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ABSTRACT

With the increasing availability of diverse biological information for proteins, integration of heterogeneous data

becomes more useful for many problems in proteomics, such as annotating protein functions, predicting novel protein–

protein interactions and so on. In this paper, we present an integrative approach called InteHC (Integrative

Hierarchical Clustering) to identify protein complexes from multiple data sources. Although integrating multiple sources

could effectively improve the coverage of current insufficient protein interactome (the false negative issue), it could also

introduce potential false-positive interactions that could hurt the performance of protein complex prediction. Our proposed

InteHC method can effectively address these issues to facilitate accurate protein complex prediction and it is summarized

into the following three steps. First, for each individual source/feature, InteHC computes the matrices to store the affinity

scores between a protein pair that indicate their propensity to interact or co-complex relationship. Second, InteHC com-

putes a final score matrix, which is the weighted sum of affinity scores from individual sources. In particular, the weights

indicating the reliability of individual sources are learned from a supervised model (i.e., a linear ranking SVM). Finally, a

hierarchical clustering algorithm is performed on the final score matrix to generate clusters as predicted protein complexes.

In our experiments, we compared the results collected by our hierarchical clustering on each individual feature with those

predicted by InteHC on the combined matrix. We observed that integration of heterogeneous data significantly

benefits the identification of protein complexes. Moreover, a comprehensive comparison demonstrates that InteHC

performs much better than 14 state-of-the-art approaches. All the experimental data and results can be downloaded from

http://www.ntu.edu.sg/home/zhengjie/data/InteHC.
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INTRODUCTION

Protein complexes are of great importance for under-

standing cellular organization and functions. For exam-

ple, RNA-induced silencing complex (RISC complex)1

plays a fundamental role in gene regulation by micro

RNAs (miRNA) and in defence against viral infections by

incorporating one strand of a small interfering RNA

(siRNA) or miRNA. Another example is RNA polymer-

ase II complex,2 which transcribes genetic information

into messages for ribosomes to produce proteins.

Although protein complexes are crucial for many cellular
processes in cell and molecular biology, they are still
largely obtained through small-scale experimental techni-
ques, which are time-consuming and tedious. In addi-
tion, many important protein complexes have not been

detected by current wet-lab experiments. Therefore, com-
putational methods for predicting protein complexes are
highly desired.
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As a large amount of binary protein–protein interac-

tion (PPI) data are now available, it becomes more prev-

alent to detect protein complexes in PPI networks where

nodes are proteins and edges are protein interactions.

There is an observation that protein complexes generally

correspond to dense subgraphs or cliques in PPI net-

works.3 On the basis of this observation, a number of

computational methods are proposed for identifying pro-

tein complexes, such as MCODE,4 MCL,5 DPClus,6

PCP,7 IPCA,8 COACH,9 CMC,10 and so on.

As two large-scale tandem affinity purification with

mass spectrometry (TAP-MS) data were released11,12 in

2006, another batch of algorithms11–18 were proposed

to detect protein complexes from these TAP-MS data.

These methods can be classified into the following two

categories. The methods in the first category compute

the affinity scores between proteins (e.g., the probability

of two proteins to be co-complex members) and convert

the TAP-MS data to a PPI network based on the calcu-

lated affinity scores. Traditional graph clustering methods

are then applied to detect protein complexes in the

obtained PPI networks. The second category is to model

TAP-MS data as bipartite graphs and then detect dense

bipartite subgraphs as protein complexes.14,17

Given the fact that PPI data are inherently noisy (e.g.,

false positives and false negatives), several methods had

integrated other non-PPI sources to assess the reliability

of PPI data for more accurate detection of protein com-

plexes. For example, the above mentioned PCP7 and

CMC10 algorithms utilized the topological weights of

interactions as their reliability for detecting protein com-

plexes. DECAFF19 and STM20 first exploited functional

information of proteins (e.g., Gene Ontology annota-

tions) to assess the reliability of PPI data and then

detected protein complexes from the refined PPI data.

Meanwhile, MATISSE21 integrated gene expression data

with PPI data to increase the confidence of interactions

for the same purpose. More details for the above compu-

tational prediction of protein complexes can be found in

this survey.22 However, each of the above integration

methods generally combines a single data source (e.g.,

gene expression profiles or functional annotations) with

PPI data to refine the quality of the PPI data. Currently,

a highly diverse collection of sources for proteins is avail-

able, e.g., binary PPI data, gene expression profiles, func-

tional Gene Ontology (GO) terms, TAP-MS data, and so

on. Therefore, it is highly motivated to integrate these

multiple heterogeneous sources for predicting protein

complexes.

Although there are many studies on integrating multi-

ple data sources to predict PPI,23–27 integrative methods

for predicting complexes are still rather limited. To the

best of our knowledge, there are two such existing works

as follows. Xia et al.26 integrated multiple data sources

to create a database named IntNetDB for more confident

PPI data and then predicted protein complexes by using

MCODE algorithm on IntNetDB. However, they did not

predict PPI or protein complexes in the model organism

yeast. Another method named CMBI28 integrated PPI

data, gene expression profiles and gene essentiality data

to predict protein complexes.

To address the above issue, we proposed an approach

called InteHC (Integrative Hierarchical Clustering) to

predict protein complexes by integrating multiple data

sources. The overall framework of InteHC is shown in

Figure 1. First, we use individual sources/features to

compute the score matrices that store various protein

affinities between all the pair-wise proteins. Second, we

construct a final score matrix, which is the weighted sum

of the matrices from individual features. In particular,

these weights, indicating the reliability of each individual

data sources, are learned by a supervised model (i.e., a

linear ranking SVM) on a known set of positive and neg-

ative protein–protein interactions. This final score matrix

not only integrates all the individual sources to address

the false-negative issue but also takes the reliability of

each individual sources into consideration to address the

potential false positive issue. Finally, a hierarchical clus-

tering algorithm is then applied to identify protein com-

plexes from the final score matrix. We have conducted

comprehensive experiments to evaluate our predicted

complexes based on several metrics, such as recall, cover-

age rate, and accuracy. The comparison with other meth-

ods shows that the integration of heterogeneous sources

Figure 1
The overall framework of our proposed InteHC method.

M. Wu et al.

2 PROTEINS



significantly improves the coverage and accuracy for pro-

tein complex prediction.

MATERIALS AND METHODS

In this section, we first introduce various data sources

used in this study. And then we provide detailed descrip-

tion of our proposed InteHC method as well as the eval-

uation metrics for predicted protein complexes.

Data source

Our InteHC integrated four data sources for identify-

ing protein complexes, namely, PPI data, Gene Ontology

data, gene expression profiles, and AP-MS data. DIP

database for PPI data was downloaded from Ref. 29. GO

data were downloaded from Ref. 30, while gene expres-

sion data were downloaded from Ref. 31. AP-MS data

were downloaded from Refs. 11 and 12. In summary,

DIP data consist of 4930 proteins and 17,262 interactions

and AP-MS data consist of 6498 purifications involving

2996 bait proteins and 5405 prey proteins.

In addition, 13,424 positive protein–protein interac-

tions for training the linear ranking SVM [please refer to

Eq. (4) in Section “Integration of Evidences”] were

downloaded from Ref. 32. All these positive interactions

are originally collected from the BioGrid database33 and

they are (1) detected by more than three experiments, or

(2) in DIP-core,29 or (3) are high-quality interactions in

Krogan et al.’s12 purification data or Gavin et al.’s11

data. Meanwhile, we have also generated equal-size nega-

tive protein interactions if they do not occur in the posi-

tive interaction set. All the aforementioned data used in

our experiments can also be downloaded from http://

www.ntu.edu.sg/home/zhengjie/data/InteHC.

Individual data sources for protein affinities

Estimation of the affinity scores between proteins is a

crucial step for protein complex prediction.11,18,34,35

In the following, we introduce various protein affinities

from heterogeneous data sources.

FSweight: A topological weighting in PPI networks

FSweight36 was proposed to estimate the functional

similarity between proteins based on their topological

properties (i.e., common neighborhood) in PPI net-

works. In particular, two proteins with more neighbors

in common are more likely to share similar functions. In

this paper, we used the following simplified variant for

FSweight as follows:

SFS p; qð Þ5 23jNp \ Nqj
jNp2Nqj123jNp \ Nqj11

3
23jNp \ Nqj

jNq \ Nqj123jNp \ Nqj11

(1)

where Np includes direct neighbors of the protein p as

well as p itself and Np \ Nq includes the common neigh-

bors between p and q. Thereafter, FS is short for

FSweight in PPI networks.

Gene expression profiles

Given a protein pair (p, q), the proteins’ propensity to

interact can be measured by using the Pearson Correla-

tion Coefficient between their encoded genes’ expression

profiles Gp and Gq as follows,

SGE p; qð Þ5
��Xn

i51
pi2pð Þ qi2qð Þ

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i51
pi2pð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i51
qi2qð Þ2

q (2)

where n is the number of time points for the expression

profiles and pi is the ith expression value of protein p’s

expression profiles. p is the average expression value

across different time points.

Protein function profiles

Given two proteins p and q annotated by GO terms

g11; . . . ; g1mf g and g21; . . . ; g2nf g respectively, their func-

tional similarity as defined in Ref. 38, SGO p; qð Þ, is calcu-

lated as follows.

SGO p; qð Þ5

Xm

i51
max
1�j�n

sim g1i; g2j

� �
1
Xn

i51
max
1�j�m

sim g1i; g2j

� �

m1n
(3)

where sim g1i; g2j

� �
is the semantic similarity between GO

terms g1i and g2j defined in Ref. 37. As we know, GO has

three sub-ontologies, namely, biological process (BP),

molecular function (MF), and cellular component (CC).

BP sub-ontology contains the most number of GO terms

and is the most informative,30,38 and thus we utilize

GO terms in BP sub-ontology to calculate the functional

similarities between the pair-wise proteins in this article.

TAP-MS data profiles

With two large-scale TAP-MS data released,11,12 addi-

tional computational methods have been proposed to

assess the protein affinities based on the purification

Data Integration for Protein Complexes

PROTEINS 3

http://www.ntu.edu.sg/home/zhengjie/data/InteHC
http://www.ntu.edu.sg/home/zhengjie/data/InteHC


records, e.g., socio-affinity (SA),11 purification enrich-

ment (PE),34 dice coefficient (DC),35 and C2S scores.18

These methods generally assume that protein pairs, which

occur more frequently in the same purifications (e.g., bait–

prey and prey–prey relationships), tend to have higher

affinity scores. As C2S is the most recently developed scor-

ing method, we finally used the normalized C2S scores

STAP p; qð Þð Þ5 C25 p;qð Þ2min
max2min

, where max and min are the

maximal and minimal C2S scores, respectively) to quantify

the protein affinities from the TAP-MS data.

Integration of evidences

In the aforementioned subsection, we have introduced

how to calculate the protein affinity scores based on four het-

erogeneous data sources. Now we are ready to integrate four

score matrices together. Generally, a typical approach to inte-

grating these affinity scores into a final score matrix is the lin-

ear weighted sum. This leads us to address the next question,

“How to assign appropriate weights to the respective data

sources given that they have different reliability?”

We first collected a set of known positive and negative

protein–protein interactions.

Classification models can be learned from these known

positive and negative PPIs to predict novel PPIs and assess

protein affinities.32 In particular, each interaction can be

represented as a feature vector xi 5 si1; si2; . . . ; sikð Þ
where sil (1 � l � k, where k is the number of data

sources and k 5 4 in this work) is the affinity score from

the lth data source (i.e., SFS , SGE , SGO and STAP). In addi-

tion, a linear ranking support vector machine (SVM)39,40

y 5 w � x 1 b can be learned from known positive and

negative PPIs in Equation (4) by maximizing the area

under ROC curve (AUC),

min
w

1

2
||w2||1 c

X
i;j

l w; xi; yi; xj ; yj

� �� �

s:t : l w; xi; yi; xj ; yj

� �� �
5 Iyi 6¼yj

3 max 0; 12yiw xi2xj

� �� � (4)

where yi is the label of the interaction xi (i.e., yi 5 1 means

that xi is a positive interaction and 21 otherwise), Iyi 6¼yj
is

the indicator function and c is a parameter.

Now let us focus on the loss function in Equation (4).

Given that two interactions xi and xj have different

labels, we assume that xi is positive (i.e., yi 5 1) and xj is

negative (i.e., yj 5 21) without loss of generality. In this

case, it is obvious that ranking xj before xi (i.e.,

w � xj > w � xi) will have a larger loss than ranking

xi before xj . In other words, the linear ranking SVM in

Eq. (4) will try to rank a positive interaction xi before a

negative interaction xj to reduce the loss and maximize

the AUC. With the weight vector w 5 w1; � � � ;wkð Þ
learned from the known positive and negative PPIs, we

can calculate the final affinity score for a protein pair (p,

q), S(p, q) in Equation (5).

S p; qð Þ5
X4

i51

wi3SEi
p; qð Þ; where

Ei 2 FS;GE;GO;TAPf g
(5)

Obviously, protein pairs with higher final affinity

scores are more likely to be true protein–protein interac-

tions. In addition, the affinity scores in the matrix S in

Eq. (5) are able to estimate the quality of protein inter-

actions more accurately than those from individual data

sources, because they combine multiple data sources and

also take the reliability of each source into account.

Hierarchical clustering for protein
complexes

The hierarchical clustering algorithm is applied to

detect protein complexes on the final score matrix in Eq.

(5). First, it considers all singleton proteins as initial

clusters. Second, it iteratively merges two clusters with

the highest similarity in each iteration. The algorithm

terminates when the quality of the detected complexes in

the merging process has become maximal. The detailed

procedure for the hierarchical clustering is illustrated in

Algorithm 1. Given two clusters ci and cj , their similarity,

sim ci; cj

� �
, is the average affinity score of all

Algorithm 1

Hierarchical Clustering for Protein Complexes

Input: L, the set of proteins in a given organism (e.g.,

yeast); S, affinity scores between proteins in L.

Output: C, the set of predicted protein complexes.

1: C 5 pf gjp 2 Lf g; // Initialization

2: while(QualityFunction is maximal)

3: ðc�i ; c�j Þ5arg max ci ; cj
sim ci; cj

� �
// Finding two

most similar clusters

4: cmerge5 c�i [c�j // Merging two clusters

5: C5C1fcmergeg2fc�i g2 fc�j g // Removing two

original clusters

6: for each ck 2 C

7: sim ck ; cmerge

� �
5

jc�
i
j3 sim ck ;c

�
ið Þ1jc�j j3 sim ck ;c

�
j

� �
jc�

i
j3jc�

j
j //

Updating the similarity scores

8: end for

9: end while

the protein pairs between these two clusters as shown in Eq.

(6). Next, we will introduce the quality function in Line 2.

sim ci; cj

� �
5

1

jcij3jcj j
X

p2ci; q2cj

S p; qð Þ (6)

Given a cluster ci, we define its confidence score as the

average affinity score of all possible protein pairs within

it as shown in Eq. (7). Given a clustering

M. Wu et al.
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C 5 c1; � � � ; cnf g, we proposed the following two func-

tions to measure the quality of this clustering C based

on the affinity scores for protein pairs within these clus-

ters. The first quality function Q1 Cð Þ in Eq. (8) is the

average confidence score for all the clusters while the sec-

ond quality function Q2 Cð Þ in Eq. (9) is the average

affinity score for all the protein pairs within the clusters.

Conf cið Þ5

X
p;q2ci

S p; qð Þ
jcij3ðjcij21Þ (7)

Q1 Cð Þ5

Xn

i51
Conf cið Þ
n

(8)

Q2 Cð Þ5

Xn

i51

X
p;q2ci

S p; qð Þ
Xn

i51
jcij3ðjcij21Þ

(9)

In general, Q2 Cð Þ will be dominated by those large

clusters as they contain many more protein pairs than

those small clusters. Therefore, we can upgrade Q2 Cð Þ to

the third quality function Q3 Cð Þ in Eq. (10) by dividing

a factor (i.e., the square root of the cluster size,
ffiffiffiffiffiffi
jcij

p
) in

both denominator and numerator to eliminate the bias

from those large clusters (this factor has also been uti-

lized to eliminate the bias of cluster size in a previous

study41). As such, we have three functions to evaluate

the quality of a set of clusters.

Q3 Cð Þ5

Xn

i51

1ffiffiffi
ci
p
X

p;q2ci
S p; qð Þ

Xn

i51

ffiffiffiffiffiffi
jcij

p
3ðjcij21Þ

(10)

In fact, the hierarchical clustering here does not stop,

i.e., it runs from the start with all individual proteins as

clusters to the end with all the proteins as a whole clus-

ter. During this process, the values for a given quality

function can be monitored at each iteration. Finally, we

output the clusters in a certain iteration where the given

quality function achieves the highest value.

Evaluation metrics

We will utilize the sensitivity (Sn, i.e., the coverage rate)

and positive predictive value (PPV) to evaluate the quality

of predicted protein complexes. In particular, the Sensitiv-

ity and revised PPV between a benchmark complex bi and

a predicted complex cj are defined in Eq. (11).9,42. Accu-

racy is the geometric mean of sensitivity and PPV.

Sn5

X
i
max

j
Ti;j

X
i
jbij

; PPV 5

X
j
max

i
Ti;jX

j
j[i bi \ cj

� �
j

and Accuracy5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn3PPV
p

(11)

where Ti;j is the number of proteins shared by bi and cj ,

i.e., jbi \ cj j. We also use another metric, Recall, to evalu-

ate the predicted complexes. Given a predicted complex c

and a real complex b, their neighborhood affinity score,

NA(c, b) in Eq. (12), can be used to determine how well

they match with each other. We consider them to be

matching if NA c; bð Þ � x (x is a parameter which is

normally set as 0.2 in previous studies4,6,9,19 and we

also set it as 0.2 in our experiments). Recall is defined in

Eq. (13) as the fraction of benchmark complexes that are

matched by at least one predicted complex. In Eq. (13),

B is the set of benchmark complexes. Here, we used

CYC2008 catalog43 as benchmark protein complexes for

calculating both Accuracy and Recall.

NA c; bð Þ5 jc \ bj2

jcj3jbj ; (12)

Recall5
jfbjb 2 B; 9c 2 C; NA c; bð Þ � xgj

jBj (13)

With the Accuracy and Recall defined earlier, their

average and harmonic average (HAverage) in Eq. (14) are

utilized to evaluate the overall quality of predicted com-

plexes. Now we have a comprehensive set of evaluation

metrics for the quality of predicted complexes. For exam-

ple, the sensitivity in Eq. (11) shows how many proteins

in benchmark complexes are covered by the predicted

complexes and thus measures protein-level coverage of

predicted complexes. Meanwhile, Recall measures

complex-level coverage of predicted complexes.

Average5
Accuracy1Recall

2
;

HAverage5
23Accuracy3Recall

Accuracy1Recall
: (14)

RESULTS

In this section, we demonstrate a comprehensive com-

parison between InteHC and various state-of-the-art

approaches for predicting protein complexes. Moreover,

we also introduce the experimental setting for a common

parameter involved in ranking SVM as well as our choice

for quality functions.

Linear ranking SVM

SVMperf39 is utilized in this article to solve the optimi-

zation problem in Eq. (4). The parameter c in Eq. (4) is

the trade-off between training error and margin. In gen-

eral, the classifier (i.e., SVM) becomes more and more

over-fitting and the generalization error increases as c

becomes larger. Therefore, an appropriate c should not

be too large while maintaining a good ROC area (AUC).

To select an appropriate value for c, we performed

five-folder cross-validation on 26,848 positive and nega-

tive protein interactions. Figure 2 shows the average

Data Integration for Protein Complexes
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AUC of our trained SVM using different values for c. We

can observe that the AUC becomes more and more stable

as c increases. We finally set c as 15 in our experiments

as it satisfies the above two requirements—c is relatively

small and its AUC (0.879) is also good. After learning,

the weights for four data sources (FS, GO, GE, and TAP)

in Eq. (5) are 8.49, 2.25, 0.84, and 2.89 respectively. On

the basis of these learned weights for different biological

sources, we are able to compute the final score matrix

using Eq. (5).

Quality functions for a clustering

Once we get the final score matrix, the hierarchical

clustering will run on it and output the predicted clus-

ters as protein complexes when a specific quality func-

tion for the clustering is maximized. As such, the

hierarchical clustering may predict different sets of pro-

tein complexes when we utilize different quality func-

tions. Next, we will show the Recall and Accuracy of

protein complexes predicted by our proposed quality

functions.

Note that the aforementioned three quality functions

for clusters are based solely on the properties of these

clusters themselves (e.g., the affinity scores of protein

pairs within clusters and the cluster size). Meanwhile, we

can have another quality function for clusters, which is

the sum of Recall and Accuracy collected by mapping

them to known protein complexes (e.g., CYC2008 com-

plexes). This quality function will output the optimal set

of complexes which achieves higher sum of Recall and

Accuracy. We thus denote it as Q� and utilize it to verify

the goodness of the quality functions Q1, Q2 and Q3. As

shown in Figure 3, it is obvious that the clusters gener-

ated by the quality function Q3 achieve higher Recall and

Accuracy than those by Q1 and Q2. Q3 is also much

closer to the optimal solution Q� than Q1 and Q2. This

indicates that the quality of a set of clusters is well eval-

uated by considering the cluster size in a reasonable

manner in our Equation (10). Thereafter, we will only

show the results generated by Q3 for comparisons.

The benefit of data integration

To demonstrate the power of data integration for iden-

tifying protein complexes, we will show the performance

of hierarchical clustering algorithm using each individual

data sources, as well as the combined set of all features

in Figure 4.

Figure 2
The average ROC area (AUC) of SVM as the parameter c increases.

Figure 3
The Recall and Accuracy of the complexes predicted by InteHC using

various quality functions.

Figure 4
The Recall and Accuracy of complexes predicted by the hierarchical
clustering using individual data sources.
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For the results using single data sources, we can

observe that PPI network with FSweight (FS) covers the

most benchmark complexes and achieves the highest

Recall (0.708), demonstrating that traditional PPI net-

works are indeed informative and reliable for protein

complex detection. GO can also achieve a good Recall

(0.679). Meanwhile, complexes generated from TAP data

have the highest sensitivity (0.679) and accuracy (0.752),

indicating that TAP data are also a high quality source

for predicting protein complexes.11,12. However, it is

obvious that FS has a low Accuracy while TAP has a rela-

tively low Recall as shown in Figure 4, indicating that

using individual sources alone will not produce very

good results.

In Figure 4, it is demonstrated that data integration

achieves a higher overall performance than using individ-

ual data sources, illustrating that our proposed InteHC

can effectively integrate multiple sources for protein

complex prediction. As mentioned above, FS has a high

Recall and a low Accuracy while TAP has a low Recall

and a high Accuracy. Here, InteHC manages to overcome

the limitations of individual sources. In particular,

InteHC has a comparable Recall with FS and has a sig-

nificantly higher Accuracy than FS (0.769 vs. 0.627).

Similarly, it has much higher Recall than TAP (0.711 vs.

0.625).

For completeness of our evaluation, we have 15 com-

binations with four data sources available (FS, GE, GO,

and TAP). The performance of hierarchical clustering

algorithm using all these 15 combinations is shown in

Supporting Information Figure S1. For example, the

combinations FS1GO and FS1GO1TAP also achieve

high overall performance. This indicates once again that

data integration indeed benefits the accurate prediction

of protein complexes.

Comparison with methods on PPI networks

In this subsection, we compare InteHC with eight

existing state-of-the-art approaches that detect protein

complexes from PPI networks (e.g., the DIP data in our

experiments), which include MCODE,4 MCL,5 DPClus,6

IPCA,8 DECAFF,19 COACH,9 HC-PIN,44 and Pro-

Rank.45,46 We also show the results of our hierarchical

clustering algorithm on DIP data using FSweight,

denoted as InteHC-FS.

As shown in Table I, InteHC has the highest coverage

in both protein-complex level (i.e., Recall) and protein-

level (i.e., sensitivity). Therefore, from the perspective of

covering the known protein complexes, InteHC achieves

the highest performance against all these methods

designed for PPI networks. InteHC also achieves an

Accuracy 76.9%, which is 11.5% higher than the second

best method (DPClus, 65.4%). In addition, InteHC-FS

achieves a high Recall while a low sensitivity, indicating

that InteHC effectively improve the coverage of proteins

in known protein complexes by integrating other data

sources.

Note that HC-PIN44 is also a hierarchical clustering

framework for detecting protein complexes. In Table I,

HC-PIN and HC-wPIN represent the complexes pre-

dicted from unweighted and weighted DIP data, respec-

tively. Here, FSweight36 is utilized to compute the

weights for protein interactions in HC-wPIN. We can

observe that HC-PIN predicts a small number of com-

plexes and achieves low Recall and Accuracy on both

unweighted and weighted DIP data (similarly, a recent

method ProRank45,46 also generates a small number of

complexes). However, we must point out that HC-PIN

has many good merits. For example, it has a low compu-

tational complexity. In addition, HC-PIN has a high

fraction of predicted complexes (e.g., 86 of 147 com-

plexes predicted by HC-wPIN) that can match with

known complexes. ProRank is also similar to HC-PIN

with 58 of 110 complexes matching with known

complexes.

Comparison with methods on TAP-MS data

Here, we compare InteHC with five existing methods

proposed for TAP-MS data, including C2S,18

CACHET,17 BT,13 Pu,16 and Hart.15 Similar to InteHC-

FS in Table I, InteHC-TAP in Table II represents the set

Table I
Comparisons between InteHC and Various Existing Methods on PPI
Data

Methods
No. of

complexes Recall Sn PPV Accuracy

MCODE 182 0.240 0.403 0.624 0.501
MCL 1116 0.586 0.541 0.763 0.643
DPClus 1140 0.642 0.511 0.836 0.654
IPCA 1242 0.539 0.501 0.766 0.620
DECAFF 2190 0.525 0.454 0.795 0.601
COACH 746 0.527 0.545 0.698 0.617
HC-PIN 99 0.169 0.573 0.347 0.446
HC-wPIN 147 0.289 0.516 0.673 0.589
ProRank 110 0.162 0.199 0.897 0.422
InteHC-FS 1307 0.708 0.434 0.906 0.627
InteHC 860 0.711 0.701 0.845 0.769

Table II
Comparisons between InteHC and Various Existing Methods on TAP

Data

Methods No. of complexes Recall Sn PPV Accuracy

C2S 1035 0.630 0.676 0.847 0.757
CACHET 449 0.515 0.492 0.901 0.665
BT 409 0.598 0.629 0.848 0.730
Pu 400 0.591 0.691 0.789 0.738
Hart 390 0.593 0.610 0.863 0.725
InteHC-TAP 974 0.623 0.679 0.833 0.752
InteHC 860 0.711 0.701 0.845 0.769
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of complexes predicted by our hierarchical algorithm on

TAP data.

As shown in Table II, InteHC achieves the highest Recall,

sensitivity, and Accuracy. For example, InteHC has a Recall

71.1%, which is 8.1% higher than the second best method

(C2S, 63.0%). Also, InteHC-TAP and C2S achieve very

similar results. In fact, InteHC-TAP and C2S are regarded

as operating on the same score matrix and have different

forms of stop criteria for the hierarchical clustering. Mean-

while, C2S18 was demonstrated to have an effective stop

criteria for the hierarchical clustering (however, it cannot

be used in the framework of our InteHC) and outper-

formed existing methods including BT,13 Pu,16 and

Hart.15 Therefore, we can confidently claim that our qual-

ity function in Eq. (10) also provides us with an effective

stop condition for the hierarchical clustering.

Comparison with other integrative methods

Xia et al.26 constructed a database named IntNetDB

for PPI data predicted by integrating multiple data sour-

ces. They then predicted protein complexes by using

MCODE algorithm on IntNetDB. However, they did not

predict PPI or protein complexes for the model organism

yeast. Therefore, we are not able to compare MCODE on

IntNetDB with InteHC.

Another method named CMBI28 was recently pro-

posed to detect protein complexes by integrating multi-

ple biological resources including PPI data, gene

expression profiles and essential protein information.

Essential proteins are first selected as seeds. Proteins,

which have high topological similarity and gene expres-

sion correlation with those seeds, will be included to

form protein complexes. In this subsection, we will

briefly compare the results between InteHC and CMBI.

Using the data described in Ref. 28, CMBI predicted 760

protein complexes. 160 of 408 benchmark complexes will

be covered, that is, CMBI has a Recall 0.392. The sensitiv-

ity, PPV, and Accuracy of CMBI are 0.508, 0.482, and

0.495, respectively. Using the same PPI and gene expres-

sion data, InteHC predicted 1469 protein complexes and

achieves a Recall 0.720, sensitivity 0.464, PPV 0.900, and

Accuracy 0.646. Thus, InteHC performs significantly better

than CMBI in terms of these measures. As shown in Supp.

Info. Table S1, different data sources have different impor-

tance for estimating protein affinities and predicting pro-

tein complexes. For example, the PPI data (FS scores) have

the highest importance based on the leave-one-out AUC

while gene expression profiles have the lowest. Corre-

spondingly, our supervised model [i.e., the ranking SVM

in Eq. (4)] assigns each data source with different weights,

e.g., FS scores have the highest weight 8.49 while the gene

expression profiles have the lowest 0.84.47 However, CMBI

treats equally the topological weights (ECC, edge cluster-

ing coefficient) and gene expression correlations and thus

overrates the importance of the gene expression profiles.

This may be one of the reasons why InteHC performs bet-

ter than CMBI.

Protein complexes more accurately detected
by InteHC

In previous sections, we demonstrated that InteHC

outperformed 14 methods in terms of various evaluation

measures (e.g., Recall and Accuracy). Next, we introduce

two example protein complexes that are more accurately

detected by InteHC.

In Figure 5(A), the CCR4-NOT complex48 in

CYC2008 catalog has nine proteins and it is involved in

Figure 5
Two examples of known protein complexes.
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several aspects of mRNA metabolism, including repres-

sion and activation of mRNA initiation, control of

mRNA elongation, deadenylation, and degradation. The

complex (ID: 17) predicted by InteHC also has nine pro-

teins and it can exactly match with the CCR4-NOT com-

plex, that is., covering all the nine proteins in the CCR4-

NOT complex. In Figure5(B), the known transcription

factor TFIID complex49 in CYC2008 catalogue contains

15 proteins, while the complex (ID: 186) predicted by

InteHC has 12 proteins. All these 12 proteins (black

circles) are involved in the benchmark complex while

three remaining proteins (white circles) are not covered

by the complex 186. More examples can be found in the

Supporting Information.

From the set of complexes predicted by a specific

approach (e.g., InteHC), we may pick up a complex

which has the highest similarity score [i.e., NA score in

Eq. (12)] to a given benchmark complex and denote it

as the mapped complex for this benchmark complex. For

instance, the complex 186 predicted by InteHC is the

mapped complex for the TFIID complex. Table III shows

the mapped complexes for CCR4-NOT complex and

TFIID complex predicted by various methods. Take the

TFIID complex for example, its mapped complex pre-

dicted by InteHC (i.e., the complex 186) covers 12 of its

15 proteins and has the highest NA score 0.8, while its

mapped complexes predicted by CACHET, COACH,

DPClus, and IPCA have NA scores 0.738, 0.533, 0.491,

and 0.471, respectively. Meanwhile, the complex 17 pre-

dicted by InteHC is exactly the benchmark CCR4-NOT

complex and has the optimal NA score (i.e., 1.0). Two

example complexes more accurately detected by InteHC

show that a proper integration of multiple data sources

indeed improves the computational prediction of protein

complexes.

CONCLUSIONS AND
DISCUSSIONS

In this article, we have proposed an integrative

approach (InteHC, Integrative Hierarchical Clustering)

for identifying protein complexes from heterogeneous

sources, including PPI data, gene expression profiles, GO

terms, and TAP-MS data. For each individual sources/

features, we calculated the affinities between proteins to

show their propensity to interact. Subsequently, a super-

vised model (i.e., the ranking SVM) was utilized to learn

the weight for each feature. The weighted sum of affinity

scores from individual features resulted in a final score

matrix. A hierarchical clustering algorithm on this final

score matrix will generate a set of non-overlapping clus-

ters as predicted protein complexes. In particular, we

proposed a novel quality function [i.e., Q3 in Eq. (10)]

for capturing the high-quality protein complexes. Experi-

mental comparisons have shown that InteHC performs

much better than 14 existing approaches in terms of sev-

eral evaluation metrics, e.g., InteHC significantly

improves the coverage for known protein complexes in

both a protein-level (Recall) and complex-level (sensitiv-

ity). In addition, our InteHC is a flexible and generic

framework to integrate multiple data sources for predict-

ing protein complexes. It allows us to include new data

sources by simple matrix operations to achieve even bet-

ter results.

Table III
The Mapped Complexes for CCR4-NOT and TFIID Complexes Predicted by Various Methods

CCR4-NOT complex (9 proteins) TFIID complex (15 proteins)

Methods NA score Predicted size Overlap NA score Predicted size Overlap

MCODE 0.790 9 8 0.152 11 5
MCL 0.397 7 5 0.3 8 6
DPClus 0.9 10 9 0.491 11 9
IPCA 0.9 10 9 0.467 7 7
DECAFF 1 9 9 0.474 9 8
COACH 0.818 11 9 0.533 8 8
HC-PIN 0.0316 285 9 0.0395 285 13
HC-wPIN 0.692 13 9 0.436 22 12
ProRank 0.037 3 1 0.267 4 4
C2S 0.557 5 5 0.29 23 10
CACHET 0.557 5 5 0.738 13 12
BT 0.667 6 6 0.384 25 12
Pu 0.571 7 6 0.369 26 12
Hart 0.397 7 5 0.336 24 11
CMBI 1 9 9 0.672 12 11
InteHC-FS 0.711 10 8 0.333 5 5
InteHC-GO 0.3333 3 3 0.15 4 3
InteHC-GE 0.056 2 1 0.0333 2 1
InteHC-TAP 0.556 5 5 0.29 23 10
InteHC 1 9 9 0.8 12 12
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As discussed in our previous study,18 we plan to

design new data-integration mechanisms for identifying

protein complexes. For this purpose, we already managed

to integrate multiple TAP-MS datasets in Ref. 18 and

various heterogeneous datasets in this article. These tech-

niques are characterized as raw dataset-level integration.

In future work, we will focus on another kind of

integration—result-level integration. A specific method

for detecting protein complexes working on a specific

dataset will predict a set of protein complexes. We can

thus collect many sets of complexes by applying various

methods on multiple datasets. We may expect to achieve

higher prediction accuracy by analyzing and processing

those integrated complexes. Furthermore, we plan to set

up a platform or web-server to demonstrate all the above

integration techniques for identifying protein complexes.
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