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Abstract—For prognostics and health management of
mechanical systems, a core task is to predict the machine
remaining useful life (RUL). Currently, deep structures with
automatic feature learning, such as long short-term mem-
ory (LSTM), have achieved great performances for the RUL
prediction. However, the conventional LSTM network only
uses the learned features at last time step for regression or
classification, which is not efficient. Besides, some hand-
crafted features with domain knowledge may convey addi-
tional information for the prediction of RUL. It is thus highly
motivated to integrate both those handcrafted features and
automatically learned features for the RUL prediction. In
this article, we propose an attention-based deep learning
framework for machine’s RUL prediction. The LSTM net-
work is employed to learn sequential features from raw sen-
sory data. Meanwhile, the proposed attention mechanism is
able to learn the importance of features and time steps, and
assign larger weights to more important ones. Moreover,
a feature fusion framework is developed to combine the
handcrafted features with automatically learned features to
boost the performance of the RUL prediction. Extensive
experiments have been conducted on two real datasets
and experimental results demonstrate that our proposed
approach outperforms the state-of-the-arts.

Index Terms—Attention mechanism, feature fusion,
handcrafted features, long short-term memory (LSTM), ma-
chine remaining useful life (RUL) prediction, prognostics
and health management (PHM).

I. INTRODUCTION

R EMAINING useful life (RUL) prediction is crucial for
prognostics and health management (PHM) of mechan-

ical systems. With an accurate RUL prediction, maintenance
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schedules can be designed to keep good working conditions
for machines (or components), and thus, abrupt system failures
can be avoided [1]. To achieve this objective, many advanced
solutions have been developed, which generally can be divided
into two categories, i.e., model based and data driven. For model-
based solutions, they require to accurately model the dynamics
of mechanical systems (or components) [2], [3]. However, due
to the rapid development of industry, the mechanical systems
become more and more complicated with complex interactions
between each other. Therefore, accurate modeling of these sys-
tems is not realistic, even for experts. Besides, the flexibility
and transferability of model-based solutions are poor, due to the
distinct mechanisms for different mechanical systems.

Recently, data-driven solutions have attracted more and more
attention for RUL prediction [4]. For data-driven solutions, it
is not compulsory to know the detailed operation mechanism
of mechanical systems. Instead, one only needs to collect some
data from the systems, where the conditions of the systems can
be identified based on data-driven algorithms. Generally, data-
driven solutions can be further divided into statistic degradation
modeling and artificial intelligence [4].

A typical statistic degradation modeling approach is the Cox’s
regression [5]. It models the hazard probability of an object based
on the historical data about the life span of objects and their
associate covariates. The hazard probability at time step t can
be expressed as

λ(t|z) = λ0(t) exp (β
�z) (1)

where z is the covariates also known as features, λ0(t) is the
baseline hazard function that changes over time, β is the re-
gression coefficients, and � is the transpose operation. Many
RUL prediction systems have been developed based on the
Cox’s regression. Pham et al. [6] presented an RUL prediction
system that combines the Cox’s proportional hazard model with
a support vector machine (SVM) [6]. Liao et al. [7] compared
the Cox’s regression model with the logistic regression model
for predicting the RUL of an individual unit [7]. You et al. [8]
proposed a two-zone Cox’s regression model for the equipment
RUL prediction.

For artificial-intelligence-based RUL prediction, the objective
is to directly build a relationship between the RUL of an object
and the features that can be extracted manually from sensor
measurements or automatically learned by deep learning algo-
rithms. With the rapid development of artificial intelligence [9],
in this work, we mainly focus on artificial-intelligence-based
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RUL prediction, which includes the popular shallow machine
learning and deep learning algorithms.

For shallow-model-based RUL prediction, it normally con-
sists of feature extraction and inference. With domain knowledge
on mechanical systems, some representative features can be
extracted from raw sensory data that may be noisy and not
representative for the RUL prediction [10], [11]. After extracting
some informative features, the conventional machine learning
algorithms, such as artificial neural network [12], [13], ex-
treme learning machine (ELM) [14], SVM [15], [16], neural
networks [17], and random forest (RF) [18], can be employed
to predict the RUL.

Another popular algorithm for the artificial-intelligence-
based RUL prediction is deep learning. Instead of manual feature
extraction, deep learning is able to automatically learn represen-
tative features from raw sensory data [19], [20]. Besides, it can
jointly optimize feature learning and RUL inference, leading
to a better generalization performance for RUL prediction. For
machine RUL prediction, most of sensory data are time series
with temporal dependence. The deep learning approach of long
short-term memory (LSTM), which is designed for sequential
data analytics can be naturally suitable for the RUL prediction.
A very good performance has been achieved for the RUL pre-
diction using the LSTM approach [21], [22]. However, it still
has several limitations for the conventional LSTM in the RUL
prediction, which are presented as follows.

1) For the conventional LSTM network, it only uses the
learned features at last time step for regression or clas-
sification. We argue that the learned features at other time
steps may also have some contribution. And the learned
features may have different contribution for the final RUL
prediction. Therefore, an efficient operation is to assign
larger weights to more important features and time steps.

2) Although the features learned by the LSTM network have
been shown to be effective for the RUL prediction, some
handcrafted features with domain knowledge also convey
important information. The design of a network that can
take both automatically learned features from the LSTM
network and some meaningful handcrafted features into
consideration for the final RUL prediction may boost the
performance of RUL prediction.

To solve these limitations, we propose an attention-based
deep learning framework for the RUL prediction. The proposed
approach first exploits the LSTM network to learn representative
sequential features from raw sensory data. Then, an attention
network is developed to learn the importance of features and
time steps, and assign larger weights to more important ones.
Finally, we propose a feature fusion framework to make full
use of all available information by combining the automatically
learned features and some useful handcrafted features for the
final prediction of the machine RUL. To verify the effectiveness
of the proposed approach for the RUL prediction, we use real
datasets for evaluation and compare it with various state-of-the-
art methodologies for the machine RUL prediction. The main
contributions of this article are summarized as follows.

1) We propose an attention-based deep learning framework
for the machine RUL prediction. The attention network

is able to learn the importance of features and time steps,
and assign larger weights for more important ones to boost
the performance of the RUL prediction.

2) Since some handcrafted features with domain knowledge
may convey meaningful information for the RUL predic-
tion, we propose a feature fusion framework to combine
both automatically learned features and some meaningful
handcrafted features for the final prediction of the RUL.

3) Real datasets are leveraged to evaluate the performance of
the proposed approach. The results show that the proposed
approach can significantly improve the performance of
the RUL prediction.

II. RELATED WORKS

In this section, we review some advanced deep learning
algorithms for machine’s RUL prediction.

Deep learning is able to learn representative features and
perform inference simultaneously, resulting remarkable perfor-
mance for the RUL prediction. Babu et al. [23] proposed a
deep convolutional neural network (CNN) for the RUL predic-
tion [23]. The experimental results on two datasets indicated its
superior performance for the RUL prediction when compared
with some shallow learning algorithms. Zhu et al. [24] proposed
a multiscale convolutional neural network (MSCNN) to predict
the RUL [24]. First, a wavelet transform was conducted on
raw sensory data to get time-frequency representation (TFR).
Then, the TFR was used as the input of the MSCNN for the
prediction of the RUL. Deutsch and He [25] presented a deep
belief network feedforward neural network (DBN-FNN) for the
RUL prediction [25]. The DBN was used to learn representative
features, and the FNN was employed to perform the RUL
prediction with the learned features. Zheng et al. [21] presented
a long short-term memory (LSTM)-based RUL prediction. The
experimental results on three datasets showed that the LSTM
performs much better than some shallow learning algorithms
and CNN [21]. Zhang et al. [22] proposed a bidirectional
long short-term memory (BD-LSTM) approach to predict the
RUL [22]. They first defined an health index (HI) based on a
perceptron approach. The BD-LSTM was then utilized to track
the variation of the HI for final RUL prediction. In [26], the
authors proposed a multiobjective deep belief networks ensem-
ble (MODBNE) approach for the prediction of the RUL. They
applied a multiobjective evolutionary algorithm to train DBNs
with two conflict objectives, i.e., accuracy and diversity. The
evolved DBNs were then combined to form an ensemble model
for the final RUL prediction.

Since the sensory data for PHM are time series with tem-
poral dependence, the LSTM network that performs well for
sequential data modeling is naturally suitable for the RUL
prediction. However, different features at different time steps
learned by the LSTM network will have equal contribution
for the final prediction of the RUL, which is not effective. A
more effective operation is to assign larger weights for more
important features and time steps. Therefore, in this article, we
propose an attention mechanism with the LSTM to automatically
assign larger weights to more significant features and time steps
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Fig. 1. Structure of the LSTM.

to boost the performance of the RUL prediction. Meanwhile,
some handcrafted features may convey useful information for
the prediction of the RUL. Hence, we develop a feature fusion
framework to combine these handcrafted features with the fea-
tures learned by the attention-based LSTM to further improve
the performance of the machine RUL prediction.

III. METHODOLOGY

A. Long Short-Term Memory (LSTM)

To predict the RUL of machines, a number of sensors, such
as vibration, temperature, acoustic, etc., should be deployed.
Generally, the sensor measurements are time series with tem-
poral dependence. Recurrent neural network (RNN) whose
nodes are connected along a sequence was designed to model
temporal dependence in time series [27]. Therefore, an RNN
is naturally suitable for machine RUL prediction leveraging
sequential sensor measurements. However, the conventional
RNN often suffers from the problem of gradient vanishing or
exploding during the network training, which greatly degrades
its performance on modeling long-term dependencies [28]. To
solve this problem, Hochreiter and Schmidhuber proposed a new
architecture, named LSTM, which can be treated as a memory
cell that consists of a few gates [29]. The gates, which can allow
or prevent the passing of information along a sequence, can
capture long-term dependencies. Owing to its unique property,
the LSTM network has achieved great successes in the analysis
of time-series data, such as occupancy estimation [30], video
analysis [31], and nature language processing [32]. Recently, it
also has achieved great performance for the RUL prediction [21],
[22], [33].

A typical LSTM network is shown in Fig. 1. It consists of a
forget gate to discard the unnecessary information from previous
time steps, an input gate to select useful information from inputs,
and an output gate to control the outputs of the current LSTM
network. Assuming that xt is the input at time step t, ht is the
hidden state at time step t,Ct−1 is the memory cell state,wf ,wi,
wC , and wo are the weights, bf , bi, bC , and bo are the biases, and
σ(·) and tanh are the sigmoid and tanh functions, respectively,
the LSTM network can be expressed as

f t = σ
(
wf [ht−1, xt] + bf

)
it = σ

(
wi[ht−1, xt] + bi

)

Fig. 2. Standard LSTM for regression problems.

C̃t = tanh
(
wC [ht−1, xt] + bC

)
Ct = f t ∗ Ct−1 + it ∗ C̃t

ot = σ
(
wo[ht−1, xt] + bo

)
ht = ot ∗ tanh (Ct

)
. (2)

Due to the strong sequential modeling ability of the LSTM
network, it has been successfully used for machine RUL pre-
diction in [21] and [22]. However, they applied the standard
LSTM that only uses the learned features at last time step for
regression, which is shown in Fig. 2. We argue that the learned
features at other time steps may also have some contribution.
And the learned features may have different contribution for the
final RUL prediction. Therefore, we intend to design an attention
mechanism to learn the importance of features and time steps.
The details will be introduced in the following paragraphs.

B. Attention Mechanism

The attention mechanism is first proposed for the task of image
processing, inspired by human vision system [34], [35]. Human
always pays attention to a certain region of an image during
recognition, indicating that different weights will be assigned
to different regions of an image. The attention mechanism has
been successfully applied for a number of applications, such as
language translation [36] and time-series prediction [37].

For the task of machine RUL prediction, an efficient operation
is to focus on different region of interest by assigning different
weights for different features at different time steps. In this
task, since no prior information is available, we leverage a self-
attention mechanism to learn the importance of features and time
steps. Assume that the learned features by the LSTM network for
one sample can be expressed as H = {h1, h2, . . ., hd}�, � is
the transpose operation. Here, hi ∈ Rn, where n is the number
of sequential steps of the features. Based on the self-attention
mechanism, the importance for different sequential steps of ith
input hi can be expressed as

si = Φ(W�hi + b) (3)

where W and b are the weight matrix and the bias vector,
respectively, Φ(·) is the score function that can be designed as
an activation function in neural networks, such as sigmoid and
linear. After obtaining the score for the ith feature vector, it can
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Fig. 3. Example for the features of mean and trend coefficient.

be normalized using a softmax function as follows:

ai = softmax(si) =
exp(si)∑
i exp(si)

. (4)

The final output feature O of the attention mechanism can be
expressed as

O = H⊗A (5)

where A = {a1, a2, . . ., ad}, and ⊗ is a new opera-
tion defined as element-wise multiplication. Given vec-
tors b = [b1 b2 . . . bn]

� and c = [c1 c2 . . . cn]
�,

b⊗ c = [b1c1 b2c2 . . . bncn]
�.

C. Attention-Based Deep Learning for RUL Prediction

1) Handcrafted Features: For sensory-data-based RUL
prediction, some intuitive handcrafted features can be extracted,
such as mean and trend coefficient of linear regression. The
mean value shows the magnitude of sensory data, and the trend
coefficient indicates the degradation of sensory data. These two
simple handcrafted features have been shown to be effective for
RUL prediction in [16]. An example of these two features is
shown in Fig. 3. Note that, the features have been standardized
for normalization. It can be found that these two features well
indicate the properties of the raw sensory data.

To make full use of all the available information, we propose
a feature fusion framework to combine the features learned by
deep structures with some meaningful handcrafted features to
boost the performance of the RUL prediction. The details of the
proposed approach will be shown in the following paragraphs.

2) Proposed Framework: Fig. 4 shows the proposed
attention-based deep learning framework for the prediction of
machine RUL. First, the raw sensory data are fed into the LSTM
network for feature learning. The learned sequential features
are treated as the inputs of the attention model, whose outputs
(attention weights) indicate the importance of features and time
steps. Then, the learned sequential features are merged with the
weights generated by the attention model. After that, two fully
connected layers (FCLs) are performed to obtain more abstract
features. Meanwhile, the handcrafted features are extracted from
the raw sensory data, and then fed into an FCL to obtain more
abstract features. To make full use of these two types of features,

Fig. 4. Proposed attention-based deep learning approach for the RUL
prediction.

TABLE I
INPUTS OF SOME KEY MODULES

we concatenate them to form a complete feature set. Finally, a re-
gression layer is used for the RUL prediction. Table I summarizes
the inputs of some key modules, including the LSTM network,
the attention layer, the merge layer, and the fully connected layer
(i.e., the FCL at the right-hand side in Fig. 4).

Since the prediction of the RUL is a typical regression prob-
lem, the loss function of the proposed approach is set to be the
mean square error (MSE) loss, which is defined in Appendix.
Given the predicted RULs and the true RULs, the MSE losses
over training data can be calculated and back-propagated to
generate the error gradients for each layer (such as an LSTM
layer, attention layer, and fully connected layers). Then, the op-
timization method of Adam that computes adaptive learning rates
for each parameter [38] is adopted to optimize model parameters
at each layer based on the error gradients. Note that, the proposed
framework is an end-to-end trainable architecture, which means
that all the model parameters can be jointly trained. Considering
the overfitting problem in deep learning models, appropriate
regularization techniques should be performed. Dropout is one
of the most popular techniques for solving this problem [39]. In
dropout, parts of the hidden outputs are randomly masked so that
these neurons will not influence the forward propagation during
the model training. When it comes to testing, the dropout will
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Fig. 5. Diagram of aircraft engine [40].

TABLE II
DESCRIPTION OF THE DATASETS FOR EVALUATION [40], [41]

be turned OFF and the outputs of all hidden neurons will make
effects. In other view, it can be treated as a kind of ensemble
learning. In this work, two dropout layers are adopted (see
Fig. 4). The masking probability for dropout is set to be 0.5.

IV. EVALUATION

A. Data Description

The widely used commercial modular aero-propulsion system
simulation (C-MAPSS) dataset [40] is adopted for the evaluation
of the proposed approach. This dataset describes the degradation
process of the aircraft engine whose diagram is shown in Fig. 5.
The engine consists of fan, low pressure compressor (LPC), high
pressure compressor (HPC), combustor, low pressure turbine
(LPT), and high pressure turbine (HPT). Total 21 onboard sen-
sors, measuring temperature, pressure, and speed, are deployed
at different locations to monitor the condition of the engine.

The entire dataset contains four subdatasets with varying
number of operation conditions and faulty types. We choose
two typical subdatasets: the simplest one FD001 that contains
one operation condition and one faulty type and the most com-
plicated one FD004 that contains six operation conditions and
two faulty types. For FD001 and FD004, they both contain two
files for training and testing. The training file records sensor data
at each running cycle in the run-to-fail experiments for certain
number of engines. The testing file only contains the sensor mea-
surements to certain running cycles for another certain number
of engines. The objective is to predict the RUL of each engine
in the testing file with the given sensor measurements.

Another widely used dataset for evaluation is the PHM 2008
dataset [41], which has the same data structure with the C-
MAPSS dataset, but different number of training and testing
engines. The description of the datasets is shown in Table II.

For the 21 sensors (indices from 1 to 21 in training and testing
files), the sensors with indices 1, 5, 6, 10, 16, 18, and 19 always
have constant values during the run-to-fail experiments. This
means that these sensors are not related to the degradation of
engines. Hence, these sensors are removed from the two datasets
as did in [26] and [42]. Finally, 14 sensors are used for the RUL

prediction. Since different operating conditions will influence
the RUL, we treat operating conditions as measurement signals
for the RUL prediction. Therefore, the operating conditions and
sensor measurements are the final inputs of prediction models.

B. Data Preprocessing

A sliding window is commonly used for data segmenta-
tion [23], [26]. An example of data segmentation for training
samples is shown in Fig. 6. For the run-to-fail experiments,
assume that the number of total running cycles of an engine
is T , the window size is s and the step size is p. Each sample
will have a size of s× n, where n is the number of sensors.
According to Fig. 6, the RUL of the (i+ 1)th sample (window)
is T − s− i ∗ p. Note that, a piece-wise linear RUL [23], [26] is
used instead of the true RUL for training data, which means that
if the true RUL is larger than the maximal RUL, it will be set to
the maximal RUL. Here, we choose a window size of 30 and a
step size of 1, which are the same as these in [26]. Under these
settings, the numbers of training samples for FD001, FD004,
and PHM 2008 are 17 731, 54 028, and 39 596, respectively. For
testing, only one data window to the last sensor measurements
for each engine is used as the testing sample. Hence, the numbers
of testing samples for FD001, FD004, and PHM 2008 are 100,
248, and 218, respectively, which are the numbers of testing
engines in the three datasets. Note that, the actual RUL values
of testing samples for FD001 and FD004 are available to the
public, while the actual RUL values of testing samples for PHM
2008 are not available.

C. Evaluation Criteria

To evaluate the performance of the RUL prediction, two
widely used evaluation criteria, i.e., root mean square error
(RMSE) and scoring function, are adopted [23], [26]. The defi-
nition of the RMSE can be found in Appendix. In machine RUL
prediction, the late prediction refers to that the predicted RUL is
larger than the actual RUL. Late predictions will generally lead
to more severe consequences than the early prediction, however,
this fact cannot be reflected by the criterion of the RMSE. Thus,
the scoring function [23] (see the Appendix for the definition)
can be utilized. Based on the definition, more penalties will be
given to late predictions, which is consistent with our common
sense. Both criteria are useful to evaluate the performance of the
RUL prediction. Fig. 7 compares the RMSE with the scoring
function. Both criteria are useful to evaluate the performance of
the RUL prediction. Our experimental results will be reported
based on these two criteria.

D. Experimental Setup

To verify the effectiveness of the proposed approach, we first
perform an initial test on the training data of FD001, which
is split for training and testing. A comparison has been made
between the proposed approach and some widely used bench-
mark approaches including SVR, RF, CNN, and LSTM. We have
also compared the proposed approach with some state-of-the-art
approaches on the testing data of FD001, FD004, and PHM 2008
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Fig. 6. Example of data segmentation for the RUL prediction.

Fig. 7. RMSE versus scoring function [23].

datasets. Note that, the state-of-the-arts used the same data for
training and testing.

For the proposed attention-based deep learning approach,
some structural parameters, i.e., the number of hidden nodes,
should be tuned based on the given training data. A cross
validation is performed with the training data to determine the
parameters of the proposed approach. Specifically, the number
of hidden units for the LSTM network is 50. The hidden nodes
of two FCLs after the merge layer are set to be [50, 10]. And
the hidden nodes of the FCL on the handcrafted features are
set to be 10. The learning rate for the optimization algorithm
of Adam is set to be 0.001. For the algorithms of SVR, RF,
and CNN, we use the parameters in [23] and [26], which have
carefully tuned the parameters of the models. For the algorithm
of the conventional LSTM, the parameters have been carefully
tuned by using cross validation on the training data. Specifically,
the number of hidden nodes for the LSTM network is set to
be 50. Two FCLs with the sizes of [50, 10] are applied for
the RUL prediction. Considering the randomness in parameter
initialization of some algorithms, i.e., CNN, LSTM, and the
proposed approach, these algorithms are run ten times for each
dataset and average results are reported. The source code of the
proposed approach is available at the open-source GitHub.1

1[Online]. Available: https://github.com/ZhenghuaNTU/RUL-prediction-
using-attention-based-deep-learning-approach

E. Initial Test on FD001

In order to have more samples for testing, an initial test
is first performed with the training data in FD001. By using
sliding windows, 17 731 samples can be obtained. Here, we
use first 70% of data (12 412 samples) for model training and
the rest (5 319 samples) for testing. A comparison has been
made with some widely used benchmark algorithms for the
RUL prediction, including SVR, RF, CNN, and LSTM. The
results are shown in Fig. 8. We also indicate the 95% confidence
interval of all the results in the figure. It can be found that,
due to the powerful feature learning ability of deep structures,
deep-learning-based algorithms perform better than show mod-
els, i.e., SVR and RF. Due to the sequential modeling ability of
the LSTM, it has a superior performance over the CNN. Owing to
the proposed attention mechanism and the feature fusion frame-
work, the proposed approach outperforms all the benchmark
approaches.

We also present the training and testing time for different
algorithms on a workstation that has 12 core CPUs of Intel
i7-8700 3.20 GHz and a GPU of NVIDIA GeForce GTX1080Ti.
The results are shown in Table III. Obviously, deep-learning-
based approaches require much more training and testing time
than shallow models, because of much more parameters to be
optimized. The proposed approach has the longest training time,
which is 110.15 s. Considering that the model training only
requires to be done once and it is offline, this amount of time
for training is still acceptable. The testing time of the proposed
method for all the 5319 samples is only 0.42 s, which means
that the testing time for one sample is 7.8× 10−5 that can be
neglected for most of industrial applications. Hence, it can be
claimed that the proposed method can be used for real-time
implementations.

To better interpret the attention mechanism for the RUL
prediction, an attention matrix of one testing sample is illustrated
in Fig. 9. Since we set 50 hidden nodes for the LSTM network
and the sliding window contains 30 time steps, the final learned
features by the LSTM will have a dimension of 30 × 50. In the
conventional LSTM without the attention mechanism, only the
learned features at last time step of a sample will be used for
classification or regression problems. We argue that the learned
features at other time steps may also have some contribution for
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Fig. 8. Experimental results of all the benchmark approaches and the proposed approach in the initial test on FD001. (a) RMSE. (b) Score.

TABLE III
TRAINING AND TESTING TIME OF THE BENCHMARK APPROACHES AND THE

PROPOSED APPROACH

Fig. 9. Attention matrix of one sample.

the RUL prediction. From Fig. 9, it can be found that more recent
time steps will have larger attention weights, indicating that more
recent steps will be more important for the RUL prediction. This
is consistent with our common sense. Although the learned fea-
tures at each time step cannot be explicitly interpreted because
they are high-level features learned by the LSTM network, we
can still concur that they will have different contribution for
the final RUL prediction, which has been achieved by using the
attention mechanism.

F. Results on the Testing Data of FD001 and FD004

Here, we first analyze the impact of the window size on the
performance of the RUL prediction. Then, an ablation study
is performed to demonstrate the effectiveness of the proposed
attention mechanism and feature fusion. Finally, we compare

Fig. 10. Experimental results of the proposed approach with different
window sizes on the two datasets. (a) FD001: RMSE. (b) FD001: Score.
(c) FD004: RMSE. (d) FD004: Score.

the proposed approach with some state-of-the-art methods for
the RUL prediction that use the same data for model training
and testing.

1) Analysis on Window Size: For data preprocessing, win-
dow size is one of the most important parameters. To evaluate the
impact of this parameter, we implement the proposed approach
with different window sizes, i.e., 10, 20, 30, 40, 50, and 60,
on the two datasets. The results are shown in Fig. 10. For the
simple FD001 dataset, it can be found that the performance is
enhanced when increasing window size at the beginning. This
is because more information is included for the RUL prediction.
However, after increasing the window size over a certain value,
i.e., 30, the performance of model degrades on this dataset. This
may be caused by the overfitting of the algorithm with too much
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TABLE IV
RESULTS OF THE ABLATION STUDY

TABLE V
EXPERIMENTAL RESULTS ON THE FD001 AND FD004 DATASETS

information for this simple dataset. For the much more compli-
cated FD004 dataset, similarly, the performance of the model is
enhanced when the number of hidden nodes increases from 10 to
30. After 30, the performance slightly degrades, which may be
because the other model parameters are tuned under 30, resulting
a slight degradation of the performance with different number
of hidden nodes. Moreover, we interestingly find that when we
further increase the number of hidden nodes, the performance of
the model improves a lot on this complicated dataset. This means
that the complicated dataset may require more information for an
accurate RUL prediction. The performance of the model under
the window sizes of 50 and 60 is similar, which should be caused
by the limited modeling capacity of the model with large amount
of information. Therefore, we may be able to further enhance
the performance of the model by using more hidden nodes or
deeper structure.

In summary, it can be concluded that more complicated
datasets require a larger window size to include more infor-
mation for an accurate RUL prediction. In real applications,
we should choose different window sizes for different datasets
by using cross validation on the training data. To give a fair
comparison with state-of-the-arts that used a sliding window of
30 in their works [22], [26], a window size of 30 is chosen in
this work.

2) Ablation Study of the Proposed Approach: To evalu-
ate the effectiveness of the proposed attention mechanism and
feature fusion, an ablation study of the proposed approach is
performed. Specifically, we implement the original LSTM, the
LSTM with attention, the LSTM plus handcrafted features and
the proposed framework. The results can be found in Table IV
and Fig. 11.

Generally, the LSTM with attention and the LSTM plus
feature fusion outperform the original LSTM, which indicates
the effectiveness of the two proposed schemes. Moreover, it
can be found that the LSTM plus feature fusion has a superior
performance than the LSTM with attention mechanism in terms
of the RMSE, Score, and their variances. This means that the
proposed feature fusion is more effective than the proposed
attention mechanism to enhance the performance of the original

Fig. 11. Experimental results of the ablation study. (a) FD001: RMSE.
(b) FD001: Score. (c) FD004: RMSE. (d) FD004: Score.

LSTM for the RUL prediction. In other words, the handcrafted
features well compensate the automatically learned features for
the task of the RUL prediction. The proposed approach with
these two effective schemes achieves the best performance on
the two datasets in terms of error and variance under the two
criteria.

3) Compare to State-of-the-Arts: The experimental results
of the proposed approach and some state-of-the-art approaches
on the two datasets are shown in Table V. Overall, all the
approaches perform better on the FD001 than that on the FD004.
This is because the FD001 is relatively simple with only one
operation condition and one faulty type. Besides, the number of
engines for testing in the FD004 is 248, which is much larger than
that in the FD001. Therefore, the scores that are summations over
all the engines of the FD004 and the FD001 are under different
magnitude.
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Fig. 12. True RUL and the predicted RUL by the proposed approach
on the two datasets. (a) FD001. (b) FD004.

According to Table V, deep-learning-based methods, such
as LSTM, DBN, and MODBNE, perform better than statistic
learning algorithm of Cox’s regression and shallow learning
algorithms, i.e., MLP, SVR, RVR, ELM, and RF. This indicates
the powerful feature learning ability of deep structures. The
MODBNE, which is an ensemble of the DBN, outperforms
the other benchmark approaches, due to the feature learning
of the DBN and the ensemble structure. However, the ensemble
structure of the DBN will have a much higher computational
complexity than other shallow and deep structures. Owing to the
proposed attention mechanism and feature fusion framework,
the proposed approach outperforms all these state-of-the-art
approaches, including the powerful ensemble deep learning
approach of MODBNE.

The predicted RUL on the two datasets is shown in Fig. 12.
For both datasets, the predicted RUL matches very well with the
true RUL, which indicates the feasibility of the RUL prediction.
Since FD001 is relatively simple, the prediction performance on
FD001 is better than that on FD004, which is consistent with our
previous analysis based on Table V.

G. Results on the PHM 2008 Dataset

For the PHM 2008 dataset, the actual RUL values of testing
samples are not available. The results need to be uploaded to the
NASA Data Repository Website2 where a score value [see (8)]
will be given.

The results on the PHM 2008 dataset are shown in Table VI. It
can be found that deep-learning-based solutions performs much
better than statistic and shallow learning algorithms. Due to the
sequential modeling capacity of the LSTM, it outperforms the
popular CNN approach. The proposed approach has a superior
performance over all the benchmark approaches, which indicates
its effectiveness on the RUL prediction.

2[Online]. Available: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognos
tic-data-repository/

TABLE VI
EXPERIMENTAL RESULTS ON THE PHM 2008 DATASET

V. CONCLUSION

In this article, we proposed an attention-based deep learning
framework for the machine RUL prediction. First, we employed
the deep learning algorithm of the LSTM for automatic feature
learning from raw sensory data. Then, an attention mechanism
was proposed to learn the importance of features and time steps,
and automatically assign larger weights to more important ones.
Meanwhile, some handcrafted features with domain knowledge
may convey additional information for the RUL prediction.
Hence, a feature fusion framework was designed to combine
the handcrafted features and the automatically learned features
to boost the performance of the RUL prediction. The proposed
approach was evaluated using real datasets. Since the size of
the sliding window is important for the RUL prediction, the
impact of different window size on the prediction performance
was investigated. Then, we verified the effectiveness of the pro-
posed attention mechanism and feature fusion for the machine
RUL prediction. Finally, a comparison was made with various
state-of-the-art approaches. The proposed approach outperforms
these state-of-the-arts under two popular evaluation criteria.

For machine-learning-based RUL prediction, the basic as-
sumption is that the underline patterns between training and
testing data are the same. However, if the training and testing data
are collected under different environments, working conditions,
or machines, the underline patterns between training and testing
data may be distinct, which will hinder the performance of
machine-learning-based methods [43]. To solve this issue, trans-
fer learning, which is able to transfer the knowledge learned from
one domain to another [44] can be adopted. In our future works,
we will investigate transfer-learning-based RUL prediction with
varying environments, working conditions, orenlrg machines.

APPENDIX

Loss Function: The MSE loss is defined as follows:

MSE Loss =
1

N

N∑
i=1

(r̂i − ri)
2 (6)

where ri and r̂i are the true RUL and the predicted RUL,
respectively, and N is the total number of samples.

Evaluation Metrics: The definition of the RMSE is as follows:

RMSE =

√
1

N

∑N

i=1
(r̂i − ri)2 (7)
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where ri and r̂i are the true RUL and the predicted RUL,
respectively. The scoring function [23] is defined as

S =

{∑N
i=1(e

− r̂i−ri
13 − 1), when r̂i < ri∑N

i=1(e
r̂i−ri

10 − 1), when r̂i ≥ ri
. (8)
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