
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Reinforced Knowledge Distillation for Time
Series Regression

Qing Xu, Keyu Wu, Min Wu, Senior Member, IEEE, Kezhi Mao, Xiaoli Li, Senior Member, IEEE,
and Zhenghua Chen Senior Member, IEEE

Abstract—As one of the most popular and effective
methods in model compression, knowledge distillation
(KD) attempts to transfer knowledge from single or multi-
ple large-scale networks (i.e., Teachers) to a compact net-
work (i.e., Student). For the multi-teacher scenario, existing
methods either assign equal or fixed weights for different
teacher models during distillation, which can be inefficient
as teachers might perform variously or even oppositely
on different training samples. To address this issue, we
propose a novel reinforced knowledge distillation method
with negatively correlated teachers which are generated
via negative correlation learning. The negatively correlated
teachers would encourage teachers to learn different as-
pects of data and thus the ensemble of them can be
more comprehensive and suitable for multi-teacher KD.
Subsequently, a reinforced KD algorithm is proposed to dy-
namically employ proper teachers for different training in-
stances via Double Deep Q-Network (DDQN). Our proposed
method complements the existing KD procedure on teacher
generation and selection. Extensive experimental results
on two real-world time series regression tasks clearly
demonstrate that the proposed approach could achieve
superior performance over state-of-the-art methods. The
PyTorch implementation of our proposed approach is avail-
able at https://github.com/xuqing88/RL-KD-for-time-series-
regression.

Index Terms—Reinforcement learning, knowledge distil-
lation, time series regression.

I. INTRODUCTION

Time series regression has many potential use-cases in inter-
net of things (IoT), such as indoor localization [1], occupancy
estimation [2] and remaining useful life prediction [3], [4].
Recently, deep neural networks (DNNs) have exhibited re-
markable capabilities in time series regression tasks. However,
those DNNs with state-of-the-art (SOTA) performance often
consist of billions of model parameters, which cannot be
fully utilized considering that time series regression algorithms
generally require to be deployed on IoT devices with limited
computational resources. To address this issue, various cutting-
edge deep model compression techniques have been developed
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to improve model efficiency without significantly compromis-
ing model accuracy, e.g., network pruning and quantization
[5], Network Architecture Search (NAS) [6] and Knowledge
Distillation [7]. Among them, KD related approaches have
drawn enormous attentions due to their effectiveness and
flexibility on transferring knowledge from a complex teacher
model to a compact student model.

In most of existing KD approaches, the knowledge either
comes from a single teacher [8] or comes from an ensemble of
multiple teachers [7]. For single teacher distillation scenario,
it is common to employ a pre-trained large scale model
with SOTA performance as the teacher. However, numerous
empirical experiments have shown that a stronger teacher
does not necessarily stand for a better teacher [9] due to the
significant capacity gap between it and the compact student.
Therefore, selecting a proper teacher could be very time-
consuming and tedious in many applications.

Alternatively, one can use the ensemble of multiple teachers
to omit the teacher selection procedure. On the one hand, it
is common to train several models independently [10] or se-
quentially [11] to get multiple teachers and then combine them
together as the ensemble. One limitation of these two methods
is that there is no feedback from the combination stage to
the individual training stage, which limits their performance.
Moreover, the success of distilling knowledge for cross-modal
data [12], [13] and multi-view data [14] in recent works have
shown the necessity of diversifying teachers in the ensemble as
it would provide different views of data for the student. On the
other hand, simply taking average [7] or using fixed weights
[14], [15] over all models in the combination stage could also
be inefficient. The teacher models would generally converge to
different local minima due to random initialization, different
optimization trajectories or other factors. It is possible that
some teachers would contribute less or even have the negative
contributions to the performance on certain instances [16].
Hence, in order to achieve better distillation performance, it is
necessary to dynamically select proper teachers for different
instances during the entire distillation process.

Inspired by the above insights, we systematically study
how to generate diverse teachers via designing a negative
correlation learning (NCL) strategy and proposing a reinforced
knowledge distillation approach to dynamically select different
teachers during distillation via reinforcement learning. We
verify the effectiveness of our approach on time series re-
gression tasks which are commonly needed in flexible model
compression techniques. In particular, we follow the same
problem setup as [17], [18] and target at effectively trans-
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ferring knowledge between disparate network architectures
(e.g., from LSTM-based teachers to a CNN-based student).
We expect the CNN-based student to be capable of capturing
the temporal information buried in the sequential data like
LSTM but with less model complexity like CNN, thereby more
friendly for deployment.

Our contributions are summarized as follows:
• We propose a reinforced KD approach based on rein-

forcement learning to dynamically select proper teachers
for different instances, which significantly enhances the
efficacy of multi-teacher KD.

• We propose to generate highly diverse teachers for effi-
cient learning in multi-teacher KD via a NCL module.

• Extensive experiments on two time series regression tasks
have demonstrated that the proposed method significantly
outperforms other SOTA approaches.

II. RELATED WORK

Hinton et al. was the first to term the soften logits of
a cumbersome model as knowledge and then distilled it to
a compact model [7]. Romero et al. further extended the
knowledge from soften logits to the output of intermediate
layers (i.e., feature distillation) in [8]. After that, various
KD methods, such as [19], [20], [21], [17], [18], have been
proposed to distill knowledge from a single teacher in various
applications. However, the selection of teacher model is not
explicitly stated in these works and it is commonly based on
personal prior experience.

Considering the fact that better performance is often
achieved by the ensemble of DNNs, several multi-teacher KD
approaches have recently been proposed. Intuitively, taking
average of outputs of all teachers is a good choice and has
proved to be effective in [7], [22], [12]. Besides, Chebotar and
Water adopted fixed weights for different teachers and used
the grid search to identify the optimal weights [15]. Wu et al.
also employed fixed weights for a three-teacher distillation on
a video action recognition task but did not clearly state how to
determine these weights [14]. Nonetheless, simply combining
all teaches with equal or fixed weights is insufficient as each
teacher may perform very differently from other teachers on
certain samples. Fukuda et al. proposed two strategies for
multi-teacher KD scenario. One is called switched-training
which randomly selects a model from teachers’ pool to
guide student’s training, the other one is called augmented-
training which respectively updates student’s parameters with
the outputs of each teacher [23]. Our experimental results
show that the switched-training method even underperforms
the averaging ensemble and the augmented-training could be
regarded as an extreme case of our proposed methods. Our
proposed method is able to adaptively select proper teachers
for different training instances and thus significantly boost
student’s performance via distillation.

Another research hot-spot is to combine reinforcement
learning (RL) with knowledge distillation. Fan et al. proposed
a policy gradient-based RL method to assign different weights
to samples within homogeneous classes during distillation to
handle the problems of multi-class imbalanced classification

[24]. Wang et al. utilized the RL strategy to fine-tune the
structure of a generative model, which is first simplified via
the KD, to enhance the diversity of generated molecules
[25]. Tsantekidis et al. trained the RL-based financial trading
teacher agents under different environments and then distilled
the knowledge to a student to improve its training reliability
[26]. Liang et al. presented a RL-based framework to select
appropriate unlabeled samples from target language when
transferring knowledge from the source language [27]. Our
work differs from all the aforementioned works in terms of
how to integrate RL techniques and KD approaches.

One highly related work to ours is [28], which tried to
assign different weights to multiple teacher models during
knowledge transferring to the student. However, our work
is different from it in the following aspects. Firstly, our
problem formulation is totally different, not only in terms of
the definition of state and reward, but also in the reinforced
learning strategy. Specifically, Yuan et al. [28] adopted the
standard policy gradient method while we propose an off-
policy DQN algorithm to optimize the RL model. Our method
is able to achieve more sample efficiency through reusing
the collected experiences. Moreover, the Monte-Carlo based
policy gradient method adopted in [28] uses an estimation of
gradient generated by only a series of data during each gradient
update. Therefore, their noise estimation can adversely affect
the learning stability, while our DQN-based method can lead to
more stable performance via target network updates. Secondly,
to the best of our knowledge, we are the first to exploit negative
correlation learning to generate highly diverse teachers for
the multi-teacher KD scenario. With the proposed RL-based
teacher selection method, the negatively correlated teachers
are more efficient in student’s learning than other types of
teachers, such as independent teachers used in [28].

III. METHODOLOGY

In this section, we first introduce the negatively correlated
teachers generated by designing a NCL module. Then, a
RL-based teacher selection method is presented. Lastly, the
distillation is performed between the selected teachers and the
student. The overall framework for our proposed approach is
illustrated in Fig. 1.

A. Negatively Correlated Teachers

As aforementioned, for independent-trained and sequential-
trained models, there is no interaction between teacher models
during training stage, as well as no feedback from the com-
bination stage. Contrarily, negative correlation learning strat-
egy [16] emphasises the interaction and cooperation among
individual networks and encourages each network to learn
different aspects of training data by introducing a penalty
term into individual network training process. Specifically, for
the ith network in the ensemble, the loss function is defined
as Equation (1). The first term is the empirical training loss
function, e.g., Mean Square Error, between the ground truth
y and the prediction ŷi from the ith teacher. The second term
is the correlation penalty and λ is a hyper-parameter to adjust
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Fig. 1: The proposed RL-based KD framework. The upper part illustrates the RL-based teacher selector. We sample out one
teacher from the pool at each step and aggregate them for knowledge transfer. The lower part is the knowledge distillation
process. With the selected teachers, the student network is optimized via minimizing the loss which is the combination of PKT
loss, soft loss and hard loss.
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Fig. 2: Different Methods to get teacher models: (a) Each
teacher is independently trained; (b) Teachers are sequential
snapshots over single training process; (c) Teachers are simul-
taneously trained via negative correlation learning.

the strength of the correlation penalty. Here, ỹ is the average
of predictions of all models in the ensemble.

Li = (ŷi − y)2 + λ ∗ (ŷi − ỹ) ∗
∑
j ̸=i

(ŷj − ỹ). (1)

By minimizing the penalty term, the individual’s error is
negatively correlated to the errors of the rest in the ensemble,
so that the diversity of the ensemble would be increased.
Our experimental results show that comparing with teachers
via independently or sequentially training, negatively corre-
lated teachers are more knowledgeable for transferring the
comprehensive knowledge to a student. Fig. 2 illustrates the
above mentioned three different methods to generate multiple
teachers.

B. RL-based Teacher Selection

When multiple teachers are available in teacher-student
learning paradigm, since each individual teacher model may
have inconsistent performance on different samples or mini-
batches, dynamically employing proper teachers on instance
level or mini-batch level could provide better understandings
for specific data and thus effectively boost student’s perfor-
mance. Fig. 1 illustrates the overview of the proposed RL-
based teacher selection process. Particularly, we utilize the
Double Deep Q-Network (DDQN) [29] to obtain the optimal
teacher selection policy for every training batch and sample
out one teacher from the negatively correlated teachers pool
at each step. Then the selected teacher at the current step
participates in the knowledge distillation stage together with
the other teachers sampled out at previous steps. The averaged
outputs of intermediate layer and last layer of the selected
teachers are regarded as the knowledge to guide student’s
training. Algorithm 1 presents the details of the proposed
RL-based teacher selection process. In the following, the
definitions of the state, action, reward and the optimization
of DDQN are introduced in details.

State. In our proposed method, the state st ∈ Rnb×k×M

at any step t ∈ [1,K], is formulated as the aggregation of
feature maps from the intermediate layer of all negatively
correlated teachers. Here, nb is the number of samples in a
mini-batch Db ∈ D, k is the dimension of flattened feature
maps from LSTM-based feature extractor, and M is the total
number of negatively correlated teachers in the pool. Note
that after a teacher is sampled out from the pool based on the
optimal policy, the next state st+1 is generated by zeroing out
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the corresponding feature maps in st. To save computational
cost, we only perform one-time inference for all negatively
correlated teachers in mini-batch Db as the initial state and
conduct the zeroing-out operation at each step.

Action. For a specific teacher i in the pool, there are only
two actions a ∈ {0, 1} associated with it, selecting or not for
current mini-batch. Specifically, ait = 1 means to select teacher
i at current step t and ait = 0 means not to select it. Moreover,
since we only select one teacher at each step and the output
of the DDQN is a set of Q-values, the optimal action a∗ at
state st is then determined by Equation (2):

a∗ = argmax
a

Q(st, a; Θq). (2)

Note that the argmax operation will only be applied to the
remaining teachers in the pool.

Reward. The reward plays a crucial role on the learning of
teacher selection policy as it could provide important feedback
to DDQN for the value of choosing a particular action in cur-
rent state. Motivated by [28], we use the student’s performance
on validation set to calculate the reward. However, we measure
the linearized relative improvement of student’s performance
before and after distillation on a random batch from validation
set every step as follows:

r = max(−1,min(tanh(4 ∗ P
′ − P

P ′ ), 1)). (3)

Here, P ′ and P represent the student’s performance, e.g., Root
Mean Square Error (RMSE), before and after optimization
with KD at one training step, respectively. We adopt the tanh
function to linearize the relative improvement on a random
validation batch. Note that a positive value of tanh means
the performance get improved (e.g., smaller RMSE). On the
other hand, it is possible that the numerical value of relative
improvement on RMSE is very small on a single optimization
step due to a small learning rate. Therefore, we multiply the
relative improvement by a coefficient to assign a good reward
even when the improvement is marginal. What’s more, we
bound the reward between -1 and 1 so that the DDQN would
be able to better converge.

Optimization of DDQN. The double DQN consists of two
deep Q-networks, i.e., an online network Q with parameters
Θq and a target network Q′ with parameters Θ−

q . Q and Q′

share identical architecture and the initial Θ−
q is a copy of

Θq . As shown in Fig. 1, the DDQN network consists of three
sub-network: a common CNN encoder with parameters θC
which takes a 3-Dimension state matrix as input and outputs a
vector, two separate streams (i.e., two stacked fully connected
layers parameterized with θV and θA, respectively) to estimate
the state-value V (s; θC , θV ) and advantages A(s, a; θC , θA)
for each action. Finally, the two streams are aggregated by
Equation (4) to produce Q-values:

Q(s, a; θC , θV , θA) =V (s; θC , θV ) +A(s, a; θC , θA)

− 1

2

∑
a′

A(s, a′; θC , θA).
(4)

Algorithm 1 RL-based Teacher Selection

Input: Negatively correlated teachers pool with M models.
Student with Θs. An online network Q and a target
network Q′ initialized with Θq and Θ−

q , respectively;
Training data D and validation data V; Epoch number
L; Step number K; Replay Buffer H.

1: for epoch l ∈ [1, L] do
2: Randomly shuffle D
3: for each mini-batch Db ∈ D do
4: Calculate the initial state for Db

5: for step t ∈ [1,K] do
6: Get state st and sample action at ∼ Q(st).
7: Pick out a teacher from the pool based on at.
8: Update next state st+1.
9: Update Θs with selected teachers via KD.

10: Calculate rt using a random batch from V .
11: Set β = 0 if step end, otherwise β = 1
12: Store the tuple (st, at, rt, st+1, β) to H.
13: end for
14: end for
15: Update Q and Q′ via Algotithm 2.
16: end for

Algorithm 2 presents the details of the optimization process
for the DDQN. To be specific, a random batch of entries
(st, at, rt, st+1, β) is sampled out from replay buffer H.
Then, Θq is optimized via minimizing the Huber loss between
the estimated Q-values and the target Q-values which are
calculated from Equation (5):

Qtar = rt + β ∗ γ ∗Q(st+1, argmax
at+1

Q(st+1, at+1; Θq); Θ
−
q ).

(5)

Algorithm 2 Optimization of DDQN

Input: An online network Q and a target network Q′ initial-
ized with Θq and Θ−

q ; Replay Buffer H.
1: Randomly sample a mini-batch of (st, at, rt ,st+1, β)

from H.
2: Calculate the estimated Q-value Q(st, at; Θq) via Equa-

tion (4).
3: Calculate the target Q-value via Equation (5).
4: Calculate the Huber loss between the estimated Q-value

and target Q-value.
5: Update Θq via minimizing the Huber loss.
6: Update Θ−

q via Equation (6).

Here, β ∈ {0, 1}, β = 0 means next step t+1 is the terminal
step and 1 means the opposite. γ ∈ [0, 1] is the discount factor
that provides a trade-off between the immediate and future
rewards. Lastly, the parameters Θ−

q of target network Q′ is
updated via a moving average as shown in Equation (6):

Θ−
q ← δ ∗Θ−

q + (1− δ) ∗Θq. (6)
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C. Knowledge Distillation
LSTM-based networks have demonstrated superior perfor-

mance over CNN-based networks on time series data analytics
[30]. Yet, they are generally more complex than CNN-based
networks. In this work, we intend to distill knowledge from
a powerful and complex LSTM to an efficient CNN for
time series regression. Here, the knowledge from teachers are
formulated as two parts: feature maps from the intermediate
layers and final predictions. In particular, to transfer the
knowledge from intermediate layers, we adopt the Probabilis-
tic Knowledge Transfer (PKT) [20] to match the probability
distribution of the data in the feature space between teacher
and student.

For multiple teachers scenario, we first average the feature
maps over all selected teachers and then calculate the PKT loss
by measuring the Kullback-Leibler (KL) divergence between
two distributions as Equation (7).

LPKT = DKL(P∥Q) =

nb∑
i=1

nb∑
j=1,j ̸=i

pj|i log(
pj|i

qj|i
), (7)

where pj|i and qj|i are the conditional probability distributions
of the teacher and student with respect to sample xi and xj in
the mini-batch. Equation (8) presents the calculation of pj|i.
Here, f̃xi

and f̃xj
are the averages of flattened feature maps

over all selected teachers with sample xi and xj as inputs.
cos(f̃xi , f̃xj

) measures the biased cosine similarity between
f̃xi

and f̃xj
as shown in Equation (9). Comparing with the

general calculation of cosine similarity, the biased cosine
similarity shifts the value to make sure that the conditional
probability distribution is positive.

pj|i =
cos(f̃xi , f̃xj )∑nb

k=1,k ̸=j cos(f̃xk
, f̃xj

)
, (8)

cos(f̃xi
, f̃xj

) =
1

2

[
(f̃xi

)T (f̃xj
)

||f̃xi ||2||f̃xj ||2
+ 1

]
. (9)

By minimizing the LPKT , we encourage the student to learn
feature representation with similar probability distribution as
the teachers.

Meanwhile, we also utilize teachers’ predictions as the soft
labels and define the soft loss Lsoft = 1

nb

∑nb

1 (ỹT − ŷS)
2

as the distance between the averaged predictions ỹT from all
selected teachers and the prediction of student ŷS . In addition
to the above two distillation losses, a general loss between
student’s prediction ŷS and ground truth y is also adopted in
student’s training process, denoted as Lhard = 1

nb

∑nb

1 (ŷS −
y)2. The final loss is defined as the combination of above three
losses as follows:

L = α1 ∗ Lhard + α2 ∗ Lsoft + α3 ∗ LPKT , (10)

where α1, α2 and α3 are hyper-parameters to balance the three
losses. Fig. 3 illustrates the changing curve of α1, α2 and
α3 over different training epochs. Particularly, the weight α3

for PKT loss is gradually decreased while the weight α1, α2

for hard loss and soft loss are increased during the whole
training process. The summation of α1, α2 and α3 always
equals to 1 at any training step. The motivation is that: at
the early training stage of student, the feature maps of the
selected teachers could provide more information than a scalar,
like soft label and ground truth. It would help the student to
learn similar feature representations as the teachers first. As
the training goes on, the weights of soft loss and hard loss
would gradually increase, which allows the student to focus
more on the regression target.
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Fig. 3: Values of α1, α2 and α3 at different training epochs.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed
approach on two real-world time series regression tasks, i.e.,
machine remaining useful life (RUL) prediction and indoor
localization, which consists of six public datasets.

A. Experimental Setup

1) Machine RUL Prediction: We adopt the NASA’s tur-
bofan engine data for the RUL prediction task, which is
also known as C-MAPSS dataset [31]. The objective is to
accurately estimate the RUL of turbofan engines via 21
time series sensor measurements. It consists of four datasets,
namely, FD001, FD002, FD003 and FD004. The operating
conditions and fault modes of engines in each dataset are
different, as shown in Table I. Each dataset contains several
training and test trajectories. Each trajectory in training set
represents a turbofan engine with different initial states and
contains 21 time-series sensor measurements recording engine
degradation process. On the contrary, the trajectories in test
sets are the engine measurements at certain degradation stage.
The objective of this dataset is to accurately estimate the RUL
of turbofan engines via these sensor measurements. In our
experiments, the training sets are further divided into training
and validation set with a ratio of 9 : 1 in terms of trajectories.
For instance, we randomly select 90 trajectories from FD001
for model training and the rest 10 trajectories for validation.
Then, the same data pre-processing method has been applied
to training, validation and test sets as [18]. Moreover, same
as previous works [17], [30], [32], the root mean square error
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TABLE I: Summary of C-MAPSS Dataset

Dataset FD001 FD002 FD003 FD004
Operating Conditions 1 6 1 6

Fault Modes 1 1 2 2
Train Traj. 100 260 100 249
Test Traj. 100 259 100 248

(a) Lab

(b) Office

Fig. 4: Layout of two indoor localization environments.

(RMSE) and Score function are employed as the evaluation
metrics, which are defined as

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2, (11)

Score =

{∑N
i=1(e

− ŷi−yi
13 − 1), if ŷi < yi,∑N

i=1(e
ŷi−yi

10 − 1), otherwise,
(12)

where ŷi and yi are the predicted RUL and the ground truth
RUL, and N is the total number of samples. The lower
RMSE and Score are, the better performance the model would
achieve. Particularly, the Score function places more penalty
on late prediction than early prediction, as the late prediction
may cause worse catastrophe in real world applications.

2) Indoor localization: Another typical time series regres-
sion task that we utilized to evaluate our method is indoor
localization with WiFi RSSI (Received Signal Strength Indi-
cator) values [33]. It consists of two datasets collected under
different settings. Specifically, the dataset was collected by
using off-the-shelf WiFi routers in two different environments:
a research lab (35.3 m × 16.0 m) with 9 WiFi routers and an
office (55.0 m × 50 m) with 20 WiFi routers as depicted
in Fig.4. To be specific, 102 reference points are selected in
the research lab, which are uniformly distributed. At each
point, 2000 consecutive RSSI values are collected from all
9 routers (star symbols in Fig. 4(a)). Then, data from 92
randomly selected reference points (red circles) are used for
model training and the rest 10 reference points (yellow circles)
for testing. In the office, 353 uniformly distributed reference
points are selected and 30 of them are randomly selected for
testing and the rest for training. More detailed discriptions of
the dataset can be found in [33]. We adopt mean localization
error (MLE) as the evaluation metric following [33]. The MLE
is defined as

MLE =

√√√√ 1

N

N∑
i=1

[(x̂i − xi)2 + (ŷi − yi)2], (13)

where (x̂i, ŷi) are predicted location coordinates and (xi, yi)
are the ground truth.

3) Model Implementation: For fair comparison with ex-
isting works, we adopt the same network architectures for
LSTM-based teacher and CNN-based student as [17], [18] for
RUL prediction task. Particularly, the teacher model consists of
5 LSTM layers (32 hidden units in each layer) as the feature
extractor and 2 fully connected layers as the regressor. The
student model consists of 3 parallel dilated CNN branches
as the feature extractor and also 2 fully connected layers
(but with less hidden units) as the regressor. For the indoor
localization task, we employ a model consisting of 2-layer
LSTM and 2 fully connected layers as the teacher (same as
[33]) and use the same CNN-based student as RUL prediction
task but only modify the last layer from single scalar output
to a tuple output ((x, y) coordinates for the localization).
Moreover, we employ a 3-layer CNN as the common encoder
mentioned in Section III and 2 fully connected layers for each
stream. Table II gives the details of the DDQN architecture.
The output shape is calculated based on M = 10 and
nb = 64. “Conv2D(32,7,3)” refers to a 2-D convolutional
operation with output channels = 32, kennel size = 7
and stride = 3. “FC(2034, 512)” refers to a fully connected
layer with input = 2034 and output = 512. Layer 1 to 4 is
the common CNN encoder. The left branch of layer 5 and 6
is the state-value stream and the right branch is the advantage
stream. The final output is the aggregation of the two streams.

4) Training Details: To generate the negatively correlated
teachers pool, we first initialize M = 20 teachers with differ-
ent random seeds and then simultaneously train them with the
NCL strategy. Specifically, following [16] we configure the
correlation penalty weight λ = 0.5 and set nb = 64, learning
rate lr = 1e − 3. The Adam optimizer is adopted during
training. In RL-based KD stage, totally K teachers are selected
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TABLE II: Network Details of DDQN

Layers Operations Output Shape
Input - (None, 10, 64, 64)

Layer 1 Conv2D(32,7,3) + Relu (None, 32, 20, 20)
Layer 2 Conv2D(64,5,2) + Relu (None, 64, 8, 8)
Layer 3 Conv2D(64,3,1) + Relu (None, 64, 6, 6)
Layer 4 Flatten (None, 2304)
Layer 5 FC(2034, 512) + Relu FC(2034,512) + Relu (None, 512), (None, 512)
Layer 6 FC(512, 1) FC(512, 10) (None, 1), (None, 10)
Output Aggregation as Equation (4) (None, 10)

TABLE III: Performance Comparison with Benchmark Approaches

Tasks Machine RUL Prediction Indoor Localization

Scenario Methods FD001 FD002 FD003 FD004 Lab Office
RMSE Score RMSE Score RMSE Score RMSE Score MLE MLE

No Teacher Student Only 14.64 392.23 16.15 1281.07 15.34 602.15 17.38 1760.41 1.78 2.12

Single
Teacher

Standard KD 13.82 320.4 15.59 1131.33 14.16 521.16 16.86 1549.98 1.76 1.95
AT 13.91 344.05 15.38 1034.96 14.75 593.28 17.02 1570.05 1.70 2.01

RKD-DA 13.67 309.69 15.18 1008.52 14.04 480.25 16.55 1418.40 1.73 2.02
PKT 13.57 332.28 14.41 996.04 13.17 350.86 15.94 1291.87 1.66 1.92

KDnet-RUL 13.68 362.08 14.47 929.2 12.95 327.27 15.96 1303.19 1.51 1.83
CA-KD 13.41 293.82 14.23 975.96 12.95 325.29 15.85 1256.82 1.53 1.79

Multiple
Teachers

Random-T 14.15 314.85 15.41 990.02 14.09 450.72 16.89 1590.01 1.58 1.85
W-Averaging 13.76 309.22 15.56 1012.82 13.94 468.64 16.60 1460.99 1.60 1.89
U-Averaging 13.60 306.59 15.27 983.48 14.12 477.57 16.42 1308.48 1.58 1.87

Reinforced
Multi-Teacher

Independent 13.55 310.53 15.10 1054.82 13.72 426.76 16.53 1340.85 1.50 1.78
Sequential 13.71 312.81 15.03 972.74 13.87 404.48 16.41 1385.85 1.52 1.84
Proposed 13.07 288.82 14.22 901.74 12.82 311.55 15.71 1241.31 1.47 1.76

out for each mini-batch. Note that student’s performance varies
with the number of K selected teachers for each set. To be
specific, we set K = 3 for FD001 and FD003 in machine
RUL prediction task and indoor localization task, K = 5 for
FD002 and FD004. More experimental results regarding the K
will be presented in Section IV-D. The student is trained with
lr = 1e− 3 with a step decay schedule and Adam optimizer.
For the DDQN optimization, we follow [29] and set γ = 0.9
and δ = 0.999. The DDQN is trained with a batch size of 32,
lr = 1e− 4 and Adam optimizer.

B. Results and Discussion
1) Comparison with Benchmark Approaches: To verify the

effectiveness of the proposed approach, extensive experiments
have been conducted to compare our method with SOTA
methods. Table III presents the evaluation results of different
KD methods on two tasks. In particular, we compare student’s
performance under four scenarios: no teacher, single teacher,
multiple teachers and reinforced multi-teacher. For no teacher
case, we train the student with the ground truth only, denoted
as “Student Only”. We take it as the baseline to other
KD methods. For the single teacher case, we employ the
teacher with best performance on the validation set from
our negatively correlated teachers pool to perform distillation
with different methods. We compare three different feature
distillation approaches including AT [19], RKD-DA[21] and
PKT [20]. We also include the results from two recent
SOTA works for C-MAPSS dataset targeting at transferring

knowledge between disparate network architecture: KDnet-
RUL [17] and CA-KD [18]. Meanwhile, we apply these two
SOTA approaches in indoor localization task. Particularly, for
KDnet-RUL, we follow [17] and apply sequential distillation
upon identical architecture knowledge transferring. For CA-
KD, we set the number of negative samples in contrastive
learning to 512 same as [18]. Besides, we compare three
widely used ensemble methods for multi-teacher scenario:
randomly selecting one teacher from all teachers (denoted
as Random-T [23]), using fixed weights for all teachers
(denoted as W-Averaging [15]) and using uniform distributed
weights for all teachers (denoted as U-Averaging [7]). For W-
Averaging, we assign weights based on their performance on
validation set. The better performance a teacher can achieve,
the higher weight it will be assigned to. The summation of all
weights equals to 1. From Table III, some observations are as
follows.

First, all KD methods, either using single teacher or multiple
teachers, could enhance student’s performance in both machine
RUL prediction task and indoor localization task. It indicates
the effectiveness of KD in model compression.

Secondly, in single teacher KD scenario, among three
different feature distillation methods, (i.e., AT, RKD-DA and
PKT), PKT outperforms other two feature distillation meth-
ods in terms of transferring knowledge from single teacher.
Therefore, in our multi-teacher scenario, PKT is employed
to match the probability distribution of the feature maps
between student and the average of the selected teachers.
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Besides, KDnet-RUL and CA-KD have superior performance
than others for most of subsets in both tasks. One possible
reason is that the knowledge transferring schemes in these
two methods are specially designed for disparate network
architectures. However, introducing the adversarial, sequential
or contrastive learning strategies on feature distillation would
significantly increase training efforts.

Thirdly, in multiple teachers KD scenario, the simple aver-
aging strategy over all teachers (i.e., U-Averaging) could lead
to better performance than the other two ensemble methods
(Random-T and W-Averaging) for most of subsets in both
machine RUL prediction task and indoor localization task.
In other words, assigning more weights to a stronger teacher
based on its performance on the whole training samples does
not necessarily improve student’s performance. This obser-
vation reveals the importance of properly choosing ‘decent’
teachers on instance level.

Lastly, our proposed RL-based knowledge distillation
method significantly and also consistently outperforms all
aforementioned methods. It demonstrates the superiority of
our method over other ensemble strategies and reveals that
our method could help the student to better learn feature
representations via properly selecting suitable teachers for
different instances. Besides, our method eliminates the process
of teacher selection based on prior experience, hence could be
more efficient.

2) Different Teachers: Furthermore, we explicitly show
how well three different types of teachers (as depicted in
Fig. 2) could transfer the knowledge to a student. All these
three types of teachers have exactly the same network archi-
tecture but with different training strategy. For the independent
teachers, each individual was randomly initialized and trained
independently. For the snapshot teachers, we adopted a cyclical
learning rate schedule with warm restart method to improve the
convergence rate and saved the intermediate network (snap-
shot) every 10 epochs along single training process. Other
training parameters for independent and sequential teachers,
like learning rate, optimizer and configuration of the RL-based
KD stage, are the same as negatively correlated teachers for
fair comparison. The last three rows in Table III show the
student’s performance with different types of teachers. On
the one hand, comparing with other ensemble strategies the
proposed RL-based teacher selection could also boost student’s
performance even with independent and sequential teachers. It
reveals that our proposed RL-based teacher selection method
can be applied to any other KD-related applications using
multiple teachers. On the other hand, it is obvious that
the students trained with negatively correlated teachers have
consistently superior performance on all datasets. It indicates
that the negatively correlated teachers are more suitable for
our proposed RL-based KD framework.

C. Ablation Study

To investigate how each KD component contributes to
student’s final performance, we conducted the ablation study
on machine RUL prediction task as shown in Fig. 5. Fig.
5(a)∼(d) show the RMSE and Score results from FD001 to

FD004. “RL+KD” represents the student trained with ground
truth labels and soft labels for KD. Similarly, “RL+FT”
means that the student is trained with ground truth labels
and feature distillation with PKT. The teachers in “RL+KD”
and “RL+FT” are selected via the proposed RL-based teacher
selection method. It can be clearly seen from Fig. 5 that
each component in KD could boost student’s performance. It
is also not surprising that “RL+FT” outperforms “RL+KD”
since the soft label in the regression task is just a scalar,
which in general is a probability distribution in classification
tasks. The knowledge provided by a scalar is very limited.
However, the feature distillation and soft labels from teacher
are complementary to each other. Combining them together
could yield a better performance as our proposed method.
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Fig. 5: Analysis of Different Components in the Proposed
Method on C-MAPSS.

D. Sensitivity Analysis
One of the key parameters in our proposed reinforcement

learning based KD method is the number of K teachers
selected for each batch training. We conducted a detailed
investigation on how the K value affects student’s performance
on machine RUL prediction task. The results for four subsets
from C-MAPSS are shown in Fig. 6.

The optimal K for each subset are different. For simple
datasets (e.g., FD001 and FD003), a set of K = 3 teach-
ers would produce good student. However, for the complex
datasets (e.g., FD002 and FD004), they need more teachers
(K = 5) to participate in distillation stage. Furthermore,
student’s performance would gradually decrease when there
are more teachers involving into distillation. The reason is that
involving unknowledgable teachers for certain specific samples
would introduce noise into student’s learning process.

V. CONCLUSION

In this paper, we show that teachers trained via negative
correlation learning are more comprehensive and suitable for
multi-teacher KD scenario. A reinforcement learning based
teacher selection approach is then proposed to dynamically
select different teachers to participate in the distillation for
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Fig. 6: Sensitivity of K Selected Teachers on C-MAPSS.

different training samples. The experiment results demonstrate
that our proposed method significantly outperforms other
SOTA KD methods and prove the effectiveness of our method
for time series regression.

In our future work, we intend to explore more possibilities
of combining reinforcement learning and KD techniques.
Currently, we propose a RL strategy to iteratively select a
few teachers from pools. Alternatively, we could also as-
sign different weights for all teachers on different training
instance via designing different RL strategies to fully utilize
the knowledge learned by all teachers. Besides, considering
that the network architecture of student models is generally
pre-defined, RL-based method could also be employed to
automatically optimize the structure of the student models.
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