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Abstract

Motivation: Graphs or networks are widely utilized to model the interactions between different entities
(e.g., proteins, drugs, etc) for biomedical applications. Predicting potential interactions/links in biomedical
networks is important for understanding the pathological mechanisms of various complex human diseases,
as well as screening compound targets for drug discovery. Graph neural networks (GNNs) have been
utilized for link prediction in various biomedical networks, which rely on the node features extracted from
different data sources, e.g., sequence, structure and network data. However, it is challenging to effectively
integrate these data sources and automatically extract features for different link prediction tasks.
Results: In this paper, we propose a novel Pre-Training Graph Neural Networks based framework named
PT-GNN to integrate different data sources for link prediction in biomedical networks. First, we design
expressive deep learning methods (e.g., convolutional neural network (CNN) and graph convolutional
network (GCN)) to learn features for individual nodes from sequence and structure data. Second, we further
propose a GCN-based encoder to effectively refine the node features by modelling the dependencies
among nodes in the network. Third, the node features are pre-trained based on graph reconstruction tasks.
The pre-trained features can be used for model initialization in downstream tasks. Extensive experiments
have been conducted on two critical link prediction tasks, i.e., synthetic lethality (SL) prediction and drug-
target interaction (DTI) prediction. Experimental results demonstrate PT-GNN outperforms the state-of-the-
art methods for SL prediction and DTI prediction. In addition, the pre-trained features benefit improving
the performance and reduce the training time of existing models.
Availability: Python codes and dataset are available at: https://github.com/longyahui/PT-GNN
Contact: luojiawei@hnu.edu.cn and xlli@i2r.a-star.edu.sg

1 Introduction
Advances in biomedical research boost the enormous accumulation of
biological relational data (Su et al., 2020). Graphs (or networks) have
been extensively utilized to represent the relations (i.e., links or edges)
between biomedical entities (i.e., nodes) (Yue et al., 2020). The analysis
of biomedical networks can provide great insights into the prevention,

diagnosis, and treatment of various human complex diseases, as well as
the screening of targeted compounds for drug discovery.

Identifying the potential relations/links between biomedical entities
based on traditional wet-lab experiments often suffers from high cost
and risk. In contrast, in-silico methods of predicting potential links in
a biomedical network can be a rapid and cost-effective way to guide
the experimental methods. Recently, biomedical network analysis has
attracted much attention and a large number of computational methods
have been developed to address various important link prediction tasks,
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such as drug-target interaction (DTI) prediction (Liu et al., 2016), synthetic
lethality (SL) prediction (Cai et al., 2020) and lncRNA/miRNA/circRNA-
disease association prediction (Chen et al., 2017a, 2019; Wang et al., 2021).
We can classify these computational methods into three main categories,
i.e., diffusion-based methods, matrix factorization (or completion)
methods and graph neural network (GNN) methods.

In particular, diffusion-based methods leverage random walks
(Codling et al., 2008) to fully exploit the topological structure information
of biomedical network to infer potential links. For example, Chen et al.
(2017b) developed a Katz-measure-based computational method to predict
potential microbe-disease associations by calculating the number of walks
between nodes and walk lengths in bipartite network. Chen et al. (2018a)
developed a bipartite network projection-based method named BNPMDA
to infer latent microRNA-disease associations by fully considering the bias
preference degree of a node for different neighbors. Zong et al. (2017)
proposed a similarity-based method to predict drug-target associations. In
addition, Luo and Long (2020) constructed a heterogeneous network, and
further proposed a random walk-based model to predict microbe-disease
associations, which uses network topological similarity to influence the
walking preference of the walker.

Matrix factorization has shown promising performance in exploring
intrinsic structure of various data and achieved success in various link
prediction tasks, such as DTI prediction and SL prediction. The main
idea behind matrix factorization is to learn node representations by
exploring the latent patterns of interactive node pairs. For example,
Zheng et al. (2013) developed a collaborative matrix factorization method
to predict drug-target interactions. Liu et al. (2016) proposed a novel
neighborhood regularized logistic matrix factorization method for drug-
target prediction. Following that, Liu et al. (2019) further extended
logistic matrix factorization to predict synthetic lethality interactions.
Chen et al. (2018b) proposed an inductive matrix completion method
for miRNA-disease association prediction. Zhang et al. (2020) developed
a regularized generalized matrix factorization model called GRGMF
for link prediction in various biomedical bipartite networks, e.g., DTI
prediction and miRNA-disease association prediction. More recently,
a logistic matrix factorization-based method was proposed to predict
metabolite-disease interactions (Ma and Ma, 2021).

Graph neural networks, such as graph convolutional networks (GCNs)
(Kipf and Welling, 2017) and graph attention networks (GATs) (Veličković
et al., 2018), have recently shown powerful capability in modeling graph-
structured data. The main purpose of GNN-based methods is to learn
node representations for downstream tasks, which preserve structural
information of nodes. For example, Long et al. (2020b) proposed a
novel GCN-based method named GCNMDA to predict microbe-drug
associations by using a GCN to aggregate representations of neighbors.
After that, Long et al. (2020a) proposed another GAT-based model
for microbe-drug association prediction by leveraging GAT to capture
hierarchical structure information. Liu et al. (2021a) proposed to use GCN
to encode PPI network and protein-phenotype bipartite network to refine
features for protein-phenotype association prediction. Nguyen et al. (2021)
presented a novel framework for drug-target binding affinity prediction by
using GNNs to encode drug structures. Fu et al. (2021) proposed a novel
multi-view GCN model for three link prediction tasks.

In addition to the network data, other biological data sources (e.g.,
protein sequence data, drug structure data, gene ontology annotations,
etc) are also valuable for link prediction tasks involving proteins or
drugs. However, network-based methods mentioned above have different
issues to integrate other data sources for link prediction. First, diffusion-
based methods are usually not able to integrate the data sources other
than network data. Second, matrix factorization methods need to first
calculate the similarity matrices based on features manually extracted
from other data sources (Zheng et al., 2013; Liu et al., 2016), and then

define regularization terms based on the similarity matrices to improve
the performance for link prediction. Third, GNN methods can take the
node features, which are manually extracted from other data sources, as
inputs for link prediction (Long et al., 2020a,b). However, such manual
feature extraction requires domain-specific knowledge. In addition, most
of methods above are designed for single link prediction task, which
limits their applications. And many of these methods calculate similarity
matrix as input features depending on known associations and thus have to
recalculate features when new nodes (i.e., proteins or drugs) are introduced.

To address the above issues, we propose a generic pre-training
model, as shown in Figure 1, to integrate different data sources for link
prediction in biomedical networks. Our model consists of the following
key components. First, we leverage biological data to construct interaction
networks for nodes (e.g., proteins and drugs). We then implement
expressive CNN or GNN methods to capture node features, e.g., from
protein sequence data and drug structure data. Second, with the networks
and node features as inputs, we further design a GCN-based interaction
graph encoder to effectively preserve the dependencies between nodes to
refine node features, which are transferable to different downstream tasks.
Third, the model is pre-trained based on the graph reconstruction tasks.
Extensive experiments were conducted on two link prediction tasks, i.e.,
SL prediction and DTI prediction. Experimental results demonstrate that
our PT-GNN model outperforms state-of-the-art methods for SL prediction
and DTI prediction. In addition, the node features pre-trained by our
PT-GNN model are proved to be effective and can help to improve the
performance and reduce the training time for existing models.

Overall, our main contributions are summarized as follows:

• A generic pre-training graph neural network framework called PT-
GNN was proposed for link prediction in biomedical networks. To the
best of our knowledge, this is the first study in the area of pre-training
graph neural network model for biomedical link prediction.

• To enhance link prediction performance, we fully leveraged rich
biological data, including protein sequences, drug molecular
structures and their networks (e.g., protein-protein interaction (PPI)
network and drug-drug interaction (DDI) network), to learn their
features in our pre-training model. Moreover, the pre-trained features
can provide the existing models in the downstream tasks with
high-quality initialization to improve their performance.

• To validate the effectiveness of our model, we conducted extensive
experiments on two critical link prediction tasks, i.e., SL prediction
and DTI prediction. The results demonstrated that our proposed PT-
GNN model outperformed state-of-the-art methods and the pre-trained
features benefited existing downstream task models.

2 Related work
In this section, we first present some backgrounds about graph neural
networks, and then introduce pre-training and its applications in biological
domains.

2.1 Graph neural networks

Graph neural networks have shown powerful capability in modeling graph-
structured data. In particular, the GCN, proposed by Kipf and Welling
(2017), aims to learn node representations by aggregating the features of
neighbours. Due to its great performance, GCN has attracted increasing
attention and achieved remarkable success in various research domains,
such as text classification (Yao et al., 2019), recommender system (Liu
et al., 2020) and computer vision (Dhingra et al., 2021). The GAT
(Veličković et al., 2018) is an extension of GCN, which focuses on more
important neighbors by assigning greater weight values to them. Such
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Fig. 1. The overall architecture of PT-GNN for link prediction in biomedical networks. (a) Overall framework of our PT-GNN model. It consists of three main steps. The first step is to
encode node attribute information to initial features. The second step aims to learn node representations. The third step is to reconstruct interactive graph for link prediction. (b) Protein
sequence encoder to learn initial features for proteins. (c) Drug molecule structure encoder to learn initial features for drugs.

operation enables the model to learn more informative representations. The
GAT has attained wide applications on various tasks, such as computer
vision systems (Mi and Chen, 2020), recommender systems (Liu et al.,
2021c) and bioinformatics (Long et al., 2020a).

2.2 Pre-training

Pre-training is a type of transfer learning that aims to transform knowledge
from a full domain to domain-specific tasks. Pre-training can provide a
model with high-quality initialization and thus enhance its performance.
In addition, it accelerates model convergence during training.

More recently, pre-training has achieved significant success in multiple
domains, such as natural language processing (Devlin et al., 2019; Qian
et al., 2021), computer vision (Li et al., 2020) and bioinformatics (Hu et al.,
2020b; Lu et al., 2021). Meanwhile, several pre-training models have been
proposed to address biological tasks. For example, Navarin et al. (2018)
developed a task-independent pre-training method that combines GNN
with graph kernels to predict chemical compounds carcinogenicity. Hong
et al. (2020) proposed a pre-training model named EPIVAN for enhancer-
promoter interaction prediction. Hu et al. (2020a) developed a novel pre-
training graph neural network model for protein function prediction, which
pre-trains GNNs in a self-supervised way to learn protein features for
protein classification tasks. Strodthoff et al. (2020) released a universal
deep sequence model, which pre-trains the model on unlabeled protein
sequences and fine-tunes it on protein classification tasks. Zhu et al. (2021)
presented a graph neural networks based framework for drug response
prediction, which uses pre-training strategy to learn drug features from
large-scale molecular datasets. In this paper, we focus on pretraining graph
neural networks for link prediction in biomedical networks.

3 Methods
This work focuses on pre-training the protein and drug representations
that can fully exploit the protein and drug attribute information, as well
as the PPI data and the DDI data, to benefit downstream tasks such as SL
prediction and DTI prediction. Figure 1(a) shows the framework of the
proposed pre-training model, which contains three main components: 1)
node feature initialization, 2) GCN-based interaction graph encoder, and
3) interaction graph reconstruction. Before we detail each component in
this section, we provide a preliminary background.

3.1 Preliminaries

We construct two graphs for proteins, namely the PPI graph Gp and
the GO (Gene Ontology) graph Gg. Firstly, we leverage PPI data to
build a PPI graph Gp = {Vp, Ep}, where Vp ∈ RNp denotes the
set of Np protein nodes and Ep denotes the set of edges describing the
interactions between proteins. Meanwhile, following Peng et al. (2016),
we calculate semantic similarity matrix for proteins based on their GO
terms. To extract more important interactive pairs, we implement random
walk with restart (RWR) algorithm on the similarity matrix and then
construct a protein GO similarity graph Gg = {Vg, Eg}, by selecting
the top-t neighbors as interaction pairs for a given protein. More details
for GO graph construction can be found in the supplementary file. Here
we use protein sequence data as protein attribute information. Finally,
we develop a convolutional neural network based encoder to learn initial
protein features from the sequence data, as is shown in Figure 1(b).

We utilize DDI data to construct a DDI graph Gd = {Vd, Ed} for
drugs, where Vd ∈ RNd denotes the set ofNd drug nodes and Ed denotes
the set of edges describing the interactions between drugs. For each drug,
we consider its molecule structure as attribute information. Subsequently,
we develop a graph convolutional network based encoder to learn drug
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initial features by fully considering DDI graph data and drug molecule
structure information, as is shown in Figure 1(c).

3.2 Node Feature Initialization

In this section, we present the details of the protein sequence encoder and
drug structure encoder, which are used to extract the initial features for
proteins and drugs, respectively.

3.2.1 Protein Sequence Encoder
Protein sequences contain rich knowledge, which has been demonstrated
by previous methods (Lee et al., 2019; Nguyen et al., 2021). Convolutional
neural networks are able to learn high-order protein features from
their sequences for various applications, such as DNA-protein binding
prediction (Zeng et al., 2016) and drug-target interaction prediction
(Nguyen et al., 2021). Following Nguyen et al. (2021), we adopt CNN
to encode protein features from sequence data. In particular, for a protein
sequence sp, we firstly split it into a set of overlapping n-gram amino acid
segments with r as the size of sliding window. For example, the sequence
‘ARKMPN’ can be split into ‘ARK’, ‘RKM’ ,‘KMP’, and ‘MPN’, when
n and r are set to 3 and 1 respectively. Assume that a n-gram amino
acid segment is considered as a word, and each word is represented by a
d1-dimension feature vector (empirically, we set d1 as 100). The feature
vectors of all words is denoted by Fw ∈ RNw×d1 , whereNw denotes the
number of all possible words (i.e., corpus) in the dataset, and each row of
Fw is the feature vector of a possible word. Note that instead of invariant
features, the word feature matrix Fw is set as a trainable parameter matrix,
which is randomly initialized and can be updated in the pre-training phase
for more accurately capturing the intrinsic features of sequences.

After transforming protein sequences into words, we further design
a CNN-based encoder to learn protein initial features. Specifically, as
shown in Figure 1(b), we first convert a protein sequence sp into a
feature matrix Mp, where each row denotes a d1-dimension word feature
vector. Then the feature matrix is fed into a two-layer convolutional neural
network, including a 1D convolutional layer and a max-pooling layer. The
convolutional layer is designed to learn local features, and the max-pooling
layer aims to reduce dimension. Note that the average length of sequences
of all proteins used in our experiments are 558. As the convolutional layer
requires the same length of inputs, we set the maximal length of sequence
to 800. The sequences with length less than 800 are padded with null label
(i.e., Z). In the encoder, we use 16 filters with a kernel size of 10 in the
convolutional layer. This indicates that the model will learn 16 different
features for each sequence.

Following that, with the outputs of the convolutional layer as inputs, we
further perform a max-pooling layer to reduce the feature dimension. Here
both the pooling window size and stride are set to 60. As the outputs of
the max-pooling layer, we can derive a feature vector preserving sequence
semantic information for the input protein. Subsequently, we can obtain a
feature matrix Xp ∈ RNp×d1 for all proteins by applying this sequence
encoder on all protein sequence data.

3.2.2 Drug Molecular Structure Encoder
The molecular structures are important components to achieve chemical
functions of drugs. Essentially, the molecular structure of a drug d can
be described by a graph Ga = (V a, Ea), where V a ∈ RNa represents
the set of Na nodes (i.e., atoms) and Ea represents the set of edges (i.e.,
bonds). The adjacency matrix of this graph is denoted by Aa ∈ RNa×Na .
Moreover, we denote the feature matrix of all atoms by Fa ∈ RNa×d2 ,
where each row of Fa denotes the feature vector of an atom and d2

represents the atom feature dimension.

As mentioned above, graph convolutional networks, as a typical
graph neural networks, have powerful capability in modeling graph-
structured data and achieve wide applications in various fields, such as text
classification (Yao et al., 2019), recommender system (Liu et al., 2020).
Thus, here we implement a graph convolutional network on the molecular
graph Ga to learn the initial feature for drug d. As a single-layer GCN
can only capture limited features from one-hop (or immediate) neighbors,
we design a multi-layer GCN on the molecule graph Ga to aggregate the
features of multi-hop neighbors. More specifically, the k-th GCN layer
can be formulated as follows,

Ra
(k) = ReLU

(
ÃaRa

(k−1)W
(k−1)
1 + b

(k−1)
1

)
, (1)

where Ãa = Da
− 1

2 AaDa
− 1

2 is a normalized adjacency matrix.
Da is a diagonal matrix with the diagonal element being Da(i, i) =∑Na
j=1 Aa(i, j). W(k−1)

1 and b
(k−1)
1 are the trainable weight matrix and

bias vector respectively. ReLU(·) is the Rectified Linear Unit activation
function. Ra

(k) denotes the feature matrix of atoms at the k-th layer. Note
that Ra

(0) is the original feature matrix Fa of atoms. AfterK GCN layers,
we can obtain the atom representations Ra

(K).
To learn the drug feature, we further implement a max-pooling layer on

Ra
(K) to form the initial feature vector xd ∈ R1×d2 for the drug d. Here,

we set the size of pooling window as the number of atomsNa, and set the
step size to 1. By applying the drug structure encoder on the molecular
structures of all drugs, we can derive a feature matrix Xd ∈ RNd×d2 for
all drugs. In the experiments, we empirically set K to 2.

In the literature, there are several existing studies (Öztürk et al., 2018;
Lee et al., 2019) that use drug molecular structure information to learn
representations for drugs. However, most of them use fixed invariant values
(e.g., one-hot encoding) to initialize atom features. Thus, they cannot
adaptively learn the structure features of drugs. Instead of setting invariant
values, we treat the atom feature matrix Fa as trainable parameters, which
are randomly initialized and would be learned through graph structure
reconstruction. Such operation enables the proposed model to flexibly
learn the properties of molecular structures.

3.3 GCN-based Interaction Graph Encoder

In Section 3.2, we make full advantage of the protein and drug attribute
information to extract initial features Xp and Xd for proteins and drugs,
respectively. As shown in Figure 1(a), a GNN-based interaction graph
encoder is then designed to exploit the structures of the protein/drug
interaction graph for learning the protein/drug representations. Note that
this interaction graph encoder is a unified structure that can be used to
learn both the protein and the drug representations, while it takes different
input interaction graph and initial features for drugs and proteins. In the
following sections, we only describe the operations for learning protein
representations with input graph Gp and initial node features Xp.

Let us denote the PPI graph as Gp = {Vp, Ep}. For a node υi in Gp,
the main purpose of the graph encoder is to learn its representation by
iteratively aggregating the representations of its neighbors. Formally, the
`-th layer of a GNN-based graph encoder is as follows,

h
(`)
i = AGGREGATE

({
h

(`−1)
j : υj ∈ Ni

})
, (2)

where h
(`−1)
j denotes the feature representations of the node υj at the

(`−1)-th layer, andNi denotes the first-hop neighbors of υi in the graph.
Note that Ni also includes υi in this work. AGGREGATE(·) denotes
aggregator function, which can be defined by various different graph neural
architectures, such as GCN and GAT.
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In this work, we leverage GCN as the aggregator function to integrate
the representations of nodes in the interaction graph. The `-th layer of the
graph convolutional network can be formulated as follows,

Hp
(`) = ReLU

(
ÃpHp

(`−1)W
(`−1)
2 + b

(`−1)
2

)
, (3)

where Ãp is the normalized diagonal adjacency matrix with self-
connection, Hp

(`−1) denotes the outputs of the model at the (` − 1)-th
layer. Note that Hp

(0) is defined as the input feature matrix Xp. Moreover,
W`−1

2 and b`−1
2 are trainable weight matrix and bias vector respectively.

After L GCN layers, we adopt the output of the last layer as the final
representations of proteins Hp ∈ RNp×d3 , where d3 denotes the
dimension of the protein representations.

Note that Hp is the protein representations obtained from the PPI
graph Gp with node features Xp. Similarly, we can obtain the protein
representations Hg ∈ RNp×d3 from the protein GO graph Gg with node
features Xp, and the drug representations Hd ∈ RNd×d3 from the DDI
graph Gd with node features Xd.

3.4 Model Optimization

The proposed model is pre-trained with the graph structure reconstruction
task. More specifically, for a given input interaction graph G with the
adjacency matrix A and the output of the GCN-based graph encoder H,
we reconstruct the adjacency matrix in Eq. (4) and derive the reconstruction
loss in Eq. (5),

P = ReLU
(

HH>
)
, (4)

L =
∑

(i,j)∈Ω+∪Ω−

Φ

(
P(i, j),A(i, j)

)
+ δ
∥∥Θ∥∥2

F
, (5)

where ReLU is activation function, and P is the reconstructed score matrix
where each element describes the interaction score for a node pair (e.g.,
protein-protein pair). Θ is the parameter matrix of the pre-training model.
δ is weight factor that is used to control the influence of Θ on our model.
In addition, Φ(·) is the MSE (i.e., mean square error) loss. We employ the
Adam optimizer (Kingma and Ba, 2015) for the optimization. Note that
when pre-training the protein and drug representations, the parameters of
the protein sequence encoder and the drug molecule structure encoder are
also updated simultaneously. In this work, for better training, we adopt a
negative sampling strategy to train our model. Ω+ and Ω− represent the
sets of positive and negative samples for model training, respectively.

3.5 Link prediction

After training our model, we can derive the pre-trained node
representations. Specifically, the pre-trained representations can be used
as input features of link prediction models. In this paper, we feed the pre-
trained representations into a two-layer predictor (as shown in Figure 1(a)),
consisting of a GCN layer and a MLP (Multi-Layer Perception) layer,
for link prediction. Also, we can use the pre-trained representations to
initialize other models in downstream link prediction tasks. Note that the
parameters in the protein sequence encoder and drug structure encoder are
fixed when the pre-trained representations are used as the inputs of either
the predictor or the model in downstream tasks.

4 Experimental Results
In this section, we first present the experimental settings, and then conduct
extensive experiments to demonstrate the performance of our model for
two downstream tasks, i.e., SL prediction and DTI prediction.

4.1 Experimental setups

4.1.1 Datasets
SL prediction. To pre-train protein features, we first downloaded
the whole genome sequences of 20,375 human proteins from Uniprot
(Consortium, 2019). Moreover, we constructed two gene-gene interaction
graphs from PPI and Gene Ontology (GO) data, respectively. In particular,
we collected 383,122 interactions associated with these 20,375 proteins
from the latest version of BioGrid (Oughtred et al., 2019), which was used
to construct PPI graph. In addition, we first downloaded the ontology and
annotation files from http://geneontology.org/. Then a semantic similarity
matrix was calculated based on the sub-ontology “biological process
(BP)”. Given a node, we further prioritized all the neighbors according
to their similarity scores and selected the top-t neighbors to construct
the GO similarity graph. We empirically set t as 50. As a result, the
GO similarity graph (or GO graph for short) contains 917,393 interactions
between 20,375 proteins. For the first downstream task, i.e., SL prediction,
we utilized SL pairs derived from SynLethDB (Guo et al., 2016) to
construct a SL graph, which includes 19,667 SL interactions between
6,375 genes. Note that during pre-training we use PPI and GO graphs as
two different views to learn protein representations. Here we use factor λ
to weight the influences of PPI and GO graphs on our model, respectively.
More specifically, during pre-training, we assume that two graph-specific
representations (i.e., Hp and Hg) are derived for proteins when the PPI
and GO graphs are fed into the model respectively. Therefore, the final
protein representations are formulated as H = λHp + (1− λ)Hg.
DTI prediction. We collected 1,113,252 drug-drug interactions (DDI)
involving 3,543 drugs from Drugbank (Wishart et al., 2018) to learn drug
representations. Meanwhile, we downloaded the SMILES (Simplified
Molecular Input Line Entry System) for these 3,543 drugs from Drugbank
to construct their drug molecule graphs. We first extracted the initial
features for drugs from their SMILES data via the molecular graph encoder,
and then pre-trained drug features from DDI graph via the GCN-based
interaction graph encoder. For the second downstream task, i.e., DTI
prediction, we derived drug-target interaction data from Drugbank. In
particular, we selected 9,679 drug-target interactions between 1,971 drugs
and 1,899 targets on condition that drugs/targets have SMILES/sequences.
Overall, the statistics of the datasets above are shown in Tables 1 and 2.

Table 1. The dataset statistics for synthetic lethality prediction.

Graphs # Proteins # Interactions

Pre-train
PPI 20,375 383,122

GO 20,375 917,393

Prediction PPI 6,375 19,667

Table 2. The dataset statistics for drug-target prediction.

Graphs Drugs # Targets # Interactions

Pre-train DDI 3,543 - 1,113,252

Prediction DTI 1,971 1,899 9,679

4.1.2 Experimental settings
In this work, we conducted 5-fold cross validation (CV) to evaluate the
performance of our model. Specifically, taking SL as example, we first
randomly divide all known SL pairs into five groups. Then one group of
SL pairs are in turn selected for model testing while the rest of SL pairs
are used for model training. Following previous methods (Öztürk et al.,
2018; Long et al., 2020b), we adopt a negative sampling strategy to better
train the model. Negative SL pairs are randomly sampled from unknown
SL pairs and the same numbers of negatives and positives are used for
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model training (including pre-training and downstream task) and testing.
We adopt two well-known metrics for performance evaluation, i.e., area
under ROC curve (AUC) and area under precision recall curve (AUPR).
To offset the bias of random division, we repeat each experiment for 10
times and take their average as final AUC and AUPR values.

For the pre-training of both proteins and drugs, the training epoch is
set to 200 and the learning rate is set to 0.005. To learn initial features for
proteins, the length of amino acid segment n and sliding window size r
are set as 3 and 1 respectively. Since there are totally 20 types of amino
acids, the number of corpus Nw is 8001 (including one null label ‘Z’). In
the drug structure encoder, we set the number of GCN layers as 2. The
dimensions of hidden layers are set to 256 and 128 (i.e., d2) respectively.
While the above parameters are empirically set, we also make parameter
analysis for several other important parameters, including the dimension of
representation d3, the number of layers in the GCN-based graph encoder
L and weight factor λ, in the following sections.

4.1.3 Baseline methods
In this work, we validate the performance of our model via two tasks,
i.e., SL prediction and DTI prediction. We introduce eight state-of-the-art
baseline methods for SL prediction as follows:

• SL2MF (Liu et al., 2019) proposes a logic matrix factorization-based
method to identify SL pairs.

• GRSMF (Huang et al., 2019) is a graph regularized self-representative
matrix factorization algorithm for SL prediction.

• GCATSL (Long et al., 2021) is a novel graph attention network-based
model developed for SL prediction.

• SLMGAE (Hao et al., 2021) is a multi-view graph auto-encoder based
method to predict SL pairs.

• DDGCN (Cai et al., 2020) presents a dual-dropout graph convolutional
network model for SL prediction.

Meanwhile, we introduce five state-of-the-art deep learning methods
for DTI prediction as follows:

• NeoDTI (Wan et al., 2019) develops an end-to-end deep learning
model to predict drug-target interactions by integrating heterogeneous
biological data.

• DeepDTA (Öztürk et al., 2018) is a deep learning model that uses
drug structures and proteins sequences to predict drug-target binding
affinity.

• MolTrans (Huang et al., 2021) is a Transformer-based framework for
DTI prediction.

• DeepConv-DTI (Lee et al., 2019) uses convolutional neural network
to learn representations to predict drug-target interactions.

• GraphDTA (Nguyen et al., 2021) proposes a graph neural network
based method for drug-target binding affinity prediction.

For all the above methods, we adopt the default parameters from their
original implementations. The introduction of original features for each
method can be found in supplementary file. Note that GCN and GAT are
used as baselines for both SL and DTI prediction tasks.

4.2 Performance evaluation

In this section, we evaluate the performance of our pre-training model on
two downstream tasks, i.e., SL prediction and DTI prediction.

4.2.1 SL prediction
In this section, we evaluate our model on SL prediction task. Table 3 shows
the comparison results of various methods on SL prediction task. We can
observe PT-GNN outperforms baseline methods consistently. Particularly,

PT-GNN achieves an average AUC of 0.9525±0.0022 and an average
AUPR of 0.9551±0.0007, which are 1.6% and 0.72% higher than that of
the second-best method GCATSL. The results in Table 3 indicates that our
proposed PG-GNN model is effective in predicting potential SL pairs.

To demonstrate the effectiveness of the pre-trained features, we
compare the performance of different methods on SL prediction task by
using original features (i.e., features used in baseline methods) and pre-
trained features as their inputs respectively. It can be found from Table
4 that the pre-trained features are able to improve baseline methods. For
example, GCATSL with pre-trained representations obtains an average
AUC of 0.9576 and average AUPR of 0.9620, which are 2.14% and 1.44%
higher than its original model. These results demonstrate that the pre-
trained features learned from sequence data, PPI and GO networks are
effective and informative. In particular, DDGCN does not integrate any
data sources other than the SL graph and thus the pre-trained features
can significantly improve its performance. Meanwhile, other methods
already exploit additional data sources, e.g., GCATSL and SLMGAE
utilize PPI and GO graphs, and GCN and GAT utilize PPI network as
original inputs. Therefore, their performances with original features are
already very good. Nevertheless, the pre-trained features, which effectively
integrate protein sequence data and PPI/GO network data, can still improve
their performance.

Table 3. Performance comparison of PT-GNN with baseline methods on SL
prediction in 5-fold CV. The best results are marked in bold and the second best
is underlined.

Methods AUC AUPR

SL2MF 0.8454±0.0109 0.8986±0.0059

GRSMF 0.8853±0.0021 0.9187±0.0006

GCATSL 0.9375±0.0024 0.9483±0.0018

SLMGAE 0.9140±0.0049 0.9405±0.0030

DDGCN 0.8796±0.0080 0.9161±0.0046

GCN 0.9083±0.0034 0.9203±0.0027

GAT 0.8964±0.0136 0.8981±0.0157

PT-GNN 0.9525±0.0022 0.9551±0.0007

Table 4. Performance comparison of baseline methods with different feature
initialization on SL prediction in 5-fold CV.

Method Feature Epoch AUC AUPR

SL2MF
Original 200 0.8454±0.0109 0.8986±0.0059

Pre-trained 100 0.8553±0.0065 0.9017±0.0048

GRSMF
Original 200 0.8853±0.0021 0.9187±0.0006

Pre-trained 100 0.9252±0.0054 0.9417±0.0041

GCATSL
Original 600 0.9375±0.0024 0.9483±0.0018

Pre-trained 100 0.9576±0.0016 0.9620±0.0018

SLMGAE
Original 300 0.9140±0.0049 0.9405±0.0030

Pre-trained 200 0.9279±0.0040 0.9465±0.0032

DDGCN
Original 2000 0.8796±0.0080 0.9161±0.0046

Pre-trained 10 0.9204±0.0103 0.9305±0.0075

GCN
Original 200 0.9083±0.0034 0.9203±0.0027

Pre-trained 100 0.9286±0.0056 0.9345±0.0052

GAT
Original 200 0.8964±0.0136 0.8981±0.0157

Pre-trained 100 0.9087±0.0091 0.9097±0.0130

In addition, we analyse the influences of our pre-trained features on
the training time of various baseline models. As shown in Table 4, all
the methods with pre-trained features take less epochs than using original
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features. Therefore, we can conclude that our pre-training model is helpful
to reduce the training time of various baseline models.

4.2.2 DTI prediction
For further validating the performance of PT-GNN, we compare our model
with state-of-the-art methods on DTI prediction. In particular, we first pre-
train our model on DDI graph to derive drug representations while on PPI &
GO graphs to derive protein representations. Similar to SL prediction task,
we treat the learned representations as inputs of the predictor mentioned
above to predict DTI. Here both GCN and GAT use drug structure similarity
and target sequence similarity as input features. Table 5 indicates that PT-
GNN performs better than all baseline methods in terms of AUC and
AUPR. Specifically, PT-GNN attains average AUC of 0.9131±0.0052
and average AUPR of 0.9245±0.0057. The results demonstrate our pre-
training model has powerful ability in identifying novel DTI. In our
pre-training model, we consider simultaneously the interaction graphs and
attributes for proteins and drugs to learn their representations. In particular,
we integrate multiple sources of biological data (e.g., protein sequences,
PPI and GO annotations) to refine the features for proteins. Besides, we
take into account full domain knowledge (e.g., all sequences of human
proteins ) to learn protein features. This is the main reason why our PT-
GNN model outperforms baseline methods. Note that since GraphDTA
uses different methods (e.g., GCN and GAT) to encode drug structures,
Table 5 includes four variants of GraphDTA.

Table 5. Performance comparison of PT-GNN with baseline methods on DTI
prediction in 5-fold CV. The best results are marked in bold and the second best
is underlined.

Methods AUC AUPR

NeoDTI 0.8343±0.0103 0.8497±0.0091

DeepDTA 0.8466±0.0068 0.8368±0.0096

MolTrans 0.8791±0.0134 0.8618±0.0172

DeepConv-DTI 0.9070±0.0065 0.8982±0.0034

GraphDTA-GCN 0.8632±0.0108 0.8261±0.0094

GraphDTA-GIN 0.8815±0.0156 0.8652±0.0103

GraphDTA-GAT 0.8476±0.0171 0.8138±0.0087

GraphDTA-GAT_GCN 0.8746±0.0135 0.8293±0.0157

GCN 0.8908±0.0073 0.8961±0.0068

GAT 0.8564±0.0092 0.8720±0.0093

PT-GNN 0.9131±0.0052 0.9245±0.0057

Here the baseline methods including DeepDTA, MolTrans, DeepConv-
DTI and GraphDTA, take the drug structures and target sequences as inputs
to learn the features for drugs and targets respectively. Therefore, the
pre-trained features cannot be used to initialize these baselines, and we
are not able to run these baselines under different initialization settings
(e.g., original features vs. pre-trained features as shown in Table 4).
Nevertheless, Table 5 shows that the pre-trained features for drugs and
proteins are informative and effective for DTI prediction.

4.3 Ablation study

Recall that we use two types of data sources (i.e., PPI and GO) to construct
graphs for proteins to pre-train our model. Here we conduct ablation studies
to measure their influences on our pre-trained model for SL prediction.

Fig. 2 show that the methods, which use pre-trained features learned
from PPI and GO, consistently outperform the original methods in terms
of AUC and AUPR, indicating that both PPI and GO can contribute to
enrich the protein features. Moreover, all the methods also achieve higher
AUC and AUPR values when using the pre-trained features learned from

either PPI or GO network than their original methods. Finally, we can
conclude that both PPI and GO networks are important for pre-training
protein features.

4.4 Parameter analysis

There are several important parameters that influence the performance of
our model, such as the dimension of representation d3 in the GCN-based
interaction graph encoder, the number of GCN layers in the interaction
graph encoder L and weight factor λ. Here, we fine-tune the pre-trained
model with different parameter values to analyze their impacts for the task
of SL prediction.

The representation dimension d3 is important to our model. We select
its values from {16, 32, 64, 128, 256, 512, 1024}. As shown in Figure 3
(a), a small or large value of representation dimension d3 is not good for
the model performance and the best performance is achieved when d3 is
set to 128. In the GCN-based interaction graph encoder, the number of
layersL determines the aggregation of neighbors’ features. To evaluate its
influences on our pre-training model, we change its value from 1 to 5 with
a step size of 1. It can be observed in Figure 3 (b) that as L increases, the
performance first increases and then decreases. In particular, our model
achieves the best performance whenL is set as 2. We note that more layers
do not help improve the performance. This is because too many layers can
lead to the problem of “over-smoothing", which is faced by most of GNN
models (Chen et al., 2020).

In addition, weight factor λ controls the contributions of two different
gene interaction graphs (i.e., PPI graph and GO graph). To determine its
influences, we evaluate our model by ranging its value from 0 to 1 with a
step value of 0.1. It should be noted that λ = 0 means only GO similarity
data are used for pre-training and λ = 1 means only PPI data are used for
pre-training. The results in Figure 3 indicate that our pre-training model
is relatively robust against λ, and thus we set it as 0.5 in our experiments.

5 Conclusion and Future Work
In this work, we propose a novel universal pre-training framework based on
graph neural networks for critical link prediction in biomedical networks
- this is the first work in this area. Firstly, we leverage multiple sources of
biological data to construct interaction graphs for nodes (i.e., proteins and
drugs). In particular, we introduce CNN to capture latent features of protein
sequences to generate initial features for proteins. Meanwhile, we adopt
GCN to model drug molecular structures and learn initial drug features.
Secondly, with the interaction graphs and initial features as inputs, we
further design a GCN-based interaction graph encoder to aggregate the
features of a node and its neighbors in the graph. Finally, our model
is pre-trained on graph reconstruction tasks. We conducted extensive
experiments on two important downstream tasks, i.e., SL prediction
and DTI prediction, experimental results demonstrate our pre-trained
model outperforms existing state-of-the-art techniques significantly for
both tasks, in term of both accuracy and efficiency. Moreover, the node
features pre-trained from our PT-GNN model are able to improve the
performance and reduce training times for existing models in downstream
link prediction tasks.

While our pre-trained model achieves great performance, there are still
some limitations expected to be addressed. First, the node representations
learned based on graph reconstruction task are sub-optimal, as the known
ground truth data are sparse. In the future, we would combine with self-
supervised learning and integrate more prior domain knowledge to learn
more valuable and robust node representations. In particular, we can further
enrich the representations of drugs and proteins by fully exploiting cell line
data containing gene-drug association patterns (Chi et al., 2021; Liu et al.,
2021b). Second, since our PT-GNN model has better performance on SL
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(a) AUC (b) AUPR
Fig. 2. Comparison between different methods with their variants on SL prediction in terms of AUC and AUPR. ‘Original’ refer to using default features. ‘PPI’, ‘GO’, and ‘PPI + GO’ refer
to using the features pre-trained on PPI graph, GO graph and both graphs respectively.
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Fig. 3. Parameter sensitivity analysis for our pre-training model in terms of dimension of representation d3 , number of layers of encoder L and weight factor λ.

prediction and DTI prediction than state-of-the-art methods, it is desirable
to predict novel SL pairs and DTI pairs with PT-GNN and then collaborate
with biologists to validate them.
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