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Abstract

Studies, with the increasing concern for mental health, have shown that inter-
ventions along with social support can reduce stress and depression. However,
counselling centers do not have enough resource to provide counselling and social
support to all the participants in their interest. This paper helps social support orga-
nizations (e.g., university counselling centers) sequentially select the participants
for interventions. Meanwhile, Deep Reinforcement Learning (DRL) has shown
significant success in learning an efficient policy for sequential decision-making
problems in both fully observable environments and partially observable environ-
ments with small action space. In this paper, we consider emotion propagation
from other neighbours of the influencees, initial uncertainties of mental states and
influence in the student network. We propose a new architecture called DRLPSO
(Deep Reinforcement Learning with Particle Swarm Optimization) to enhance
learning performance in a partially observable environment with large state and
action space. DRLPSO consists of two stages: the Discrete Particle Swarm Opti-
mization (DPSO) and Deep Q-learning integrated with Long Short-Term Memory
(DQ-LSTM). In the first stage, we apply DPSO by initializing n particles that
converge to multiple optimal actions for each belief state. In the second stage,
the action with the best Q-value from the DPSO action set is executed to obtain
belief and observation (history of action). We evaluated the proposed method em-
pirically with the simulated student networks with mental state propagation com-
pared to the state-of-the-art algorithms. The experimental results demonstrate that
DRLPSO outperforms the state-of-the-art DRL methods by an average of 32%.
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1. Introduction

According to the World Health Organization (WHO), mental health has be-
come a significant concern with the estimates of more than 350 million people
worldwide are affected by depression. Studies have shown that interventions and
social support can reduce stress and depression. In this study, we aim to address
a practical and critical decision-making problem in our society - students, in par-
ticular, undergraduate or graduate students, face more depression and stress in the
current very competitive environment. However, we have limited resources (such
as counselling services), to provide intervention for alleviating this serious prob-
lem. In our study, we formulate this problem as a dynamic influence maximization
problem that has uncertain initial mental states and relationships/connections be-
tween students that are only updated with the observations obtained along with
the interventions. We focus on handling such a dynamic influence maximization
problem using Deep reinforcement learning (DRL) which adapts the students’
changing mental states and connections in a dynamic environment.

DRL has shown great success in solving problems with uncertainty and high
dimensional state space such as continuous control [1, 2] and Atari Learning En-
vironment (ALE) [3]. In the literature, the mentioned problem is formulated as
Partially Observable Markov Decision Process (POMDP) where the state of the
environment is uncertain, partially observable or even cannot be observed, and ar-
bitrarily long histories of observations are needed to extract sufficient features for
optimal action selection [4]. The authors solved it by designing a POMDP solver
with abstraction and graph partitioning techniques to break up the social network
so that the problem is solvable by the proposed POMDP solver. However, this
technique breaks up the student network causing information loss. To overcome
this, we propose DRL with Particle Swarm Optimization (DRLPSO) to plan the
optimal sequential actions in the uncertain dynamic environment with large action
space.

Our key contributions can be summarized as follows:

• We propose Deep Q-learning integrated with Long Short-Term Memory
(LSTM) to handle dynamic influence maximization problem with large ac-
tion space.
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• To handle a very large action space of POMDP formulation in DRL, one
straightforward way to solve this problem is by randomly sampling a smaller
action set, but this may not lead to the optimal solution as the particle is un-
able to explore the entire action space. To overcome this problem Discrete
Particle Swarm Optimization (DPSO) is applied by initializing n particles
that search through the entire action space for the optimal action based on a
belief state. The Q-network subsequently chooses the action with maximum
reward as the predicted action for each round.

• The main advantage of DPSO is to optimize the search of the maximum
Q-value action by generating n particles which effectively capture multiple
optima in the multi-modal action space.

• We demonstrate the efficiency and effectiveness of DRLPSO in comparison
with the existing five DRL algorithms using Monte Carlo simulation. We
also compare our DRLPSO solution with the previous POMDP solver solu-
tion. The results show that the proposed DRLPSO outperforms the POMDP
solver solution in terms of effectiveness.

2. Related Works

Deep Recurrent Q-learning Architectures: DRL is widely used to solve large
sequential decision-making problems. In particular, for uncertain environments
formulated as POMDPs, Deep Recurrent Q-learning (DRQN) has shown signifi-
cant performance over the existing approaches. Hence, in this paper, we focus on
DRQN methods. To represent the uncertain environment, the problem is formu-
lated as a POMDP and the solution is obtained using DRL. For instance, Egorov
(2015) solved the POMDP problem with a deep neural network and represented
the Q-function of POMDP with belief and action instead of state and action. Later
works such as [5] proposed a recurrent model with convolutional layers and LSTM
layer to solve the POMDP environments of ALE. This model represents the Q-
function with observation as a parameter instead of using the state. More recently,
DDRQN [6] and ADRQN [7] improved the work by adding a history of actions to
the Q-function’s parameters. However, these works have either considered belief
or observation (history of action) individually but not both together. They also do
not consider the large action space of dynamic environments.

To overcome this issue, we propose a two-stage DRLPSO that contains DPSO
which initializes n particles by acting as a discrete optimizer and Deep Q-learning
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integrated with LSTM model (DQ-LSTM) to handle large sequential decision-
making problems in a dynamic environment. However, DQ-LSTM alone cannot
handle the problem as LSTM cannot have many outputs when the action space
is combinatorial explosion

(
N
K

)
where N is the number of students and K is the

number of chosen student at each round. The state space also grows exponentially
with the number of students in the network i.e., (µ+ 1)N states. The use of DPSO
is that its particles converge to the multiple optima as proven by [8, 9, 10]. The
optimal action set from DPSO is then used as the action set to Q-network with the
deep neural network architecture that trains for the optimal policy in a dynamic
environment.
Students’ Stress and Risk of Depression. Many different factors can lead to
depression such as genetics, medication, physical or substance abuse and stress
[11]. Among them, stress (feeling of frustration, anger and nervousness) is a sig-
nificant factor for a high risk of depression and anxiety, esp. for university students
[12, 13, 14]. Hence, we aim to reduce stress levels to reduce the risk of depression.

There has been evidence shown by the studies that emotions (happiness or
stress) can spread from person to person via emotion propagation [15, 16]. There-
fore, we construct the emotion propagation model where a person’s stress (mental
state) is reduced after the intervention, after which he/she spreads his/her happi-
ness through emotion propagation in the network and reduces the stress levels of
his/her neighbours. This propagation is one-degree from the seed node since the
influence propagation does not normally go beyond that in real-world networks
[17]. Since the neighbours’ mental states affect a person’s mental state both pos-
itively and negatively [18], we considered the happy/stressed emotions of each
neighbour in the propagation model. We assume that the mental states of inter-
vened students are reduced with certainty considering that the unforeseen external
factors would not arise while being monitored during intervention [19].

This student counselling problem of a dynamic environment with large action
space is formulated as a POMDP problem and solved with Multi-level Partition-
ing, Abstraction and Reasoning on top of a POMDP solver in [4]. In this paper,
we solve the problem using the proposed DRLPSO method.

3. Problem Description

Nowadays, depression affects many people, reducing their ability to work and
socialize. WHO estimated the number of people affected by depression as high
as 350 million people worldwide [20]. Moreover, depression can challenge the
mortality of the population with the increase of suicide rates and other causes [16].
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Since counselling and social support can help mitigate this problem by reducing
the stress levels of people [18], counselling services are emerging to help them. In
this work, we tackle the problem where a university sets up a counselling center
and provides interventions through its counsellors conducting dialogue sessions
with several participants to find out about their mental states and provide therapy
accordingly.

We consider T rounds of counsellor’s interventions of a group of students
and at each intervention, the counsellor selects K students. Specifically, for each
intervention, the counsellor obtains the observations about the mental states of
the selected students as well as the influence between them and their neighbours,
as they are interacting with each other frequently and their stress levels will thus
be mutually influenced by one another. The estimates for the mental states of
the students which we consider as a belief for the next intervention is updated
according to the newly obtained observations. An illustrative example is shown in
Appendix (A.1). The objective of the counsellor is to decrease the stress level of
all students in the network, reducing the overall risk of depression.

3.1. Interventions in Social Network
The connection network of N students is represented by a directed graph G =

〈V,E〉where V (|V | = N) represents the nodes andE represents the edges. Every
i ∈ V represents a student in the network and the connection e = {(i, j)|i, j ∈
V } ∈ E represents that student i is a friend of student j and wij represents how
closely student i is associated to j. We refer the term wij as the influence that i
induces to student j. Since the friendship between a pair of students is mutual [21],
we represent the network as the bidirectional graph where (i, j) ∈ E and (j, i) ∈
E. However, wij may not be equal to wji, this depends on how they influence
on each other and we set wii = 0. Let N in(i) and N out(i) be the incoming and
outgoing associated neighbours, i.e., for incoming neighbours, (j, i) ∈ E with
0 < wji ≤ 1 for j ∈ N in(i), and for outgoing neighbours, (i, j) ∈ E, 0 < wij ≤ 1
for j ∈ N out(i). The mental state of a student is one of the values in the discrete set
M = {0, 1, 2, · · · , µ}1 in which 0 represents the stress-free state and µ represents
the highest stress level. Therefore, the students’ mental states are represented by
v = 〈v1, ..., vN〉 where vi ∈M, i ∈ V is the mental state of student i.

Here, we assume that in each intervention, counsellor decreases the selected

1In the current literature, the mental states can only be roughly evaluated by some in-explicit
words, such as mild, moderate and severe depressive episodes [20].
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student’s stress level by a positive integer value δ2. Due to the change in the
student’s mental state, his/her emotion will propagate to the associated friends
j ∈ N out(i) by 1-hop propagation where the extent of influence varies by wij .

The extent of influence of i on j is represented by ∆i→j which is defined as:

∆i→j = b wij(µ− vi)
wij(µ− vi) +

∑
k∈N in(j)\{i} vk · wkj

· δc (1)

where k ∈ N in(j) \ {i} which is the set of students who are associated to j by
excluding i. The equation implies that when the influencer i is less stressed, vi
is smaller and ∆i→j is larger. When

∑
k∈N in(j)\{i} vk · wkj is larger, i.e., other

associated neighbours are more stressed and ∆i→j is smaller. Hence, the total
reduction of j’s mental state value is given by,

∆j = aj · δ +
∑

ai=1,i∈V \{j}
∆i→j (2)

where a = 〈ai〉,∀i ∈ V such that ai = 1 if student i is selected, otherwise ai = 0.
In Eq. (2), the first term aj · δ is the influence induced by the counsellor and
the second term is the influence induced by the propagation from the intervened
neighbours of j such that ∆i→j are aggregated for all incoming neighbours i of j
that are intervened. δ is the discrete value of intervention effectiveness on students’
mental states set by the intervention professionals.

3.2. Uncertainties and Partial Observability
The counselling centers do not have any prior information of the students’

mental states and influencing neighbours. Considering this, we model the uncer-
tainty of students’ mental states at the tth intervention to be P̂t−1 which is of size
N × (µ + 1) where each row p̂t−1i = 〈p̂t−1i (m)〉 is the probability distribution
over the discrete setM of student i. p̂t−1i (m) is the probability of student i being
evaluated as mental state m ∈M at t. For the uncertain influence, we also define
Ŵ0 which is of size N × N containing the estimates of influence between each
pair of students.

Initially, we set the values of P̂0 and Ŵ0 as the available information on stu-
dents. In each intervention, the mental states of the selected students and the influ-
ence between them and their neighbours are observed. Hence, in tth intervention,

2If vi < δ, we assign vi = 0 after decrease. This also applies to ∆j in Eq (2).
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counsellor derives P̂t from the belief which is updated during the intervention.
The rule for the belief update is described in the next section. Ŵt is also updated
by assigning ŵij = wij,∀j ∈ N out(i) and ŵji = wji,∀j ∈ N in(i) for each
intervened student i.

3.3. POMDP Formulation
POMDPs are sequential decision-making models under uncertainty [22]. For-

mally, a POMDP is defined as P = 〈S,A,O, T,Ω, R, b0〉 where S is the state set,
A is the action set, O is the set of observations, T and Ω are the transition and
observation probabilities respectively, R is the reward and b0 is the initial belief
over the states.
States and Initial Belief (S and b0) : A state in S is defined as s = 〈v, Ŵ 〉
where v denotes the students’ mental states and Ŵ is defined as ŵij = wij if the
influence of student i on j is known by counsellor, otherwise ŵij = ŵ0

ij , where ŵ0
ij

is the initial estimation of wij by counsellor. The counsellor has an initial belief b0

which is a probability distribution over S and b0s is the probability that the POMDP
is at s in the beginning of the interventions.
Actions, Observations and Observation Probability (A, O, Ω ): The counsel-
lor’s selection of K students at each intervention is defined as action a: if ai = 1,
the student i is selected; ai = 0 otherwise, given the constraint

∑
i∈N ai = K.

All actions belong to the action set A. The counsellor’s observation by taking the
action a ∈ A at state s is defined as o(s, a) = {vi, wij, wji|∀ai = 1, j ∈ V,v ∈ s},
i.e., the mental states and the associated influence of the intervened students. All
observations belong to the set O. Ω is the observation function of the POMDP
which is uniquely defined by the action a and the state s. The observation func-
tion is defined as normal distribution fi(vi, 1) to allow the uncertainties in the
evaluation for the student’s mental states and the influence between the associated
neighbours’ during intervention which is given by,

Ω(o, s, a) =
∏
vi∈o

fi(vi|νi), νi ∈ o(s, a) (3)

fi(v|νi) =
1

2π
e−

v−νi
2 (4)

where mean νi is the mental state value of a student from the observation obtained
by taking action a and variance is 1.
Transition Probabilities Heuristic (T ) : In this phase, the counsellor takes action
a and the change of students’ mental states (s → s′) is calculated using Eq. (2).
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This change of states is denoted by T (s, a, s′) 3,

T (s, a, s′) =


Peff , if s′ = 〈v′, Ŵ ′〉;
(1− Peff ), if s′ = 〈v, Ŵ ′〉;
0, otherwise.

(5)

where v′ and Ŵ ′ are students’ mental states and influence of the new state s′ that
are updated by,

v′j = vj −∆j (6)

ŵ′ij =

{
wij, if ai = 1 or aj = 1;
ŵij, otherwise. (7)

where v′j ∈ v′, ŵ′ij ∈ Ŵ ′,∀i, j ∈ V .
Reward and Policy (R and π) : The reward R(s, a) of taking action a ∈ A in
state s = 〈v, Ŵ 〉 is defined by,

R(s, a) =
∑

s′∈S
T (s, a, s′)

(∑
i∈V

(vi − v′i)
)

(8)

We define the history at intervention t as a sequence of past actions and observa-
tions Ht = {〈a1, o1〉, . . . , 〈at, ot〉}. We denote Ht as the set of all possible histo-
ries at t. The policy is defined as π : Ht → A which takes in history Ht as input
and outputs the action a. The expected reward for π starting from b0 is defined
as V π(b0) =

∑T
t=1 E[R(st, at)|b0, π] where E[·] outputs the expected value of the

input. The optimal policy π∗ maximizes V π(b0) given by,

π∗ = arg max
π

V π(b0) (9)

Belief Update: In each state s, we have the deterministic value of Ŵ where each
element is either ŵij or wij . Hence, the initial belief b0 can be defined by P̂0 and
Ŵ0 such that for s = 〈v, Ŵ 〉,

b0s =

{ ∏
vi∈v p̂

0
i (vi), if Ŵ = Ŵ0

0, otherwise.
(10)

3Peff is the probability value defined according to statistics for effectiveness of therapy.
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At intervention t, each state s = (v, Ŵ ) with belief bt−1s transits to s′ = (v′, Ŵ ′)
upon taking action a and the counsellor obtains o ∈ O with the probability of
Ω(o, s′, a). Further, belief is updated using,

bts′ = γ · Ω(o, s′, a) ·
∑

s∈S
T (s, a, s′) · bt−1s (11)

where γ is the normalizing constant given by γ = 1/(
∑

s′∈S Ω(o, s′, a)·∑s∈S T (s, a, s′)·
bt−1s ). P̂t is updated based on the belief update using p̂tj(m) =

∑
s′∈S,v′j=m b

t
s′ .

4. Deep Reinforcement Learning with Particle Swarm Optimization

Testing
Env

Simulated
Env

M
o
d
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LF

Stored
every
10,000
iter
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- Sample n states from belief set

- Initialize n particles

- Intialize a1, a2, ..., an
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D
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T
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At at

b
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θt+1
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+P̂ , Ŵ

(N ×M)+
(N ×N)

Q(〈bt, ht〉, a1)
Q(〈bt, ht〉, a2)
Q(〈bt, ht〉, a3)

maxaR1−n(bt, a1−n) maxa∈At Q(〈bt−1, Ht〉, a|θ)

(R(s, a), ot+1)

θ̂

H{(at−1, ot),
(at, ot+1)}

Figure 1: DRLPSO Architecture

As discussed in section 2 (Related Works), dynamic influence maximization is
NP-Hard which is a challenging task to obtain the optimal solution. Thus, solving
by the brute force method is infeasible. Moreover, being formulated as POMDP,
the traditional RL method and DQN are infeasible due to Q-function being rep-
resented with state values instead of partial observation and no historical infor-
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mation is preserved. Thus, we use deep Q-learning integrated with LSTM layer
(DQ-LSTM). However, the state and action space of this problem grow exponen-
tially with the number of students in the network i.e., (µ + 1)N states and the
number of chosen student at each round i.e.,

(
N
K

)
actions. For this problem, the

output layer of LSTM could be complicated as it cannot handle the large action
space as it results in a large number of outputs. This could reduce the performance
of deep recurrent Q-network. Hence, in this study, we embed DPSO to pick the
optimal action. By doing so, the training phase of DQ-LSTM can converge to an
optimal policy.

Instead of randomly selecting an action, DPSO initializes n particles to op-
timize the reward function and later converge to a set of optimal actions for a
given belief. DQ-LSTM gets an action set optimized by DPSO for each step. This
also makes the deep Q-learning converge to the optimal solution. Therefore, we
propose DRLPSO (Deep Reinforcement Learning with Particle Swarm Optimiza-
tion) where DPSO finds the optimal action for each step and Deep Q-learning
integrated with LSTM ensures the optimal policy for the dynamic environment.

4.1. DRLPSO Architecture
The overview of DRLPSO is shown in Figure 1. We initialize the problem

as a discrete environment that takes action as input and outputs observation and
reward. The system consists of 4 major components (Blocks A, B, C and D of
Figure 1).

• Deep Q-learning with LSTM as the top layer (Block A)

• Discrete Particle Swarm Optimization Model to predict the best action (Block
B)

• Simulated Environment to train the network (Block C)

• Testing Environment (Block D)

Block A is used for training the parameters to predict the Q-values. The deep
Q-learning consists of ReLU as activation function, 3 hidden layers of neurons
and learning are performed by backpropagation. LSTM is integrated to retain his-
torical information. The training procedure consists of 1) Choose the action for
best Q-value using DPSO (Block B); 2) Execute the action in the simulated en-
vironment (Block C), obtain observation and reward; 3) Optimize parameter θ by
backpropagation until the loss converges. After the training, we test the model in
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Agent
Block A + Block B

Environment
Block C or Block D

at

bt

ot+1

rt

Figure 2: DRLPSO components represented as Markov Model commonly used in RL

the testing environment (Block D). The components are represented as a Markov
Model in Figure 2.
Discrete Particle Swarm Optimization: In training the deep recurrent Q-network,
existing methods randomly sample an action, without considering the observation
received from the environment. Instead, DRLPSO uses DPSO (Block B) which
takes belief state updated with the observation. We initialize n particles to explore
and exploit by parallelly converging to multiple optima. For DQ-LSTM, we adapt
the action set from the convergence of the DPSO particles to the output layer of
LSTM.

We modified the traditional continuous PSO [23] to the Discrete PSO. We
initialize the position boundary B to be nCr(N,K) i.e., the number of different,
unordered combinations of K students from the network with N students. We
randomize the swarm positions from 0 to B − 1 as the initial discrete actions.
While optimizing the objective function defined in Eq. (8), we update the velocity
~Vi and position Xi values of each particle by,

~Vi(t + 1) = ~Vi(t) + (c1r1)(pbesti − Xi(t)) + (c2r2)(gbesti − Xi(t)) (12)

Xi(t+ 1) =


0, if dXi(t) + ~Vi(t+ 1)e < 0

B, if dXi(t) + ~Vi(t+ 1)e > B

dXi(t) +~Vi(t+ 1)e, otherwise
(13)

where c1, c2 are self confidence values, r1, r2 are randomized values and pbesti is
the maximum reward position (action) the particle has visited, and the best among
all the subswarm particles is stored in gbesti. Generally, gbesti will converge to a
single solution if there exists only one optimum. In this problem, the search space
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consists of multiple optimal solutions. Hence, the particles will form a subswarm
and converge to multiple peaks to map with the output layer of DQ-LSTM.
Deep Recurrent Q-learning: After we obtain the predicted action, we execute
the action to the simulated environment (Block C) to obtain the reward R(s, a)
and observation ot+1. We then update the belief bt and history ht+1 to calculate
the predicted loss ŷ and the actual loss y. DQN uses experience replay and two
networks to train parameter θ: the main network to optimize θ value and targeted
network to retain θ− which is updated every 10,000 iterations [24]. Similarly,
we adopt experience replay and the two networks and use the stale updated θ−

given by the target network to get the actual Q-values. This technique has been
empirically shown to be tractable and stable.

Generally, the state transition problems with MDP considers the Q-update us-
ing state and action given by,

Q(st, at) = Q(st, at) + α(R(st, at) + γmax
a

Q(st+1, a) − Q(st, at)) (14)

where α is the learning rate and γ is the discount factor. This Q-function is well-
suited for MDP where the states are fully observed. But for the problems involving
POMDP, Q-function is parametrized by belief (b), action (a) and observation (o)
since s 6= o due to the partial observability and we cannot observe the current
state st in POMDP. We have to use a deep network to better estimate Q-values
from belief and observation. We denote the weights and biases of the Q-networks
as θ and the function can be denoted by Q(〈bt−1, Ht〉, at|θ). We first calculate
the Q-values for each belief, history of action and observation and subsequently
update the parameters of the deep network by minimizing the loss function at each
iteration i of the training phase.
Actual Q-value is calculated by,

y = R(st, at) + γmax
a

Q(〈bt, Ht+1〉, a|θ−i ) (15)

Predicted Q-value is calculated by,

ŷ = Q(〈bt−1, Ht〉, at|θi) (16)

The l2 loss function (LF) is given by,

L(〈bt, Ht〉, at|θi) = (y − ŷ)2 (17)
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Finally, we perform backpropagation to train θ which is updated using,

θi+1 = θi + α∇θL(θi) (18)

When the training converges, we save the model θ̂ and execute the testing envi-
ronment (Block D) for the T rounds to get the optimal policy.

4.2. DRLPSO Algorithm
The proposed DRLPSO is described in Algorithm 1. In this algorithm, we first

initialize the experience replay similar to the existing DRL methods, the number
of iterations to train, the initial belief according to the environment and the param-
eters for Q-network and target network (Lines 1-2). For each iteration, we simulate
the environment for training, initialize the action, history and assign the initial be-
lief across the state set. Next, we perform T rounds of intervention. During each
round of intervention, we predict the optimal action set with DPSO by randomly
initializing n particles with different positions in the discrete action space until
they converge to multiple optimal positions (actions) (line 7). DPSO finds the ac-
tions with the best reward based on the belief bt−1. From the optimal action set
of DPSO, we choose the action where the particle gives the maximum predicted
Q-value (line 8). This action is executed in the simulated environment to obtain
reward R and observation ot+1 and update bt (lines 9-10). We then store the tran-
sition sequence in experience replay (line 12). After that, we randomly sample
the transition sequences as a mini-batch and update parameter θ by Eqs. (15-18)
(lines 13-16). Finally, we obtain the converged parameter θ̂ (line 18).

5. Experiment Results

In this section, we evaluate the proposed DRLPSO and compare it with the five
existing methods for large sequential decision-making problems. We run the sim-
ulated student networks with mental state propagation to evaluate the performance
of DRLPSO. We synthesize the problem instances since there is no publicly avail-
able data that studies the stress level of the people in a network. However, evalua-
tions of algorithms on simulated networks are widely applied [25, 26, 27] as they
serve as an important reference towards the real-world applications of the archi-
tecture. Further, we plan to do the experiments and carry out interventions for the
university students to know about their stress levels, give them counselling and
improve their performance.
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Algorithm 1: DRLPSO
Result: Parameter θ

1 Initialize the experience replay D, # of iterations M ;
2 Initialize Q-network and Target-Network with θ and θ− respectively;

/* train the network shown in Block A in Figure 1 */
3 for iteration= 1 to M do
4 Simulate environment and b0 ; // Block C in Figure 1
5 Initialize the first action a0 = noaction, h1 = ∅, o1 = ∅;
6 for t = 1...T rounds do
7 At = best action set from DPSO module where velocity and

position updates using Eqs. (12) and (13) ; // Block B in Figure 1
8 at = arg maxa∈At Q(〈bt−1, Ht〉, a|θ);
9 Execute action at to obtain reward Rt(.) and observation ot;

10 Update bt according to ot using Eq. (11);
11 Store transition {〈bt−1, ht〉, at, rt, bt} in D ;
12 Randomly sample a mini batch of transition sequences from D

and index as j;

13 yj =

{
rj, if t = T
Eq.(15), otherwise

14 Compute gradient using the loss function (Eq. (17));
15 Update θ according to Eq. (18);
16 end
17 end
18 Save model as θ̂;

5.1. Experiment Setup
We simulate a student network G by leveraging Erdos-Ŕenyi random network

generation [28], where exactly |E| edges are randomly constructed between each
pair of nodes (students). Assuming that the students usually study/stay in groups
of 3 or 4 which is also the size of a team for a regular group project, we set
|E| = 3N to let each node have at least 3 connections on average. Then, we
assign ŵij ∈ W0 as randomized values between [0, 1]. After that, we set µ = 9
and randomly assign the nodes with mental state values between [0− 9].

We compare the performance of proposed DRLPSO against the five baseline
methods such as Degree Centrality (DC) [29]; HEAL [26]; DBQN [30]; DRQN
[6] and ADRQN [7]. Since DRQN and ADRQN use the convolutional layers as
input, we convert the observed states as 84x84 grey-scale images through Python
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Pillow Module and train both networks accordingly. To mitigate the problem of
handling large action space, we randomly sample the action space of the problem
with 30 actions to train using DBQN, DRQN and ADRQN. To make a par com-
parison, we assign the LSTM output layer of DRLPSO to have 30 outputs. We
assign the randomized initial estimate mental state and influence values for all the
methods.

Our experimental settings are as follows: we set (T, K, δ, µ) as (5, 1, 2, 9) for
networks of 5 nodes, (5, 5, 2, 9) for networks of 30 nodes and (10, 5, 2, 9) for even
larger networks. We implement all the aforementioned programs in Python and
run all the experiments on a system of 3.2GHz 4-core Intel CPU and NVIDIA
DGX-1 with 32 GB of RAM.

5.2. Evaluation
Parameter setting of DPSO

We set the parameter values of c1 and c2 with SwarmOps [31]. Since we de-
fine the LSTM output as 30 Q-values, we aim to map the size of the converged
optimal action set to 30. Figure 3 illustrates the number of unique peaks captured
by varying the number of particles in the DPSO to search for the best action set
for a dynamic environment having a network of 30 students. Here, the minimum
and average peak captures are shown after 10 runs. From the results, we can infer
that DPSO with at least 90 particles has to be initialized.

Figure 3: Peak convergence by varying the number of particles
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Figure 4: Performance of learning algorithms in 100k iterations

Training Rewards
Figure 4 shows the training curves of the deep Q-learning algorithms with

100,000 iterations. After every 500 iterations, we predict the actions for 5 rounds
on 30 problem instances of the testing environment and record the total reward.
From the figure, we observe that DRLPSO converges within the limited number
of iterations and achieves much higher reward values in comparison with the other
learning methods.

Performance Analysis
We train each algorithm to analyze the total reward after T rounds of inter-

vention with 30 problem instances of the testing environment for each network
size. Table 1 shows the reward comparison of different sizes of networks with the
aforementioned experimental settings. We use

∑T
t=1Rt(s, a) as evaluation metric

which is the total overall stress level reduced in the process of intervention. From
the table, we observe that rewards of the previous dynamic influence maximiza-
tion methods such as DC and HEAL are lower reward value than the proposed
DRLPSO. This is because DC does not consider uncertainty and partial observa-
tion, while HEAL does not consider the uncertainty of initial mental state values.
However, HEAL cannot scale up for networks larger than 30 nodes.

Similarly, when the comparison is made among 5 learning algorithms. Table
1 shows DQ-LSTM is only feasible for 5 students but it stops running for 30
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Table 1: Reward Comparison

Nodes DC (µ± σ) HEAL (µ± σ) DBQN (µ± σ)
5 9.9± 1.668 13.43± 1.96 10.56± 1.977
30 45.03± 2.809 47.2± 3.59 31.76± 15.36
100 102.6± 9 - 155.4± 25.53
200 119.53± 18.584 - 128.9± 16.572
500 118.53± 20.91 - 133.93± 17.3

Nodes DRQN (µ± σ) ADRQN (µ± σ) DQ-LSTM DRLPSO (µ+ σ)
5 11.56± 1.716 11.53± 1.81 13.48± 1.743 13.8± 1.69
30 38.33± 13.514 48.8± 11.74 - 62.3± 3.9
100 162± 21.94 168.3± 37.47 - 225± 12.62
200 138.33± 17.516 171.5± 24.81 - 232.1± 16.04
500 143.13± 19.72 175.17± 18.27 - 233.06± 12.31

students and above as it fails to handle larger state and action space i.e., state space
of 1030 and action space of

(
30
5

)
= 142506. Our proposed DRLPSO outperforms

DBQN, DRQN and ADRQN in the total reward with a high mean reward value
and lower standard deviation over T rounds with 30 runs. This is because, in
DBQN, DRQN and ADRQN, the action sets are randomly sampled to a set of 30
actions instead of a large action space unlike DRLPSO uses DPSO to optimize the
action set before mapping to the Q-values from LSTM.

We also propose the Average Percentage of Reward Increase (APRI), to com-
pare our proposed DRLPSO with baseline methods defined by,

APRI =
µ(RDRLPSO)− µ(RAlgo)

µ(RDRLPSO)

× 100% (19)

where µ(.) is the mean reward value from the Monte Carlo simulation of the re-
spective algorithms. We calculate APRI for the network size of 30 nodes where
we observe that our proposed DRLPSO significantly outperforms DC, HEAL,
DBQN, DRQN, ADRQN by 27.7%, 24.2%, 49%, 38.4% and 21.6% respectively.
Thus, the overall stress level in the network will be best reduced after T rounds of
intervention with the counsellors by selecting the students by DRLPSO method at
each round.

Comparison with MLPRAP method
Here, we will compare with our previous method, MLPRAP: Multi-Level Par-

tition algorithm with Reasoning and Abstracted Planning which uses POMDP
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solver and multi-level partitioning of the original graph [4]. We only compare
with the better technique proposed in the paper MLPRAP-C which hierarchically
partitions the original student network in clusters until each partition has under
l students which is the maximum limit of the students that can be solved by the
aforementioned hardware configuration.

We have also compared using the realistic networks against MLPRAP method
and observe better results. The first network is Zachary Karate Club dataset (Karate)
with 34 nodes and 78 edges [32] which is the friendship data of the members of a
university karate club. This will closely reflect the relationship between students
in the network and the effectiveness of interventions. We assign ŵij ∈ W0 as
randomized values from [0, 1]. The second dataset is Mobile-1 dataset (Mobile)
which has 107 nodes and 513 edges [33]. It consists of the logs of calls and cell
tower IDsx of users for ten months. We assign communication count between
users i and j as ŵij .

Table 2: Reward Comparison

Nodes MLPRAP-B(µ+ σ) MLPRAP-C (µ+ σ) DRLPSO (µ+ σ)
100 133± 4.74 154.17± 6.06 225± 12.62
200 - 150.23± 5.14 232.1± 16.04
500 - 161.5± 5.17 233.06± 12.31
1000 - 160.8± 6.88 210.27± 13.20
1500 - 161.3± 5.43 217.60± 12.42
Karate 80± 0.7 84.6± 1.22 89.2± 1.51
Mobile 62.1± 1.21 62.7± 1.88 66.4± 1.83

The comparison is as shown in Table 2. Although it takes longer to train to be
able to start using to select the students for intention, DRLPSO has better results
than MLPRAP-C and MLPRAP-B since there is no loss of information due to the
partitioning with the DRL methods.

6. Discussion

The overview of evaluation with the actual study is as shown in Figure 5.
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Preparation by the Counsellors

Collect Student Information

Intervention Process

Algorithm Inputs

Set up parameters

Adding student
information to the

Algorithm’s student
network

Figure 5: Overview of the implementation plan

We will collaborate with University Counselling Center (UCC) to conduct a
real scenario with graduate students. Student data and mental state assessments are
masked with a pseudonym and direct ID links will be destroyed after the coun-
selling process. The participants are given a consent form and free to withdraw
anytime. The detailed plan is as follows.

• We prepare the well-documented implementation plan of the intervention
process and design the stress assessment questionnaire according to the
questionnaires from the established literature such as (Perceived Stress Scale,
1994).

• We then submit the documents to the review process from Institutional Re-
view Board for Research Involving Human Subjects to ensure that the re-
search activity follows applicable legislation of Singapore.

• After the approval from the board, we perform the necessary data collec-
tion to estimate the students’ mental state and influence values. We first
get the students’ consents with a consent form where the consequence of
the study/ interventions is explained in detail, understandable language us-
age. Afterwards, we collect the following information from the students:
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1. College; 2. Supervisor, Co-supervisor; 3. Course Enrollment; 4. Physical
Location (Lab/Office location, Home/ Dormitory Address); 5. Participation
in student clubs; 6. Publication List; 7. Academic Performance: Grades; 8.
Performance: Evaluation by Supervisor.

• Next, we set up the environment according to collected student information.

Step 2:
Counsellors

invite k
students

Step 1:
Algorithm
selects k
students

Step 6:
Algorithm
prepares
for the

next round

Step 5:
Counsellors

update
observations
to algorithm

Step 4:
Counsellors

conduct
the therapy

sessions

Step 3:
Counsellors
access the
stress level
of students

Figure 6: Intervention process

After the preparation step is done, we begin the intervention process. UCC
initiates the intervention process in coordination with the algorithm. The interven-
tion process is illustrated in Figure 6. At each round, UCC invites the candidate
students who are selected by the algorithm. During the intervention round, the
counsellors conduct a therapy session with the selected students, evaluate/assess
their mental states based on a set of designed questionnaires and learn their social-
circles. When the intervention is over the counsellors update the newly collected
information to the algorithm. The algorithm then updates the network, estimates
the stress levels of other students by the reasoning module and selects students for
the subsequent rounds.
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7. Conclusion

In this paper, we propose a novel architecture DRLPSO to handle the partially
observable dynamic environments with large action space. The DRLPSO algo-
rithm uses the Deep Q-learning integrated with LSTM (DQ-LSTM) and DPSO to
optimally select the predicted action, obtain Q-values and train the network. We
use belief and history of action and observation as input to DQ-LSTM. Results
have shown that in a dynamic environment with a large action space, the proposed
DRLPSO achieves a higher total reward compared to the DRL approaches by an
average of 32% compared to the baseline. Moreover, comparing with POMDP
solution, while DRLPSO takes time for training due to it being DRL solution, it
outperforms in terms of effectiveness. In the future, we will evaluate the algorithm
with the real-world setting and further explore on online reinforcement learning
methods so that the training time for DRLPSO can be reduced.
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Figure 1: Illustrative example of intervention round 1

Appendix

A.1 Illustrative Example of Interventions
Figure 1 shows the changes in the uncertain dynamic environment with a net-

work of 5 students during the intervention process with (a) the initial belief state,
(b) observation after executing the first action and (c) the transition to the next
state. We use µ = 4 in this example.

Initially, the belief state is assigned with the estimated mental state and influ-
ence values with P̂ and Ŵ . Hence, the estimated mental state of each student is
assigned with equal probability values p̂i(m) and estimated influence values are
represented by the dotted lines. After executing the first action by selecting stu-
dent 2, the counsellors evaluate student 2’s mental state as 3, and the influence
between student 2 and his/her neighbours are observed which are represented by
the solid lines. Considering the observation probability, the updated mental state
estimates in the belief are as shown in Figure 1(b). Student 2’s mental state is
reduced due to counselling and the effect is spread to the associated neighbours
(students 1, 5 and 3). Considering the transition probability and the emotion prop-
agation model, the belief state values for the next state is as shown in Figure 1(c).
The same procedure repeats in further rounds.

A.2 Numerical Example
We present a numerical example of the dynamic environment with 3 students

having µ = 3. The actual mental state and influence values are,
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actual mental state = [3, 3, 1]

actual influence =

 0 0.5 0.7
0.3 0 0.5
0.7 0.7 0


and we set K = 1 and hence the actions a0 = 〈1, 0, 0〉 is choosing student 1,
a1 = 〈0, 1, 0〉 is choosing student 2 and a2 = 〈0, 0, 1〉 is choosing student 3
respectively.

Initially, we assign equal probability for all initial mental state values to be
0.25 and the influence to be 0.5. Thus, the initial belief state is:

P̂0 =

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25


Ŵ0 =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0


Hence, b0 is assigned as:

b0 = [0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25,

0.25, 0.25, 0.25, 0.25, 0, 0.5, 0.5, 0.5, 0, 0.5, 0.5, 0.5, 0]

and initial history is ∅.
The deep Q-learning architecture with 21 inputs and 3 output is initialized as
21× 21 matrix for the first layer, 21× 21 matrix for the second layer and 21× 3
matrix for the third layer and we use ReLU as activation function between each
layer. Using these values, the first forward pass gives the predicted Q-values as:

Q(〈bt−1, Ht〉, a0) = 0.13611966

Q(〈bt−1, Ht〉, a1) = 0

Q(〈bt−1, Ht〉, a2) = 2.30237779

At first state, the probabilities for mental states are equal and thus, DPSO
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particles will converge to all 3 actions based on b0 and a2 chosen (student 3) as
the first action since it is with the highest Q-value.

After choosing student 3, we obtain reward as 1 and the new belief updated
from observation as:

b1 = [0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25,

1, 0, 0, 0, 0, 0.5, 0.7, 0.5, 0, 0.5, 0.7, 0.7, 0]

h2 = {〈[0, 0, 1], 1, 0.7, 0.7, 0.7, 0.5〉}

Hence, the actual Q-value according to Eq. (15) using γ = 0.5 is,

R(s, a) + γ ·max
a
Q(〈bt, Ht+1〉, a) = 2.39935325

Using the values, we can calculate the loss value,

L = 0.054324307568820125

Then, through backpropagation, we use the gradient of the loss function and use
gradient descent optimizer to update θ to minimize the loss.

In iteration 2, according to belief b1, the particles of DPSO converge at a0 as
the student 3 mental state value is 0 and the estimated influence of student 1 and
neighbours are greater than student 2’s values. After action a0, the new belief and
history are:

b2 = [0, 1, 0, 0, 0.25, 0.25, 0.25, 0.25,

1, 0, 0, 0, 0, 0.5, 0.7, 0.3, 0, 0.5, 0.7, 0.7, 0]

h3 = {〈[0, 0, 1], 1, 0.7, 0.7, 0.7, 0.5〉, 〈
[1, 0, 0], [3, 0.5, 0.5, 0.7, 0.3]〉}

Hence, the actual Q-value according to Eq. (15) is,

R(s, a) + γ ·max
a
Q(〈bt, Ht+1〉, a) = 3.797936785

We use gradient descent optimizer update θ to minimize the loss until it converges
to L < 10−3.
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