which are closely related with the current cluster.

The seed is first selected as the one with the highest weight or the one with
the highest degree if all the vertices have weights zero.The initial cluster is a
seed and then the cluster grows gradually by including vertices one-by-one from
the neighbors of the current cluster. In each iteration, only the priority vertex,
which has both a high weight and a high cluster property score with respect to
this cluster, will be added into the cluster. Given a cluster ¢, and a vertex v,
outside ¢, the cluster property score of v,, with respect to cg, cpni, represents
the cohesiveness between c¢; and v,,.
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where d, is the density of ¢k, | Ng| is the number of nodes in ¢ and |E,| is the
number of nodes in ¢; connecting to v,.



Once a cluster is generated, it is removed from the PPI network. Thus, CPA
can only detects non-overlapping clusters if there is no further process. To gen-
erate overlapping clusters, CPA is extended to allow a cluster to include vertices
that are closely associated with it but appear in other clusters.

DECAFF [14] is proposed to detect dense and reliable subgraphs as protein
complexes in PPI networks. DECAFTF first mines dense subgraphs in the neigh-
borhood graphs, then merges subgraphs with high Neighborhood Affinity scores
and finally filters out some subgraphs with low reliability.

Firstly, based on the hierarchical network model of PPI networks [18], the
Hub-Removal Algorithm is proposed to mine multiple possible dense subgraphs
in a neighborhood graph.

Secondly, dense subgraphs detected by the Hub-Removal Algorithm com-
bined with local cliques detected by the LCMA algorithm [15] are then pro-
cessed by the merging algorithm [15]. In particular, two dense subgraphs with
high Neighborhood Affinity scores will be merged into a larger subgraph.

Thirdly, each interaction will be assigned reliability score based on its exper-
imental sources and the functional information of its two interacting proteins.
The reliability of a cluster is then defined as the average score of all interactions
within this cluster. Clusters with low reliability scores, which are possibly false
predictions, are finally filtered by DECAFF.

Summary. Table 1 summarizes the main features of four algorithms. Although
all these algorithms share some common features (e.g., using weighting schemes),
they also have their particular features, e.g., the clusters predicted by MCL can
cover all the proteins in the PPI network and DECAFF uses additional function
information. The coming evaluation part will show how these features effect the
performance of the algorithms.

Table 1. Main features of protein complex prediction algorithms.

Main features of algorithms
Algorithms 1 213|4]|5]|6
MCODE [2] Local neighborhood search  |Yes|No|No|Yes|No
MCL [13, 9] Global flow simulation Yes|No|No|No|Yes
CPA [1] Local neighborhood search  |Yes|Yes|No|Yes|No
DECAFF [14]| Local neighborhood search |Yes|Yes|Yes|Yes|No

Features: 1-main idea of the algorithm; 2-weighting edges or ver-
tices; 3-using density threshold; 4-using functional information; 5-
detecting overlapping subgraphs; 6-covering all the nodes in the PPI
network.

3 Evaluation Criteria

In this section, we will use different criteria proposed by previous studies to
systematically evaluate these four algorithms.



3.1 Co-annotation and co-localization within predicted complexes

Each pair of proteins can have a score, which is the semantic similarity between
GO (Gene Ontology) terms annotating them [19,17, 22]. Thus, a predicted com-
plex can be also assigned a score, which is the average of the GO scores of all
protein pairs within it. Since protein complexes are formed to perform a spe-
cific cellular function, proteins within the same complex tend to share common
functions and be co-localized. The average score of all predicted complexes can
therefore be used to evaluate their overall quality [9]. In addition, we will use the
method in [22] to calculate the semantic similarity between GO terms and the
semantic similarity between two proteins will be defined as the maximum simi-
larity between GO terms annotating them respectively. The “biological process”
and “cellular component” taxonomies are used to calculate the co-annotation
score and co-localization score respectively.

3.2 Precision, Recall and F-measure

The neighborhood affinity score between a predicted complex p and a real com-
plex b in the benchmark, NA(p,b), is used to determine whether they match
with each other. If NA(p,b) > w, they are considered to be matching (w? is set
as 0.20 in [2,14] and 0.25 in [4], respectively.). We assume that P and B are
the sets of complexes predicted by a computational method and real ones in the
benchmark, respectively. IV, is the number of predicted complexes which match
at least a real complex and N, is the number of real complexes that match at
least a predicted one. Precision and recall are defined as follows [4]:

Ncp = |{p|p S 1:)7 b € B,NA(p, b) > LA}}|7
Ny, = |{blb € B,3p € P,NA(p,b) > w}|,

Ncp Ncb
and  Recall = . (3)
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F-measure, as the harmonic mean of precision and recall, can be used to
evaluate the overall performance of the different techniques,

F =2 x Precision x Recall/(Precision + Recall). (4)

3.3 Sensitivity, Positive predictive value and Separation values

Sensitivity (Sn) and positive predictive value (PPV) are also used to evalu-

ate the accuracy of the predictions [3,9]. Given n benchmark complexes and

m predicted complexes, T;; is the number of proteins in common between ith

benchmark complex and j** predicted complex. Sn and PPV are defined as:
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4 In our experiments, w is set as 0.20.
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Here N; is the number of proteins in the i*" benchmark complex, and T; =
>oi, Ty;. Generally, high Sn values shows that the prediction has a good cover-
age of the proteins in the real complexes and high PPV values indicate predicted
complexes are likely to be true positive. The accuracy of a prediction, Acc, is
finally defined as the geometric average of sensitivity and positive predictive

value,
Acc =+/Sn x PPV. (6)

A new measure called separation [3] is proposed to emphasize the one-to-one
correspondence between a predicted complex and a real complex. The separation
value for the i'” benchmark complex and j** predicted complex, sep;;, is defined

as:
T T

SEP;; = n X m .
Zi:l iy Zj:l T3
The complex-wise separation sep, and the cluster-wise separation sep, are de-

fined in equation 8. The final geometrical separation value (Sep) is defined as
the geometrical mean of sep, and sep,.
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4 Experimental results and Discussions

In this section, we systematically compare the performance of four algorithms
based on above evaluation criteria. In our experiments, DIP data [23] and MIPS
PPI data [10] are used for protein complex prediction. MIPS data consists of
12317 interactions among 4543 proteins and DIP data (released on 12/02/2007)
consists of 17203 interactions among 4930 proteins. The protein complexes col-
lected by [9] are used as reference data, which contains (1) manually curated
complexes from MIPS [10] and Aloy et al. [6] and (2) those extracted from the
SGD database [7] based on GO annotations. This reference data consists of 428
real complexes.

For MCL algorithm, the inflation parameter is set as 2.1 which maximizes
both the accuracy in equation (6) and F-measure when using MIPS data and
it is set as 1.9 when using DIP data. For MCODE, the optimal parameters are
set as follows: Depth = 3, VWP = 0, haircut = T, Fluff = T and fluff density
threshold = 0.2. In this way, each algorithm obtained predictions as shown in
Table 2.

4.1 Co-annotation and co-localization within predicted complexes

To assess the quality of predicted complexes, we calculated the co-annotation
and co-localization scores for the complexes predicted by four algorithms.



Table 2. The results of various algorithms using MIPS and DIP data.

Data MIPS PPI data DIP PPI data
Algorithms MCODE| MCL | CPA | DECAFFMCODE| MCL | CPA
# complexes predicted| 133 1160 921 1221 183 |1117 |1140
# proteins covered 694 4543 | 2198 864 1173 14930 [2939
# interactions covered| 1298 4226 | 2102 3264 2789 |5519 |4441

11Since we have not implemented the DECAFF algorithm, the results of DECAFF
using DIP data are not collected in this study.

In figure (1), MCL is observed to be with the lowest functional and localiza-
tion similarity. The complexes predicted by MCODE have the highest quality.
DECAFF also achieves much higher functional and localization similarity than
MCL and CPA when using MIPS PPI data. In fact, MCL obtains some clusters
that have 3 proteins and only 2 interactions among them and all this kind of
clusters are considered to be unpromising and discarded by three other algo-
rithms. In addition, MCL and CPA also detect many clusters that are protein
pairs. However, some interactions are even unreliable in MIPS and DIP data.
These two facts help to interpret why MCL and CPA predict protein complexes
with lower quality in terms of co-annotation and co-localization.
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Fig. 1. Co-annotation and co-localization scores of predicted complexes from different
algorithms, using two different PPI data.

4.2 Precision, Recall and F-measure

Using MIPS PPI data, MCODE predicted 133 complexes, out of which 64 match
95 real complexes in the benchmark; MCL predicted 1160 complexes, of which
163 match 210 real complexes; CPA detected 921 complexes, of which 170 match
206 real ones and DECAFF detected 1221 complexes, of which 566 match only
152 real ones. Figure 2 shows the overall comparison using precision, recall and F-
measure. In terms of finding the most real complexes (i.e., achieving the highest
recall), MCL and CPA perform best, finding 210 and 206 real ones respectively.



Meanwhile, it is observed that DECAFF and MCODE have a higher precision
than CPA and MCL. The fact shows that a larger proportion of protein com-
plexes predicted by DECAFF and MCODE correspond to real complexes, con-
sistent with our observation that the protein complexes detected by DECAFF
and MCODE are with higher quality in figure 1. Similar results are obtained
when using DIP data. In addition, MCODE just predicts a small number of pro-
tein complexes and achieves the lowest recall, which indicates a severe limitation
of MCODE that it will result in many false negatives.
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Fig. 2. The performance comparison for various algorithms (I).

4.3 Sensitivity, Positive predictive value

Figure 3 shows the comparison among four algorithms using the evaluation mea-
sures like sensitivity, PPV and accuracy. In terms of these evaluation measures,
CPA and MCL perform better than DECAFF and MCODE as shown in Figure
3. We can roughly explain these results based on our previous observations. First,
CPA and MCL can cover more proteins as shown in table 2, which will be helpful
for increasing their sensitivity values. Second, they can indeed detect more real
complexes with higher recall as shown in figure 2, such that it is reasonable for
them to achieve higher Sn and PPV values.

4.4 Separation values

High separation values indicate that predicted complexes and real ones tend to
have one-to-one correspondences. In general, if a clustering algorithm has N,
close to Ngp, (see equation 3), it often has a high separation value. Table (3)
shows the separation values of different algorithms using MIPS PPI data. It is
quite obvious that CPA achieves the highest separation value. On the contrary,
DECAFF gains the lowest separation value since there exist cases that many
predicted complexes correspond to the same real one.

In reality, there are some pairs of protein complexes that have large overlaps.
For example, “TORC1 complex” and “TORC2 complex” have 2 common pro-
teins in figure 4; RNA Polymerase I, IT and III also have large shared subunits
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Fig. 3. The performance comparison for various algorithms (II).

Table 3. The separation values of different algorithms using MIPS PPI data.

Algorithms MCODE| MCL | CPA |DECAFF
Nep 64 163 170 566
Neyp 95 210 206 153

Complex-wise separation sep,| 0.130 | 0.323 | 0.371 0.176
Cluster-wise separation sep, | 0.418 | 0.119 | 0.172 0.062
Geometrical separation 0.233 | 0.196 | 0.253 0.104

with each other. Although DECAFF predicts protein complexes with the lowest
separation value, it therefore has the advantage that it can well separate two pro-
tein complexes with large shared subunits. When using MIPS PPI data as shown
in figure 5, a complex(ID: 1019) predicted by DECAFF can perfectly match
“TORC1 complex”; and another one (ID: 843) with four proteins (YKL203C,
YMRO68W, YNLOO6W and YOLO78W) is a sub-component of “TORC2 com-
plex”. MCODE and CPA can also partially match these two real complexes as
shown in figure 5. On the contrary, MCL has only a predicted complex (ID:
83) which contains all the five proteins in “TORC1 complex” and share 4 com-
mon proteins with “TORC2 complex”. Although some techniques can generate
overlapping clusters based on non-overlapping ones [2, 1, 9], they still can’t help
MCL to separate these two complexes.

Due to the existence of many overlapping real complexes, the separation
value is not a good measure to evaluate the quality of a clustering. However, some
clustering algorithms may generate redundant results (e.g., 3 complexes [ID: 719,
805, 1019] predicted by DECAFF match well with “TORC1 complex”.), cluster-
wise separation values would be useful for evaluating the degree of redundancy
for these algorithms.

4.5 Discussions

In this section, we conducted a comprehensive evaluation study for the four
algorithms. The experimental results show the strengthes and disadvantages of
each algorithm.
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Fig. 4. Two tor complexes [16], with proteins YKL203C and YNLOO6W in common.
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Fig. 5. Predicted complexes by different algorithms using MIPS data. Predicted com-
plexes (1), (2), (3) and (7) match “TORC1 complex”, and (4), (5), (6) and (7) match
“TORC2 complex”.

MCODE detects protein complexes that are with the highest quality, in terms
of the function and localization similarity of proteins within predicted complexes.
It also achieves the highest precision, indicating the predicted complexes are
indeed with high quality. However, it can only predicts a small number of protein
complexes, which cover the smallest fraction of proteins and interactions. This
results in its low sensitivity and many false negative predictions.

MCL predicts protein complexes with high PPV and recall values. It covers
most proteins and interactions and thus achieves the highest sensitivity score.
MCL has predicted many small clusters (i.e., protein triads with only 2 inter-
actions among them) that are generally agreed as potential false positives. It
hence reduces the overall quality of predicted complexes. However, high-quality
PPI data may help to increase its precision. In addition, MCL can’t separate
complexes that have large shared components.



CPA also achieves high PPV and recall values. In comparison, although CPA
has a lower sensitivity score, it achieves a higher F-measure and accuracy than
MCL when using MIPS PPI data and performs comparably with MCL when
using DIP PPI data.

DECAFF, like MCODE, predicts complexes with high quality and gains
a high precision and a low sensitivity value. In addition, DECAFF predicts
many more complexes than MCODE, achieving better recall and PPV values.
However, although DECAFF can separate complexes that have large shared
subunits, it generates complexes with a high redundancy.

5 Conclusions and future directions

While multiple algorithms for detection of protein complexes in PPI networks
have been proposed in recent years, different algorithms have their own strengthes
and disadvantages. In this study, we first reviewed four reputed algorithms and
then performed a comprehensive comparison among them on two different PPI
data by using various evaluation criteria.

Compared with MCL and CPA, MCODE and DECAFF predict protein com-
plexes with higher quality and achieve higher precision values and lower sensi-
tivity values. For further comparison, DECAFF performs better than MCODE
in terms of F-measure and accuracy. Unlike MCODE and DECAFF, MCL and
CPA obtain higher recall and PPV values, which indicates that they can detect
more genuine complexes. However, the overall quality of their predicted com-
plexes is not as good. In our empirical study, CPA perform slightly better than
MCL. However, If each interaction is weighted by its reliability score, MCL is
likely to obtain a better performance [3].

This comparative study suggests that new algorithms for protein complex
detection should gain high recall and PPV values like MCL and CPA, as well as
increasing the quality of their predicted complexes and achieving high precision
values like MCODE and DECAFF. In addition, based on the analysis of exper-
imentally detected protein complexes, a protein complex generally contains a
core in which proteins are highly co-expressed and share high functional similar-
ity [5]. The complex core is often surrounded by some attachments which are in
short-lived cooperation with the core. This kind of organization structure of pro-
tein complexes is also strongly supported in [11]. All current methods have not
considered the organization of complexes when detecting them. New algorithms
should also take this characteristic into consideration.
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