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Abstract
In pharmaceutical sciences, a crucial step of the drug discovery process is the identification

of drug-target interactions. However, only a small portion of the drug-target interactions

have been experimentally validated, as the experimental validation is laborious and costly.

To improve the drug discovery efficiency, there is a great need for the development of accu-

rate computational approaches that can predict potential drug-target interactions to direct

the experimental verification. In this paper, we propose a novel drug-target interaction pre-

diction algorithm, namely neighborhood regularized logistic matrix factorization (NRLMF).

Specifically, the proposed NRLMF method focuses on modeling the probability that a drug

would interact with a target by logistic matrix factorization, where the properties of drugs

and targets are represented by drug-specific and target-specific latent vectors, respectively.

Moreover, NRLMF assigns higher importance levels to positive observations (i.e., the

observed interacting drug-target pairs) than negative observations (i.e., the unknown pairs).

Because the positive observations are already experimentally verified, they are usually

more trustworthy. Furthermore, the local structure of the drug-target interaction data has

also been exploited via neighborhood regularization to achieve better prediction accuracy.

We conducted extensive experiments over four benchmark datasets, and NRLMF demon-

strated its effectiveness compared with five state-of-the-art approaches.

Author Summary

This work introduces a computational approach, namely neighborhood regularized logis-
tic matrix factorization (NRLMF), to predicting potential interactions between drugs and
targets. The novelty of NRLMF lies in integrating logistic matrix factorization with neigh-
borhood regularization for drug-target interaction prediction. In NRLMF, we model the
interaction probability for each drug-target pair using logistic matrix factorization. As the
observed interacting drug-target pairs are experimentally verified, they are more trustwor-
thy than the unknown pairs. We propose to assign higher importance levels to interaction
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pairs and lower importance levels to unknown pairs. In addition, we further improve the
prediction accuracy by neighborhood regularization, which considers the neighborhood
influences from most similar drugs and most similar targets. To evaluate the performance
of NRLMF, we conducted extensive experiments on four benchmark datasets. The experi-
mental results demonstrated that NRLMF usually outperformed five state-of-the-art
methods under three different cross-validation settings, in terms of the area under the
ROC curve (AUC) and the area under the precision-recall curve (AUPR). In addition, we
confirmed the practical prediction ability of NRLMF by mapping with the latest version of
four online biological databases, including ChEMBL, DrugBank, KEGG, and Matador.

Introduction
The drug discovery is one of the primary objectives of the pharmaceutical sciences, which is an
interdisciplinary research field of fundamental sciences covering biology, chemistry, physics,
statistics, etc. In the drug discovery process, the prediction of drug-target interactions (DTIs) is
an important step that aims to identify potential new drugs or new targets for existing drugs.
Therefore, it can help guide the experimental validation and reduce costs. In recent years, the
DTI prediction has attracted vast research attentions and numerous algorithms have been pro-
posed [1]. Existing methods predict DTIs based on a small number of experimentally validated
interactions in existing databases, such as ChEMBL [2], DrugBank [3], KEGG DRUG [4], and
SuperTarget [5]. Previous studies have shown that a fraction of new interactions between drugs
and targets can be predicted based on the experimentally validated DTIs, and the computa-
tional methods for identifying DTIs can significantly improve the drug discovery efficiency.

In general, traditional computational methods proposed for DTI prediction can be catego-
rized into two main groups: docking simulation approaches and ligand-based approaches [6–
8]. The docking simulation approaches predict potential DTIs, considering the structural infor-
mation of target proteins. However, the docking simulation is extensively time-consuming,
and the structural information may not be available for some protein families, for example the
G-protein coupled receptors (GPCRs). In the ligand-based approaches, potential DTIs are pre-
dicted by comparing a candidate ligand with the known ligands of the target proteins. This
kind of approaches may not perform well for the targets with a small number of ligands.

Recently, the quick development of machine learning techniques provides effective and effi-
cient ways to predict DTIs. An intuitive idea is to formulate the DTI prediction as a binary clas-
sification problem, where the drug-target pairs are treated as instances, and the chemical
structures of drugs and the amino acid subsequences of targets are treated as features. Then,
classical classification methods can be used, e.g., support vector machines (SVM) [9] and regu-
larized least square (RLS) [10]. For example, in [11], a SVMmodel was utilized to classify a
given drug-target pair into interaction and non-interaction, considering the amino acid
sequences of proteins, chemical structures, and the mass spectrometry data. Bleakley and
Yamanishi proposed a supervised approach for DTI prediction based on the bipartite local
models (BLMs), where SVM was used to build the local models [12]. Xia et al. proposed a
semi-supervised DTI prediction approach, namely Laplacian regularized least square
(LapRLS), and extended it to incorporate the kernel constructed from the known DTI network
[13]. van Laarhoven et al. defined a Gaussian interaction profile (GIP) kernel to represent the
interactions between drugs and targets, and they employed RLS with the GIP kernel for DTI
prediction problems [14, 15]. Cheng et al. developed three supervised inference methods for
DTI prediction based on the complex network theory [16]. Mei et al. integrated BLMmethod
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with a neighbor-based interaction-profile inferring (NII) procedure to form a DTI prediction
approach called BLM-NII, where the RLS classifier with GIP kernel was used as the local model
[17]. Moreover, Yamanishi et al. developed a web server called DINIES, which utilized super-
vised machine learning techniques, e.g., pairwise kernel learning and distance metric learning,
to predict unknown DTIs from different sources of biological data [18]. Ding et al. used a uni-
form experimental setting to empirically review the advantages and limitations of existing
similarity-based learning approaches for DTI prediction [19]. Furthermore, other auxiliary
information has also been exploited for DTI prediction. For example, in [20], Li et al. developed
a computational framework that integrated literature mining and the protein and drug connec-
tivity information derived from protein interaction networks to build the disease-specific drug-
protein connectivity maps. In [21], Chen et al. utilized the data from public datasets to build a
semantic linked network connecting drugs and targets. A statistical model was also proposed
to evaluate the association of drug-target pairs.

Essentially, the DTI prediction problem is a recommendation task that aims to suggest a list
of potential DTIs. Thus, another line of research for DTI prediction is the application of recom-
mendation technologies. In the literature, collaborative filtering (CF) based approaches are
the most widely adopted recommendation methods, which can be categorized into two main
groups, i.e., memory-based CF and model-based CF approaches [22, 23]. As the most success-
ful model-based CF approach, matrix factorization has been explored for DTI prediction in
recent studies. For example, Gönen proposed a kernelized Bayesian matrix factorization
(KBMF) method, which combined the kernel-based dimensionality reduction, matrix factori-
zation, and binary classification for DTI prediction [24]. Cobanoglu et al. utilized probabilistic
matrix factorization (PMF) [25] to predict unknown DTIs [26]. The accuracy of the PMF
based approach was further improved by an active learning strategy. Moreover, Zheng et al.
introduced the multiple similarities collaborative matrix factorization (MSCMF) model, which
exploited multiple kinds of drug similarities and target similarities to improve the DTI predic-
tion accuracy [27].

In this paper, we propose a novel matrix factorization approach, namely neighborhood reg-
ularized logistic matrix factorization (NRLMF), for DTI prediction. The proposed NRLMF
method focuses on predicting the probability that a drug would interact with a target. Specifi-
cally, the properties of a drug and a target are represented by two latent vectors in the shared
low dimensional latent space, respectively. For each drug-target pair, the interaction probabil-
ity is modeled by a logistic function of the drug-specific and target-specific latent vectors. This
is different from the KBMF method [24] that predicts the interaction probability using a stan-
dard normal cumulative distribution function of the drug-specific and target-specific latent
vectors [28]. In NRLMF, an observed interacting drug-target pair (i.e., positive observation) is
treated as c (c� 1) positive examples, while an unknown pair (i.e., negative observation) is
treated as a single negative example. As such, NRLMF assigns higher importance levels to posi-
tive observations than negatives. Because the positive observations are biologically validated
and thus usually more trustworthy. However, the negative observations could contain potential
DTIs and are thus unreliable. This differs from previous matrix factorization based DTI predic-
tion methods [24, 26, 27] that treat the interaction and unknown pairs equally.

Additionally, NRLMF also studies the local structure of the interaction data to further
improve the DTI prediction accuracy, by exploiting the neighborhood influences from most
similar drugs and most similar targets. In particular, NRLMF imposes individual regularization
constraints between the latent representations of a drug and its nearest neighbors, which are
most similar with the given drug. Similar neighborhood regularization constraints have also
been added on the latent representations of targets. Note that this neighborhood regularization
method is different from previous approaches that exploit the drug similarities and target
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similarities using kernels [13, 14, 17, 29] or factorizing the similarity matrices [27]. Moreover,
the proposed approach only considers nearest neighbors instead of all similar neighbors as
used in previous approaches, avoiding noisy information, thus achieves more accurate results.

The performances of NRLMF were empirically evaluated on four benchmark datasets, com-
pared with five state-of-the-art DTI prediction methods. Experimental results showed that
NRLMF usually outperformed other competing methods on all datasets under different experi-
mental settings, in terms of the widely adopted measures, i.e., the area under the ROC curve
(AUC) and the area under the precision-recall curve (AUPR). In addition, the practical predic-
tion ability of NRLMF was also confirmed by mapping with the latest version of online biologi-
cal databases, including ChEMBL [2], DrugBank [30], KEGG [4], and Matador [5].

Materials and Methods

Materials
The performances of DTI prediction algorithms were evaluated on four benchmark datasets,
including Nuclear Receptors, G-Protein Coupled Receptors (GPCR), Ion Channels, and
Enzymes. These datasets were originally provided by [31] and were publicly available at http://
web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/. Table 1 summarizes the statistics of all four
datasets. Each dataset contains three types of information: 1) the observed DTIs, 2) the drug
similarities, and 3) the target similarities. Particularly, the observed DTIs were retrieved from
public databases KEGG BRITE [32], BRENDA [33], SuperTarget [5], and DrugBank [3]. The
drug similarities were computed based on the chemical structures of the compounds derived
from the DRUG and COMPOUND sections in the KEGG LIGAND database [32]. For a pair
of compounds, the similarity between their chemical structures was measured by the SIM-
COMP algorithm [34]. The target similarities, on the other hand, were calculated based on the
amino acid sequences of target proteins, which were retrieved from the KEGG GENES data-
base [32]. The normalized Smith-Waterman score was used to compute the sequence similarity
between two proteins.

Problem Formalization

In this paper, the set of drugs is denoted by D ¼ fdigmi¼1, and the set of targets is denoted by
T ¼ ftjgnj¼1, wherem and n are the number of drugs and number of targets, respectively. The

interactions between drugs and targets are represented by a binary matrixY 2 R
m�n, where

each element yij 2 {0, 1}. If a drug di has been experimentally verified to interact with a target tj,
yij is set to 1; otherwise, yij is set to 0. The non-zero elements in Y are called “interaction pairs”
and regarded as positive observations. The zero elements in Y are called “unknown pairs”
and regarded as negative observations. We define the set of positive drugs and targets as
Dþ ¼ fdij

Pn
j¼1 yij > 0; 81 � i � mg and Tþ ¼ ftjj

Pm
i¼1 yij > 0; 81 � j � ng, respectively.

Then, the set of negative drugs (i.e., new drugs without any known interaction targets) and neg-
ative targets (i.e., new targets without any known interaction drugs) are defined as D− = DnD+

and T− = TnT+, respectively. In addition, the drug similarities are represented by Sd 2 R
m�m,

where the (i, μ) element sdim is the similarity between di and dμ. The target similarities are

described using St 2 R
n�n, where the (j, ν) element stjn is the similarity between tj and tν.

The objective of this study is to first predict the interaction probability of a drug-target pair
and subsequently rank the candidate drug-target pairs according to the predicted probabilities
in descending order, such that the top-ranked pairs are the most likely to interact.
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Logistic Matrix Factorization
The matrix factorization technique has been successfully applied for DTI prediction in previ-
ous studies. In this work, we develop the DTI prediction model based on logistic matrix
factorization (LMF) [35], which has been demonstrated to be effective for personalized recom-
mendations. The primary idea of applying LMF for DTI prediction is to model the probability
that a drug would interact with a target. In particular, both drugs and targets are mapped into a
shared latent space, with a low dimensionality r, where r�min(m, n). The properties of a

drug di and a target tj are described by two latent vectors ui 2 R
1�r and vj 2 R

1�r, respectively.

Then, the interaction probability pij of a drug-target pair (di, tj) is modeled by the following
logistic function:

pij ¼
exp ðuiv

>
j Þ

1þ exp ðuiv
>
j Þ

: ð1Þ

For simplicity, we further denote the latent vectors of all drugs and all targets byU 2 R
m�r and

V 2 R
n�r respectively, where ui is the i

th row in U and vj is the j
th row in V.

In DTI prediction tasks, the observed interacting drug-target pairs have been experimentally
verified, thus they are more trustworthy and important than the unknown pairs. Towards a
more accurate modeling for DTI prediction, we propose to assign higher importance levels to
the interaction pairs than unknown pairs. In particular, each interaction pair is treated as c
(c� 1) positive training examples, and each unknown pair is treated as a single negative train-
ing example. Here, c is a constant used to control the importance levels of observed interactions
and is empirically set to 5 in the experiments. This importance weighting strategy has been
demonstrated to be effective for personalized recommendations [35–37]. However, to the best
of our knowledge, it has not been explored for DTI prediction in previous studies.

By assuming that all the training examples are independent, the probability of the observa-
tions is as follows:

pðYjU;VÞ ¼
Y

1�i�m;1�j�n;yij¼1
p
yij
ij ð1� pijÞð1�yijÞ

h ic0@ 1A�
Y

1�i�m;1�j�n;yij¼0
p
yij
ij ð1� pijÞð1�yijÞ

0@ 1A:

ð2Þ

Note that when yij = 1, c(1 − yij) = 1 − yij, and when yij = 0, cyij = yij. Hence, we can rewrite

Table 1. The statistics of the DTI datasets from [31].

Nuclear Receptor GPCR Ion Channel Enzyme

Number of drugs 54 223 210 445

Number of targets 26 95 204 664

Number of interaction pairs 90 635 1476 2926

Average number of drugs per target 3.46 6.68 7.24 4.41

Average number of targets per drug 1.67 2.85 7.03 6.58

Sparsity of the interaction matrix 93.59% 97.00% 96.55% 99.01%

Percentage of drugs that have only one interaction target 72.22% 47.53% 38.57% 39.78%

Percentage of targets that have only one interaction drug 30.77% 35.79% 11.27% 43.37%

doi:10.1371/journal.pcbi.1004760.t001
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Eq (2) as follows:

pðYjU;VÞ ¼
Y

1�i�m;1�j�n;yij¼1
p
cyij
ij ð1� pijÞð1�yijÞ

0@ 1A�
Y

1�i�m;1�j�n;yij¼0
p
cyij
ij ð1� pijÞð1�yijÞ

0@ 1A
¼

Ym
i¼1

Yn
j¼1

p
cyij
ij ð1� pijÞð1�yijÞ:

ð3Þ

In addition, we also place zero-mean spherical Gaussian priors on the latent vectors of
drugs and targets as:

pðUjs2
dÞ ¼

Ym
i¼1

N ðuij0; s2
dIÞ; pðVjs2

t Þ ¼
Yn
j¼1

N ðvjj0; s2
t IÞ; ð4Þ

where s2
d and s

2
t are parameters controlling the variances of Gaussian distributions, and I

denotes the identity matrix. Hence, through a Bayesian inference, we have

pðU;VjY; s2
d; s

2
t Þ / pðYjU;VÞpðUjs2

dÞpðVjs2
t Þ: ð5Þ

The log of the posterior distribution is thus derived as follows:

log pðU;VjY; s2
d; s

2
t Þ ¼

Xm
i¼1

Xn

j¼1
cyijuiv

>
j � ð1þ cyij � yijÞ log 1þ exp ðuiv

>
j Þ

h i
� 1

2s2
d

Xm
i¼1
k ui k22 �

1

2s2
t

Xn

j¼1
k vj k22 þC;

ð6Þ

where C is a constant term independent of the model parameters (i.e., U and V). The model
parameters can then be learned by maximizing the posterior distribution, which is equivalent
with minimizing the following objective function:

min
U;V

Xm
i¼1

Xn

j¼1
ð1þ cyij � yijÞ log 1þ exp ðuiv

>
j Þ

h i
� cyijuiv

>
j þ

ld
2
k U k2F þ

lt
2
k V k2F ; ð7Þ

where ld ¼ 1
s2
d
, lt ¼ 1

s2t
, and k�kF denotes the Frobenius norm of a matrix. The problem in Eq

(7) can be solved using an alternating gradient descent method [35].

Regularized by Neighborhood
Through mapping both drugs and targets into a shared latent space, the LMF model can effec-
tively estimate the global structure of the DTI data. However, LMF ignores the strong neigh-
borhood associations among a small set of closely related drugs or targets. Thus, we propose to
exploit the nearest neighborhood of a drug and that of a target to further improve the DTI pre-
diction accuracy. For a drug di, we denote the set of its nearest neighbors by N(di) 2 D\di,
where N(di) is constructed by choosing K1 most similar drugs with di. Then, we construct the
set N(tj) 2 T\tj, which consists of the K1 most similar targets with tj. In the experiments, we
empirically set K1 to 5.
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In this paper, the drug neighborhood information is represented using an adjacency matrix
A, where the (i, μ) element aiμ is defined as follows:

aim ¼
sdim if dm 2 NðdiÞ

0 otherwise:
ð8Þ

(

Similarly, the adjacency matrix used to describe the target neighborhood information is
denoted by B, where its (j, ν) element bjν is defined as follows:

bjn ¼
stjn if tn 2 NðtjÞ

0 otherwise:
ð9Þ

(

Note that the adjacency matrices A and B are not symmetric.
The primary idea of exploiting the drug neighborhood information for DTI prediction is to

minimize the distances between di and its nearest neighbors N(di) in the latent space. This
objective can be achieved by minimizing the following objective function:

a
2

Xm
i¼1

Xm
m¼1

aimk ui � um k2F

¼ a
2

Xm
i¼1
ð
Xm
m¼1

aimÞuiu
>
i þ

Xm
m¼1
ð
Xm
i¼1

aimÞumu
>
m

" #
� a
2
trðU>AUÞ � a

2
trðU>A>UÞ

¼ a
2
trðU>LdUÞ;

ð10Þ

where tr(�) is the trace of a matrix, Ld ¼ ðDd þ eDdÞ � ðAþA>Þ.Dd and eDd are two diagonal

matrices, in which the diagonal elements are Dd
ii ¼

Pm
m¼1 aim and eDd

mm ¼
Pm

i¼1 aim respectively.

Moreover, we also exploit the neighborhood information of targets for DTI prediction by mini-
mizing the following objective function:

b
2

Xn

j¼1

Xn

n¼1
bjnk vj � vn k2F ¼

b
2
trðV>LtVÞ; ð11Þ

where Lt ¼ ðDt þ eDtÞ � ðBþB>Þ,Dt and eDt are two diagonal matrices, in which the diago-

nal elements are Dt
jj ¼

Pn
n¼1 bjn and eDd

nn ¼
Pn

j¼1 bjn. Note that the proposed neighborhood reg-

ularization only considers influences from the K1 nearest neighbors of each drug and each
target. It is different from the graph Laplacian constraints used in previous studies [38, 39]
which consider influences from all similar drugs and targets. Clearly, given a drug-target pair,
we leverage their nearest neighbors, instead of all the neighbors that could potentially introduce
noisy information, to enhance the prediction accuracy.

NRLMF
The final DTI prediction model can be formulated by considering the drug-target interactions
as well as the neighborhood of drugs and targets. By plugging Eqs (10) and (11) into Eq (7), the
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proposed NRLMF model is formulated as follows:

min
U;V

Xm
i¼1

Xn

j¼1
ð1þ cyij � yijÞ ln 1þ exp ðuiv

>
j Þ

h i
� cyijuiv

>
j

þ 1

2
tr U>ðldIþ aLdÞU� �þ 1

2
tr V>ðltIþ bLtÞV� �

: ð12Þ

The optimization problem in Eq (12) can be solved by an alternating gradient ascent proce-
dure. Denoting the objective function in Eq (12) by L, the partial gradients with respect to U
and V are as follows:

@L
@U

¼ PVþ ðc� 1ÞðY�PÞV� cYVþ ðldIþ aLdÞU
@L
@V

¼ P>Uþ ðc� 1ÞðY> �P>ÞU� cY>Uþ ðltIþ bLtÞV;

ð13Þ

whereP 2 R
m�n, in which the (i, j) element is pij (see Eq (1)),� denotes the Hadamard prod-

uct of two matrices. To accelerate the convergence of the gradient descent optimization meth-
ods, we use the AdaGrad algorithm [40] to adaptively choose the gradient step size. The details
of the optimization algorithm to the proposed NRLMF model are described in Algorithm 1,
where U and V are randomly initialized using a Gaussian distribution with mean 0, standard
deviation 1ffiffi

r
p .

Algorithm 1: NRLMF
Input: Y, Sd, St, c, r, K1, K2, λd, λt, α, β, γ

Output: U, V
1 Initialize U and V randomly, and set φik = 0, �jk = 0, 81� i� m, 1� j� n,
and 1� k� r;
2 Construct the adjacency matrices A and B according to Eq (8) and Eq (9)
respectively;
3 Compute the neighborhood regularization matrices Ld and Lt according to Eq
(10) and Eq (11) respectively;
4 for t = 1, . . ., max_iter do
5 Gd  @L

@U
; // fix V and compute the gradient with respect to U

6 for i = 1, . . ., m do
7 for k = 1, . . ., r do

// gdik and uik are the (i, k) element in Gd and U respectively.
8 φik  φik þ gdik � gdik
9 uik  uik � g

gd
ikffiffiffiffi
φik
p ; // update each element of di’s latent vector

10 Gt  @L
@V
; // fix U and compute the gradient with respect to V

11 for j = 1, . . ., n do
12 for k = 1, . . ., r do

// gtjk and vjk are the (j, k) element in Gt and V respectively.

13 �jk  �jk þ gtjk � gtjk
14 vjk  vjk � g

gt
jkffiffiffiffi
�jk
p ; // update each element of tj’s latent vector

Once the latent vectors U and V have been learned, the probability associated with any
unknown drug-target pair (di, tj) can be predicted by Eq (1). However, in the training proce-
dure, the latent vectors of drugs belonging to the negative drug set D− and those of the targets
belonging to the negative target set T− are learned solely based on negative observations (i.e.,
unknown pairs). As we know, some negative observations may be potential positive DTIs. Due
to such uncertainty over negative observations, the learned latent vectors of the negative drugs
and targets may not be accurate enough to describe their properties. One remedy for this
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problem is to replace the latent vector of a negative drug/target using the linear combination of
the latent vectors of its nearest neighbors in the positive set. For a drug di 2 D−, we denote the
set of its K2 nearest neighbors in D+ by N+(di). Similarly, for a target tj 2 T−, the set of its K2

nearest neighbors in T+ is denoted by N+(tj). Note that N
+(di) and N

+(tj) are built using the
same criteria as that used to construct the neighborhood in the training procedure. Then, the
prediction of the interaction probability of a drug-target pair (ui, vj) is modified as,

p̂ij ¼
exp ðeu iev>j Þ

1þ exp ðeu iev>j Þ ; ð14Þ

where

eu i ¼
ui if di 2 Dþ

1P
m2NþðdiÞs

d
im

X
m2NþðdiÞ

sdimum if di 2 D�;

8>><>>:
ev j ¼

vj if tj 2 Tþ

1P
n2NþðtjÞs

t
jn

X
n2NþðtjÞ

stjnvn if tj 2 T�:

8>><>>:
ð15Þ

Note that Eq (15) shows a general case for smoothing the learned drug-specific and target-spe-
cific latent vectors. In the experiments, K2 is empirically set to 5 to simplify the model.

Results
We have performed extensive experiments to evaluate the performance of the proposed
NRLMF method.

Experimental Settings
Following previous studies [13–15, 19, 24, 27], the performance of the DTI prediction methods
were evaluated under five trials of 10-fold cross-validation (CV), and both AUC and AUPR
were used as the evaluation metrics. In particular, for each method, we performed 10-fold CV
for five times, each time with a different random seed. Then, we calculated an AUC score in
each repetition of CV and reported a final AUC score that was the average over the five repeti-
tions. The AUPR score was calculated in the same manner.

The drug-target interaction matrixY 2 R
m�n hadm rows for drugs and n columns for tar-

gets. We conducted CV under three different settings as follows [19, 27, 41].

• CVS1: CV on drug-target pairs—random entries in Y (i.e., drug-target pairs) were selected
for testing.

• CVS2: CV on drugs—random rows in Y (i.e., drugs) were blinded for testing.

• CVS3: CV on targets—random columns in Y (i.e., targets) were blinded for testing.

Under CVS1, in each round, we used 90% of elements in Y as training data and the remaining
10% of elements as test data. Under CVS2, in each round, we used 90% of rows in Y as training
data and the remaining 10% of rows as test data. Under CVS3, in each round, we used 90% of
columns in Y as training data and the remaining 10% of columns as test data. Note that these
three settings CVS1, CVS2, and CVS3 refer to the DTI prediction for 1) new (unknown) pairs,
2) new drugs, and 3) new targets, respectively.

Neighborhood Regularized LMF for DTI Prediction
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In this paper, we compared the proposed NRLMFmethod with the following state-of-the-art
methods, namely, NetLapRLS [13], KBMF2K [24], BLM-NII [17], WNN-GIP [15], and CMF
[27], by testing their prediction capabilities under the above three settings. The settings of the
hyper-parameters of each method were as follows. For the matrix factorization based methods,
the dimensionality of the latent space r was selected from {50, 100} [27]. In NRLMF, we set
λd = λt and chose these two parameters from {2−5, 2−4, � � �, 21}. The neighborhood regularization
parameters α and β of NRLMF were selected from {2−5, 2−4, � � �, 22} and {2−5, 2−4, � � �, 20},
respectively, and the optimal learning rate γ was selected from {2−3, 2−2, � � �, 20}. In KBMF2K,
the margin parameter ν was selected from {0, 1}. For CMF, the regularization coefficient λl was
chosen from {2−2, � � �, 21}, while λd and λt were chosen from {2−3, 2−2, � � �, 25}. For NetLapRLS,
we set γd2/γd1 = γp2/γp1, βd = βp, and chose their values from {10−6, 10−5, � � �, 102}. In BLM-NII,
the linear combination weight α was chosen from {0.0, 0.1, � � �, 1.0}, and themax function was
used to integrate the interaction scores predicted independently from the drug side and the tar-
get side. For WNN-GIP, the decay value T was chosen from {0.1, 0.2, � � �, 0.9}. We set the
weighting parameters αd = αt and chose their values from {0.0, 0.1, � � �, 1.0}. For a machine
learning methods, the most suitable hyper-parameters on different datasets are usually different.
Thus, we need to choose the optimal hyper-parameters for each method on different datasets.
In the literature, the most widely used hyper-parameter optimization strategies are grid search
and manual search [42]. In this work, we adopted grid search to choose the optimal hyper-
parameters for each DTI prediction method on each dataset. As part of future work, we would
like to use the random search strategy proposed in [42] to improve the efficiency of hyper-
parameter optimization for DTI prediction methods.

Comparisons with the State-of-the-Arts
Table 2 shows the AUC and AUPR values obtained by various methods under the setting
CVS1. As shown in Table 2, NRLMF attains the best AUC values over all datasets. The final
average AUC obtained by NRLMF is 0.974, which is 2.10% better than the second method
BLM-NII. Moreover, NRLMF achieves the highest AUPR over three datasets (i.e., Nuclear
Receptor, GPCR, and Enzyme) and obtains the second best AUPR on the Ion Channel dataset,
where CMF outperforms NRLMF (0.923 for CMF vs. 0.906 for NRLMF). The average AUPR
obtained by NRLMF is 0.819, which is 4.73% higher than that obtained by the second best
method CMF. In summary, under the setting CVS1, NRLMF outperforms other competing
methods, being statistically significant except two comparison cases with CMF at the signifi-
cant level of 0.05 using t-test.

The results obtained under the setting CVS2 for new drugs are shown in Table 3. In particu-
lar, NRLMF outperforms the other methods over the Nuclear Receptor, GPCR, and Ion Chan-
nel datasets, in terms of AUC. On the Enzyme dataset, WNN-GIP achieves a little better AUC
than NRLMF (0.882 for WNN-GIP vs. 0.871 for NRLMF). Over all datasets, NRLMF obtains
the best average AUC value 0.870. For the AUPR metric, NRLMF achieves the best results
on all datasets except the GPCR dataset, where KBMF2K and CMF are slightly better than
NRLMF. Overall, NRLMF achieves the best average AUPR 0.403, which is 13.84% higher than
the second-best method KBMF2K and 17.84% higher than the third-best method CMF.

In addition, Table 4 summarizes the results obtained under the setting CVS3 for new tar-
gets. We observe that WNN-GIP outperforms other methods on the Nuclear Receptor dataset,
in terms of AUC and AUPR. On the other three datastes, the proposed NRLMF achieves the
best AUC and AUPR values. Over all datasets, WNN-GIP achieves the highest average AUC
value 0.940, which is 1.29% better than the second-best method NRLMF. For the AUPR
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measure, NRLMF achieves the best average AUPR 0.651, which is a 11.09% better than the sec-
ond-best method WNN-GIP.

The task under the setting CVS1 focuses on predicting the unknown pair (di, tj), where at
least one DTI is known for di and tj respectively in the training data. However, the tasks under
CVS2 and CVS3 focus on the predictions for new drugs and new targets respectively, where no
DTIs are observed for new drugs and new targets in the training data. Therefore, the task
under CVS1 is easier than those under CVS2 and CVS3, and the AUC and AUPR values
obtained by DTI prediction methods under CVS1 are higher than those obtained under CVS2
and CVS3 as expected. For all CV settings, the proposed NRLMF method achieves the best
AUC values in 10 out of 12 scenarios (i.e., 3 CV settings on 4 datasets) via integrating LMF
with neighborhood regularization. In the remaining 2 scenarios (i.e., CVS2 on Enzyme dataset

Table 2. The AUC and AUPR obtained under the setting CVS1.

AUC

Dataset NetLapRLS BLM-NII WNN-GIP KBMF2K CMF NRLMF

Nuclear Receptor 0.850±0.021* 0.905±0.023* 0.901±0.017* 0.877±0.023* 0.864±0.026* 0.950 ±0.011

GPCR 0.915±0.006* 0.950±0.006* 0.944±0.005* 0.926±0.006* 0.940±0.007* 0.969 ±0.004

Ion Channel 0.969±0.003* 0.981±0.002* 0.959±0.003* 0.961±0.003* 0.981±0.002* 0.989 ±0.001

Enzyme 0.972±0.002* 0.978±0.002* 0.964±0.003* 0.905±0.003* 0.969±0.002* 0.987 ±0.001

Avg. 0.927 0.954 0.942 0.917 0.939 0.974

AUPR

Nuclear Receptor 0.465±0.044* 0.659±0.039* 0.589±0.034* 0.534±0.050* 0.584±0.042* 0.728 ±0.041

GPCR 0.616±0.015* 0.524±0.024* 0.520±0.021* 0.578±0.018* 0.745±0.013 0.749 ±0.015

Ion Channel 0.837±0.009* 0.821±0.012* 0.717±0.020* 0.771±0.009* 0.923 ±0.006 0.906±0.008

Enzyme 0.789±0.005* 0.752±0.011* 0.706±0.017* 0.654±0.008* 0.877±0.005* 0.892 ±0.006

Avg. 0.677 0.689 0.633 0.634 0.782 0.819

“Avg.” shows the average AUC/AUPR over four datasets. The best results in each row are in bold faces and the second best results are underlined.

* indicates NRLMF significantly outperforms the competitor with p < 0.05 using t-test.

doi:10.1371/journal.pcbi.1004760.t002

Table 3. The AUC and AUPR obtained under the setting CVS2.

AUC

Dataset NetLapRLS BLM-NII WNN-GIP KBMF2K CMF NRLMF

Nuclear Receptor 0.789±0.039* 0.799±0.037* 0.890±0.023 0.844±0.023* 0.818±0.036* 0.900±0.021

GPCR 0.817±0.015* 0.838±0.016* 0.891±0.010 0.839±0.020* 0.857±0.014* 0.895±0.011

Ion Channel 0.757±0.025* 0.796±0.025 0.797±0.028 0.799±0.019 0.743±0.029* 0.813 ±0.027

Enzyme 0.786±0.023* 0.813±0.022* 0.882±0.015 0.713±0.029* 0.829±0.019* 0.871±0.017

Avg. 0.787 0.812 0.865 0.799 0.812 0.870

AUPR

Nuclear Receptor 0.417±0.048* 0.438±0.048* 0.504±0.056 0.477±0.049 0.488±0.050 0.545±0.054

GPCR 0.229±0.017* 0.315±0.022* 0.295±0.025* 0.366±0.024 0.365±0.022 0.364±0.023

Ion Channel 0.200±0.026* 0.302±0.033 0.258±0.032* 0.308±0.038 0.286±0.030* 0.344±0.033

Enzyme 0.123±0.009* 0.253±0.023* 0.278±0.037* 0.263±0.033* 0.229±0.020* 0.358±0.040

Avg. 0.242 0.327 0.334 0.354 0.342 0.403

“Avg.” shows the average AUC/AUPR over four datasets. The best results in each row are in bold faces and the second best results are underlined.

* indicates NRLMF significantly outperforms the competitor with p < 0.05 using t-test.

doi:10.1371/journal.pcbi.1004760.t003
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and CVS3 on Nuclear Receptor dataset), WNN-GIP attains better AUC values than NRLMF.
The results in these 2 scenarios can be interpreted as follows. For instance, under CVS2, the
interactions for 10% of the drugs (i.e., the set of negative drugs D−) have been blinded in the
training phase. The latent vectors of D− are learned solely based on negative observations, and
thus are not accurate. This may lead to the inaccuracies of the learned latent vectors of targets
(see Eq (13)). Especially, for the targets with only one interaction, the accuracies of the learned
latent vectors may be drastically reduced. In NRLMF, the latent vectors of negative drugs and
targets are smoothed using their nearest neighbors. However, there is no smoothing for the
latent vectors of targets with only one interaction (see Eq (15)). As such, the performances of
NRLMF under CVS2 may be affected more on the dataset with a higher percentage of targets
that have only one interaction. Interestingly, over 4 datasets, the percentage of targets that have
only one interaction is 30.77%, 35.79%, 11.27%, and 43.37%, for Nuclear Receptor, GPCR, Ion
Channel, and Enzyme, respectively. Enzyme dataset has the highest percentage of targets with
only one interaction, and thus the performance of NRLMF on this dataset under CVS2 is likely
to be affected most. Similarly, the percentage of drugs with only one interaction is 72.22% for
Nuclear Receptor, 47.53% for GPCR, 38.57% for Ion Channel, and 39.78% for Enzyme. Thus,
by blinding the interactions of 10% targets (i.e., under CVS3), the performance of NRLMF on
Nuclear Receptor dataset is the most likely to be affected. For the AUPR metric, NRLMF
attains the best AUPR values in 9 out of 12 scenarios, which is to be expected, since the meth-
ods that optimize AUC are not guaranteed to optimize AUPR [43]. In addition, the target
sequence similarity St is more reliable and informative than the drug chemical similarity
Sd[14]. Hence, the information propagated from the neighbors to the new targets by the regu-
larization term in Eq (11) will be more accurate than those to new drugs by the term in Eq (10).
This explains the results well that various methods usually achieve higher AUC and AUPR
under CVS3 than CVS2.

Neighborhood Benefits
The proposed NRLMF method incorporates neighborhood information for DTI prediction via
the neighborhood regularization in training and the neighborhood smoothing in prediction.

Table 4. The AUC and AUPR obtained under the setting CVS3.

AUC

Dataset NetLapRLS BLM-NII WNN-GIP KBMF2K CMF NRLMF

Nuclear receptor 0.655±0.046* 0.534±0.086* 0.935±0.017 0.668±0.060* 0.680±0.066* 0.851±0.027

GPCR 0.770±0.024* 0.778±0.025* 0.926±0.013 0.882±0.016* 0.837±0.019* 0.930±0.012

Ion Channel 0.914±0.012* 0.914±0.012* 0.950±0.007* 0.938±0.008* 0.905±0.012* 0.964±0.007

Enzyme 0.905±0.014* 0.909±0.014* 0.947±0.008* 0.876±0.012* 0.915±0.013* 0.966±0.005

Avg. 0.811 0.784 0.940 0.841 0.834 0.928

AUPR

Nuclear Receptor 0.449±0.074 0.402±0.083 0.531±0.073 0.324±0.071 0.400±0.077 0.449±0.079

GPCR 0.334±0.025* 0.341±0.034* 0.550±0.047 0.516±0.045 0.433±0.028* 0.556±0.038

Ion Channel 0.737±0.020* 0.762±0.020 0.696±0.035* 0.677±0.021* 0.620±0.027* 0.785±0.028

Enzyme 0.669±0.021* 0.735±0.022* 0.566±0.038* 0.565±0.023* 0.698±0.021* 0.812±0.018

Avg. 0.547 0.560 0.586 0.521 0.538 0.651

“Avg.” shows the average AUC/AUPR over four datasets. The best results in each row are in bold faces and the second best results are underlined.

* indicates NRLMF significantly outperforms the competitor with p < 0.05 using t-test.

doi:10.1371/journal.pcbi.1004760.t004
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Next, we will study how the neighborhood information benefits DTI prediction under the set-
ting CVS1. For the results under CVS2 and CVS3, please refer to the supporting S1–S8 Figs for
details.

Fig 1 shows the AUC values obtained by NRLMF with respect to different settings of the
neighborhood size K1 used for the neighborhood regularization in the training procedure. As
shown in Fig 1, the optimal values of K1 are 3, 5, 5, and 5, for four datasets, respectively. Under
the setting CVS1, the average AUC of NRLMF is 0.958 when K1 is set as 0 (i.e., without neigh-
borhood regularization in training), while it is increased to 0.974 when K1 is set as 5. Fig 2 illus-
trates the AUPR values with respect to different settings of K1. We find that NRLMF achieves
the best AUPR by setting K1 as 7, 7, 9, and 3, respectively. When K1 = 0, the average AUPR
achieved by NRLMF without neighborhood regularization is 0.772, while it is increased to
0.818 by setting K1 = 5. These results highlight that the neighborhood regularization is highly
desirable for DTI prediction.

In addition, we also study the impact of the neighborhood size K2 used for neighborhood
smoothing in the prediction procedure. Figs 3 and 4 plot the AUC and AUPR values obtained
by NRLMF with respect to different settings of K2. As shown in Fig 3, NRLMF achieves best

Fig 1. Performance trend of NRLMF on the benchmark datasets (a) Nuclear Receptor, (b) GPCR, (c) Ion Channel, and (d) Enzyme, measured by
AUCwith different settings of K1 under CVS1. The best competitors on these datasets are (a) BLM-NII, (b) BLM-NII, (c) BLM-NII and CMF, and (d)
BLM-NII, respectively.

doi:10.1371/journal.pcbi.1004760.g001
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AUC via setting K2 as 5, 3, 5, and 5, respectively. For AUPR measure, the best results are
achieved by setting K2 as 5, 3, 9, and 5, respectively. Over all datasets, when K2 = 0 (i.e., without
neighborhood smoothing in prediction), the average AUC and AUPR values obtained by
NRLMF are 0.950 and 0.772, respectively, while these values are 0.974 and 0.819 when K2 = 5.
These observations demonstrate the effectiveness of nearest neighbors to predict the interac-
tion probability for a given drug-target pair. In addition, when we set K1 and K2 as 5, we can
get reasonably good results for both AUC and AUPR, respectively.

Parameter Sensitivity Analysis for c and r
In this section, we focus on the sensitivity analysis for other two parameters, i.e., the impor-
tance levels of observed DTIs c and the dimensionality of the latent space r, under the setting
CVS1. As to the performance trend of NRLMF with respect to different settings for c and r
under CVS2 and CVS3, please refer to the supporting S9–S16 Figs for details.

As shown in Fig 5, when the importance level c is set as 1 (i.e., without importance weight-
ing), NRLMF outperforms other competitors on Nuclear Receptor, GPCR, and Ion Channel
datasets, and is comparable with the best competitor on the Enzyme dataset (0.971 for NRLMF
vs. 0.978 for the best competitor), in terms of AUC. This again highlights the effectiveness of

Fig 2. Performance trend of NRLMF on the benchmark datasets (a) Nuclear Receptor, (b) GPCR, (c) Ion Channel, and (d) Enzyme, measured by
AUPRwith different settings ofK1 under CVS1. The best competitors on these datasets are (a) BLM-NII, (b) CMF, (c) CMF, and (d) CMF, respectively.

doi:10.1371/journal.pcbi.1004760.g002
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integrating logistic matrix factorization with neighborhood regularization for DTI prediction.
By setting c = 5, NRLMF is able to achieve the optimal AUC values and outperforms all com-
peting methods over all datasets. For the AUPR metric, Fig 6 shows that NRLMF with setting
c = 1 outperforms other competitors on the Nuclear Receptor dataset and performs poorer
than the best competitor on the remaining three datasets. This is expected, since the methods
that optimize AUC are not guaranteed to optimize AUPR [43]. In addition, NRLMF achieves
better AUPR under the setting c> 1 than under the setting c = 1, on the GPCR, Ion Channel,
and Enzyme datasets. On the Nuclear Receptor dataset, NRLMF attains slightly better AUPR
under the setting c = 1 than under the other settings. These observations demonstrate that
assigning more importance on the observed interactions can boost the performance of
NRLMF. However, when c is large enough, the performance of NRLMF tends to become satu-
rated, where further increasing c has very limited improvement.

The impact of the dimensionality of the latent space r on the performance of NRLMF, in
terms of AUC and AUPR, is shown in Figs 7 and 8, respectively. We find that larger r generally
achieves better results. The two exceptions are the AUPR measure on Nuclear Receptor and
Ion Channel datasets, where r = 30 leads to slightly better results than r = 50. Nevertheless,

Fig 3. Performance trend of NRLMF on the benchmark datasets (a) Nuclear Receptor, (b) GPCR, (c) Ion Channel, and (d) Enzyme, measured by
AUCwith different settings of K2 under CVS1. The best competitors on these datasets are (a) BLM-NII, (b) BLM-NII, (c) BLM-NII and CMF, and (d)
BLM-NII, respectively.

doi:10.1371/journal.pcbi.1004760.g003
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r = 100 achieves the best results or the second best results measured by AUC and AUPR, on all
datasets. Thus, the parameter r is recommended to be set in the range [50, 100], which is con-
sistent with previous studies [27].

Predicting Novel Interactions
In this section, we evaluate the practical ability of NRLMF on predicting novel interactions,
which refer to interactions with high probabilities that do not occur in the benchmark datasets.
Following similar settings in previous studies [12, 14, 15, 19, 24], four well-known biological
databases, i.e., ChEMBL [2], DrugBank [30], KEGG [4], and Matador [5], are used as refer-
ences to verify whether the predicted new DTIs are true or not.

To conduct this study, we have collected the online profiles associated with the drugs and
targets in each benchmark dataset from the online reference databases and parsed the approved
drug-target interactions. Over all benchmark datasets, there are 791 drugs and 986 targets, and
1,999 novel interactions have been confirmed in one or more reference databases. The number
of confirmed novel interactions in Nuclear Receptor, GPCR, Ion Channel, and Enzyme data-
sets are 21, 512, 1034, and 432, respectively. For each dataset, the entire dataset is used as train-
ing set. The unknown interactions will be ranked based on the interaction probabilities

Fig 4. Performance trend of NRLMF on the benchmark datasets (a) Nuclear Receptor, (b) GPCR, (c) Ion Channel, and (d) Enzyme, measured by
AUPRwith different settings ofK2 under CVS1. The best competitors on these datasets are (a) BLM-NII, (b) CMF, (c) CMF, and (d) CMF, respectively.

doi:10.1371/journal.pcbi.1004760.g004
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predicted using the optimal parameters learned under CVS1 instead of those learned under
other two settings (i.e., CVS2 and CVS3). This is because that our objective is to predict those
novel likely drug-target interactions, instead of focusing a new drug or a new target. Then, the
predicted novel interactions are the top ranked unknown drug-target interaction pairs.

Table 5 shows the top 30 novel interactions predicted by NRLMF on the GPCR dataset. In
this table, the DTIs are bolded to indicate that they exist in one or more of the reference data-
bases. The third column of Table 5 shows the predicted interaction probability of a drug-target
pair. For each pair, the databases containing it are listed in the last column of the table, where
C is short for ChEMBL,D for DrugBank, K for KEGG, andM for Matador. For example, the
highest ranked DTI is (D00283, hsa1814) with predicted probability 0.9181, which exists in the
databases ChEMBL, DrugBank, and Metador. We find that 67% of the predictions (20 out of
30) are currently confirmed in at least one of the reference databases. Since these databases are
still being updated as new DTIs are found, the fraction of new DTIs correctly predicted by
NRLMF may increase in the future. This encouraging result that NRLMF can successfully
detect quite a few novel interactions that are not in the GPCR dataset, implies that NRLMF is
very effective in predicting new true DTIs from sparse matrices consisted of very few DTIs.

Fig 5. Performance trend of NRLMF on the benchmark datasets (a) Nuclear Receptor, (b) GPCR, (c) Ion Channel, and (d) Enzyme, measured by
AUCwith different settings of c under CVS1. The best competitors on these datasets are (a) BLM-NII, (b) BLM-NII, (c) BLM-NII and CMF, and (d) BLM-NII,
respectively.

doi:10.1371/journal.pcbi.1004760.g005
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Finally, Table 6 summarizes the fractions of true DTIs among the top N (N = 10, 30, 50) pre-
dictions generated by various DTI methods, using the optimal parameters learned under
CVS1. We observe that NRLMF is able to achieve consistently accurate prediction results
across all the datasets. For example, the fractions of true DTIs among the top 10 predicted
interactions are 50%, 60%, 50%, and 90% for all datasets, respectively. Compared with other
methods, NRLMF is able to achieve comparable or even better prediction results across all the
datasets. These observations indicate that the proposed algorithm is very effective for finding
novel DTIs, thus it may help biologists or clinicians significantly reduce the cost of biological
test. For more details about the novel DTI prediction, please refer to the supporting S1–S4
Texts, where the top 1000 novel DTIs predicted by NRLMF are provided.

Discussion
This paper presents a novel drug-target interaction prediction method, namely neighborhood
regularized logistic matrix factorization (NRLMF). The novelty of NRLMF comes from inte-
grating logistic matrix factorization with neighborhood regularization to predict the interaction
probability of a given drug-target pair. Specifically, both drugs and targets are mapped into a
shared latent space, and the drug-target interactions are modeled using the linear combinations

Fig 6. Performance trend of NRLMF on the benchmark datasets (a) Nuclear Receptor, (b) GPCR, (c) Ion Channel, and (d) Enzyme, measured by
AUPRwith different settings of c under CVS1. The best competitors on these datasets are (a) BLM-NII, (b) CMF, (c) CMF, and (d) CMF, respectively.

doi:10.1371/journal.pcbi.1004760.g006
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of the drug-specific and target-specific latent vectors. In addition, higher importance level is
assigned to the positive observations (i.e., interaction pairs), while lower level is for negative
observations (i.e., unknown pairs). Moreover, the neighborhood regularization based on the
drug similarities and target similarities is utilized to further improve the prediction ability of
the model.

To evaluate the performance of NRLMF, an extensive set of experiments were performed on
four benchmark datasets, compared with five state-of-the-art DTI prediction methods. The
promising results further validated the empirical efficacy of the proposed algorithm. For exam-
ple, on average, NRLMF attains the best AUC values under CVS1 and CVS2, and the second
best AUC value under CVS3. In terms of AUPR, NRLMF achieves the best averaged AUPR
values over all datasets, under all three CV settings. These results indicate that NRLMF outper-
forms existing state-of-the-art methods in predicting new pairs and new drugs, and is compa-
rable or even better than existing methods in predicting new targets. However, on the dataset
with a large fraction of drugs which have only one interaction (e.g., 72.22% on the Nuclear
Receptor dataset), WNN-GIP may outperform NRLMF in predicting new targets. On the

Fig 7. Performance trend of NRLMF on the benchmark datasets (a) Nuclear Receptor, (b) GPCR, (c) Ion Channel, and (d) Enzyme, measured by
AUCwith different settings of r under CVS1. The best competitors on these datasets are (a) BLM-NII, (b) BLM-NII, (c) BLM-NII and CMF, and (d) BLM-NII,
respectively.

doi:10.1371/journal.pcbi.1004760.g007
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dataset with a large fraction of targets which have only one interaction (e.g., 43.37% on the
Enzyme dataset), WNN-GIP may achieve better results than NRLMF in predicting new drugs.
In addition, the high practical predicting ability of NRLMF have also been verified. For exam-
ple, on the Enzyme dataset, 90% of the top 10 novel DTIs predicted by NRLMF have been
confirmed by the latest version of four well-known biological databases, including ChEMBL,
DrugBank, KEGG, and Matador.

The optimization problem of NRLMF is solved using an alternating gradient descent optimi-
zation algorithm, the time complexity of which isO(iter � r �m � n), where iter denotes the number
of iterations. However, the time complexity of the solutions to the other two matrix factorization
based DTI prediction methods (i.e., KBMF2K and CMF) are O(iter � (r �m3+r � n3+r3)) and
O(iter � (r2 � (m+n)2+r3 � (m+n))), respectively. Therefore, NRLMF is more efficient than
KBMF2K and CMF. In addition, NRLMF can also be extended to incorporate multiple types of
similarities from drugs and targets for DTI prediction. One direction for future work is to couple
logistic matrix factorization with the multiple kernel learning techniques [44]. Another potential
direction for future work is to exploit boosting technique, e.g., the AdaBPR model in [45], to
improve the prediction accuracy of the proposed NRLMFmethod.

Fig 8. Performance trend of NRLMF on the benchmark datasets (a) Nuclear Receptor, (b) GPCR, (c) Ion Channel, and (d) Enzyme, measured by
AUPRwith different settings of r under CVS1. The best competitors on these datasets are (a) BLM-NII, (b) CMF, (c) CMF, and (d) CMF, respectively.

doi:10.1371/journal.pcbi.1004760.g008
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Table 5. The top 30 novel interactions predicted by NRLMF on GPCR dataset.

Rank Drug Target Probability Databases

1 D00283 hsa1814 0.9181 C D M

2 D02358 hsa154 0.8828 D

3 D04625 hsa154 0.8550 D K

4 D02614 hsa154 0.8373

5 D00227 hsa136 0.8370 C

6 D01712 hsa136 0.7736 D

7 D01352 hsa5731 0.7718

8 D02250 hsa6751 0.7611 K

9 D02884 hsa136 0.7605

10 D02354 hsa1814 0.7581

11 D02147 hsa153 0.7500 D M

12 D01871 hsa3269 0.7266

13 D00371 hsa134 0.7064 C D K

14 D00371 hsa135 0.7012 C D K

15 D02725 hsa5737 0.6904

16 D00682 hsa5739 0.6852

17 D04006 hsa135 0.6803 D K

18 D00049 hsa8843 0.6659 D

19 D04006 hsa134 0.6606 D K

20 D00604 hsa147 0.6603 D

21 D00715 hsa1129 0.6584 D K

22 D00503 hsa3356 0.6538

23 D01103 hsa1129 0.6417 K

24 D02359 hsa153 0.6367

25 D00079 hsa5731 0.6117 C D

26 D00765 hsa1128 0.6089

27 D02340 hsa1812 0.6063 D

28 D00442 hsa6753 0.5940 K

29 D00397 hsa1131 0.5829 C D K

30 D00095 hsa155 0.5797 C D K

The confirmed drug-target interaction pairs are in bold faces.

doi:10.1371/journal.pcbi.1004760.t005

Table 6. The fractions of true DTIs among the predicted topN (N = 10, 30, 50) interactions under CVS1.

Nuclear Receptor GPCR Ion Channel Enzyme

Top 10 Top 30 Top 50 Top 10 Top 30 Top 50 Top 10 Top 30 Top 50 Top 10 Top 30 Top 50

NetLapRLS 10% 23% 26% 40% 40% 46% 60% 47% 38% 70% 50% 40%

BLM-NII 30% 27% 16% 70% 60% 58% 30% 30% 34% 70% 60% 46%

WNN-GIP 0% 20% 14% 30% 43% 38% 30% 43% 48% 70% 50% 40%

KBMF2K 40% 30% 22% 90% 53% 52% 100% 83% 84% 70% 43% 28%

CMF 10% 20% 24% 50% 40% 36% 0% 0% 6% 20% 7% 4%

NRLMF 50% 43% 28% 60% 67% 60% 50% 33% 34% 90% 60% 44%

doi:10.1371/journal.pcbi.1004760.t006
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