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Abstract

Learning from positive and unlabeled examples (PU learn-

ing) has been investigated in recent years as an alternative

learning model for dealing with situations where negative

training examples are not available. It has many real world

applications, but it has yet to be applied in the data stream

environment where it is highly possible that only a small set

of positive data and no negative data is available. An impor-

tant challenge is to address the issue of concept drift in the

data stream environment, which is not easily handled by the

traditional PU learning techniques. This paper studies how

to devise PU learning techniques for the data stream envi-

ronment. Unlike existing data stream classification methods

that assume both positive and negative training data are

available for learning, we propose a novel PU learning tech-

nique LELC (PU Learning by Extracting Likely positive and

negative micro-Clusters) for document classification. LELC

only requires a small set of positive examples and a set of

unlabeled examples which is easily obtainable in the data

stream environment to build accurate classifiers. Experi-

mental results show that LELC is a PU learning method

that can effectively address the issues in the data stream en-

vironment with significantly better speed and accuracy on

capturing concept drift than the existing state-of-the-art PU

learning techniques.

1 Introduction.

Traditionally, supervised learning techniques are pro-
posed to build accurate classifiers that require a large
number of labeled training examples from the prede-
fined classes for learning. In practice, this paradigm can
be problematic because collecting and labelling large
sets of training examples can be expensive and tedious.
The alternative approach of Positive and Unlabeled
(PU) learning has been investigated in recent years. PU
learning reduces the amount of labeled training data by
developing classification algorithms that can learn from
a set of labeled positive examples augmented with a set
of unlabeled examples. In other words, given a set P of
positive examples of a particular class and a set U of un-
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labeled examples (which contains both hidden positive
and hidden negative examples), we build a classifier us-
ing P and U to classify the data in U as well as future
test data. Several PU learning techniques (e.g. [12],
[13], [14], [22]) have recently been proposed to solve the
PU learning problem in document classification domain
with promising results.

The key difference of the PU learning techniques
from the traditional classification approaches is that
we can still learn an accurate classifier even without
the negative training data. The dynamic data stream
environment is one such environment where it is highly
possible that only a small set of positive data and no
negative data is available in practice. However, while
PU learning has been applied successfully in static data
mining scenarios, it has yet to be applied in the dynamic
data stream environment. An important challenge
is to address the issue of concept drift in the data
stream environment, which is not easily handled by the
traditional PU learning techniques. In this paper, we
study how to devise PU learning techniques in the data
stream environment.

With the advent of advanced data streaming tech-
nologies [1], we are now able to continuously collect large
amounts of data in various application domains, e.g.,
daily fluctuations of stock market, traces of dynamic
processes, credit card transactions, web click stream,
network traffic monitoring, position updates of moving
objects in location-based services and text streams from
news etc [2]. Due to its potential in industry applica-
tions, data stream mining has been studied intensively
in the past few years. In particular, much research has
been focused on classifying data streams [3]-[9]. The
general approach is to first learn one or multiple classifi-
cation models from the past records of the evolving data,
and then use a selected model that best matches the cur-
rent data to predict the new data records. All the exist-
ing data stream classification techniques assume that at
each time stamp there are both large amounts of posi-
tive and negative training data available for learning.

In practice, however, this assumption is often vio-
lated, i.e. we are unlikely to have the necessary neg-
ative training data for learning a classifier in a data
stream environment. This is because stream data typ-
ically has the nature of being bursty and at the same



time evolving rather rapidly. For example, a user may
be interested in the recent burst of documents on a par-
ticular topic from the news data stream (e.g., today’s
breaking news from a news stream) and want to get
similar documents about it subsequently. In such situ-
ations, while there is the availability of positive train-
ing examples (even if only a small number), it is not
realistic to expect also the negative training examples.
The ad hoc nature of the event makes it impossible to
prepare pre-labeled (negative) training examples, and
manually labelling some negative examples (typically a
labour-intensive and time-consuming process, even in a
non-data stream environment) on the spot is unlikely
to be acceptable due to the highly dynamic and reac-
tive nature of the tasks. Furthermore, the training data
from the historical records may not be valid anymore
since the documents of interest are likely to continue to
evolve over time. This is referred to as concept drift [8].

Additionally, data stream classification requires
real-time response. This means that obtaining an ade-
quately large number of positive examples in a timely
fashion can also be rather difficult in many real appli-
cations. As such, not only do we have to deal with the
absence of negative data, we also have to make do with
a fairly small set of positive data.

The problem is thus the following: can we still be
able to build an accurate classifier with small positive
data P and unlabeled data U in a concept drifting
stream environment? This problem is a challenging one
not only because we need to detect reliable negative
examples (like other PU learning techniques) from the
unlabeled examples, but also because the small posi-
tive set may not even adequately represent the whole
positive class. On top of that, there is concept drifting
in the data stream. We propose a novel PU learning
technique to extract both likely positive examples and
likely negative examples from unlabeled set U in the
concept drifting stream environment. Here the positive
data P is the small positive data, which represents a
user’s new interest in the current time stamp. The un-
labeled data U is the historical data in previous time
stamp, which consists of previous positive data Pold and
previous negative data Nold, i.e. U = Pold∪Nold. Note
that not all the data in Pold (Nold) are examples for the
positive (negative) data in the current time stamp be-
cause the labels might have changed due to the change
of users’ interests. Our proposed PU learning technique
for data stream classification is called LELC (PU Learn-
ing by Extracting Likely positive and negative micro-
Clusters). To address the problems of small positive
data and the lack of negative data, after extracting
the reliable negative documents from unlabeled set U,
LELC focuses on extracting high-quality likely positive

and negative micro-clusters from U. Unlike some previ-
ous works that extract likely positive data (document)
individually, our proposed LELC extracts likely positive
and negative micro-clusters, which is more robust than
the existing techniques. The main contributions in this
paper can be summarized as follows:
• For the first time, the PU learning problem is

formally defined in the data stream environment.
This enables the use of PU learning techniques
for data stream classification tasks where it is
common that no negative data but only a small
positive dataset and unlabeled data are available
for training.

• A novel classification algorithm LELC has been de-
signed to extract high-quality positive and nega-
tive micro-clusters from data streams. The main
innovation is in the technique for selecting likely
positive and negative instances from the unlabeled
set, which also exploits the characteristics of data
streams. In contrast to the existing PU learning
methods, which extract likely negative/positive in-
stances point by point, the new method extracts
them by small clusters (or micro-clusters [3]). The
micro-clusters are formed by utilizing labels in the
past streams (which are treated as unlabeled data
in the new interval) to produce good clustering. It
is important to note that although the past labels
may no longer be of interest, data points of the
same labels still form homogeneous groups. We call
this technique label consistent micro-clustering. It
is reasonable to assume that data points close to-
gether change their labels together under concept
drift rather than each changing its label randomly.

• Experimental results of LELC algorithm show that
such a PU learning method can effectively address
the challenging issues in the data stream envi-
ronment, significantly outperforming the existing
state-of-the-art PU learning methods.

2 Related Work.

PU learning has been studied in the recent years to
address the lack of negative training data in practice.
A theoretical study of PAC learning from positive and
unlabeled examples under the statistical query model
was first reported in [10]. Muggleton [11] followed by
studying the problem in a Bayesian framework where
the distribution of functions and examples are assumed
known. [12] reported sample complexity results and
provided theoretical elaborations on how the problem
could be solved.

Subsequently, a number of practical PU learning
algorithms were proposed [12], [13], [14]. These PU
learning algorithms all conformed to the theoretical



results presented in [12] by following a common two-
step strategy, namely: (1) identifying a set of reliable
negative documents from the unlabeled set; and then
(2) building a classifier using EM or SVM iteratively.
The specific differences between the various algorithms
in these two steps are as follows.

The S-EM method proposed in [12] was based on
näıve Bayesian classification and the EM algorithm [15].
The main idea was to first use a spy technique to identify
some reliable negative documents from the unlabeled
set, and then to run EM to build the final classifier.
The PEBL method [13] uses a different method (1-DNF)
for identifying reliable negative examples and then
runs SVM iteratively for classifier building [16]. More
recently, [14] reported a technique called Roc-SVM.
In this technique, reliable negative documents were
extracted by using the information retrieval technique
Rocchio [17]. Again, SVM is used in the second step.
A classifier selection criterion is also proposed to catch
a good classifier from iterations of SVM. Despite the
differences in algorithmic details, the above methods all
focused on extracting reliable negative instances from
the unlabeled set.

Some of the recent works also looked into the
extraction of likely positive data [23]. In [18], a method
called PN-SVM was proposed to deal with the case when
the positive set is small. PU learning has been used to
classify electronic products [21] and identify unexpected
instances in the test set [19].

Note that the problem could potentially be mod-
elled as a one-class classification problem. For exam-
ple, in [20], a one-class SVM that uses only positive
data to build a SVM classifier was proposed. Such ap-
proaches are different from our method in that they do
not use unlabeled data for training. As previous results
reported in [14] have already showed that they were in-
ferior for text classification, we do not consider them in
this work.

We notice that all the current PU learning methods
have been devised for static data environments. In
this paper, we explore the application of PU learning
in the dynamic data environments such as stream data
classification. Such data environments have an inherent
lack of negative examples and small positive examples
where PU learning seemed to be naturally designed
for such scenarios. However, as mentioned, there are
challenging issues such as concept drift in the data
stream environment which is not easily handled by the
traditional PU learning techniques.

A number of techniques have been proposed to
classify data stream [3]-[9]. The existing work can be
divided into two classes according to how they deal
with the historical records [24]. One class focuses

on how to effectively update the classification model
when stream data flows in [5] [3], by discarding the
historical records after a certain period of time or
gradually decreasing their weights as time elapses [24].
The other class devised methods for choosing historical
records which can match well with the current data
to help train a better model instead of just using
the most recent data alone [25] [9] [6]. Some other
related techniques for handling stream data include
discovering high-order models from evolving data [26] to
stop chasing the evolving trends and dealing with high
dimensional classification through a resource adaptive
approach [4].

These existing techniques all required both labeled
positive and negative data at each time instance for
their learning processes. They are not designed for
solving the problem of classification with only positive
and unlabeled data. On the other hand, traditional
PU learning techniques do not address the issue of
concept drift which occurs frequently in the data stream
environment. It is thus worthwhile to explore the
possibility of devising novel PU learning techniques
for the data stream environment to address the lack
of negative data and insufficient positive data in such
environments.

3 Problem Definition.

Let us now describe how data stream classification can
be modelled as a PU learning problem. Suppose we
have a data stream D1, D2, . . . , Dm, where each Di (i
= 1, 2, . . . , m) denotes the data that arrived between
time ti−1 and ti. Di can be split into positive data Dip

and negative data Din, i.e. Di = Dip ∪ Din. In the
current time tm+1, we are given the current interest as
the positive data DC , and the aim of our data stream
classification is to train a classifier based on DC and the
historical data Di. The classifier can then be used to
classify the future data stream.

Since a user’s interests may change over time, one
should not treat all the positives in the historical data,
namely ∪m

i=1Dip , as the current positive data (similarly,
we should not treat all the negatives in the historical
data, namely ∪m

i=1Din , as the current negative data).
To address the potential concept drift, we treat all
historical data as unlabeled data. In other words, we
only have (i) the positive data DC which describes
a user’s current interest, and (ii) the unlabeled data
Di (i = 1, 2, . . . , m) which describe a user’s past
interests. In this way, the data stream classification
problem with concept drift can be modelled as a positive
and unlabeled learning problem.

Clearly, it is impractical to use the entire historical
data Di (i = 1, 2, . . . , m) as the unlabeled data for



training a classifier because the massive and potentially
obsolete historical data which may result in unaccept-
ably slow and possibly inaccurate response to a user’s
requirements (recall that most data stream classification
applications demand real-time responses), not to men-
tion the large space needed to store the huge amount of
data stream. As such, in this work, we focus on using
only the most recent data Dm for learning. In other
words, our PU learning problem is defined as follows:
given the current positive data P (DC), and the most
recent data Dm = Dmp ∪Dmn treated as the unlabeled
data U, we train an accurate classifier that can identify
the hidden positive data from the future data stream
(or test set T ). In this paper, we focus on the document
classification task for this work.

4 The Proposed Technique.

Typically, a large number of labelled positive and neg-
ative training examples are required to learn a good
classification model. In our case, we only have a small
positive data P and an unlabeled data U. To build an
accurate classifier, our proposed technique LELC has to
extract trustworthy positive and negative examples by
using P and U.

The LELC employs a progressive two stage ap-
proach. In stage one, a conservative ensemble strategy
is used to extract very reliable negative examples from
unlabelled data. In stage two, a novel approach explor-
ing label consistency within small clusters (or micro-
clusters) is developed to further extract likely positive
and negative clusters from the unlabelled data.

Since we do not have any negative examples ini-
tially, our first task is to extract some reliable negative
examples. We propose to use an ensemble strategy that
integrates the two state-of-the-art PU learning extrac-
tion techniques, namely Spy extraction and Rocchio ex-
traction, to extract a high quality reliable negative set
RN (Section 4.1). Both extraction methods have rela-
tively low error rates and independent in the production
of their errors. By integrating them, we minimize the
potential bias of individual methods and the expected
errors in RN extracted by the ensemble classifier can be
expected to be greatly reduced [27].

We notice that for our document classification task,
typically |RN | >> |P | and that the topics in P
are usually related and the set of reliable negative
documents in RN are from diverse topics. In order
to balance the positive and negative data [28], we
first cluster the negative documents in RN into several
homogenous groups. A set of more accurate one-versus-
one Rocchio classifiers [29] are subsequently built using
P and each RN cluster (Section 4.2).

A potentially large number of positive and negative

examples may still be in the remaining unlabeled data
(U - RN ) that can be exploited for building our classi-
fier. We therefore continue our efforts to extract likely
positive and negative data. To do so, we cluster the
positive and negative documents in the past streams
(after removing the documents in RN ) by using their
labels to produce good micro-clusters. Although the
past labels may no longer be of interest in the current
time interval, data points of the same labels still form
homogeneous groups. Section 4.3 first describes this in-
novative clustering step which we called label consistent
micro-clustering.

We are now ready to extract further likely nega-
tive/positive examples for building our accurate stream
data classifier. We use the set of Rocchio classifiers to
classify each micro cluster to decide if they are likely
positive and negative clusters. In contrast to conven-
tional PU learning methods which extract likely pos-
itive/negative instances point by point, our approach
is novel in extracting likely positive/negative micro-
clusters from the data streams. This innovative ap-
proach turns out to be a robust approach as we are
able to exploit the fact that data points close together
tend to change their labels together under concept drift
rather than each changing its label randomly.

With the given positive set P, extracted reliable
negative set RN, and the high-quality likely positive
micro-clusters and likely negative micro-clusters, our
LELC algorithm has adequate positive and negative
data to build a robust classifier for data stream classifi-
cation (Section 4.4). Since the ability to provide rapid
response is often the key to most data stream classifica-
tion applications, we also analyze the efficiency of our
LELC algorithm in Section 4.5.

4.1 Extracting Reliable Negative Documents.
Supervised learning methods require both positive and
negative training sets to learn a classification model. In
PU learning, given that only the positive data P and
the unlabeled data U are available, there is a need to
extract some initial negative documents, i.e. reliable
negative documents from unlabeled set U. The key
requirement for this extraction step is that the identified
negative documents from the unlabeled set U should
be reasonably reliable or pure, i.e., with no or very
few positive documents (or false negatives). This is
because false negatives will affect the performance of
the subsequent steps of extracting the likely positives,
and the likely negatives, and the final step to build SVM
classifier which is also very sensitive to noise. Currently,
there are two existing PU learning techniques, i.e.
Roc-SVM (Rocchio extraction) [14] and S-EM (Spy
extraction) [12] that can be used for extracting large



quantity of reliable negative documents from U (other
techniques, such as 1-DNF technique in PEBL [13] can
only extract a very small number of reliable negative
documents).

Our proposed algorithm LELC uses an effective en-
semble strategy [30] that integrates both the Spy ex-
traction and the Rocchio extraction algorithms to ex-
tract the most reliable unbiased negatives. Documents
are classified as negative class only if both Spy extrac-
tion and Rocchio extraction agree that they are negative
documents. In this way, we minimize the potential bias
of the individual methods and reduce the possibility of
extracting the false negative documents [27].

Algorithm 1 shows the details of this process. The
set RN is used to store the reliable negative instances
identified. Step 1 initializes RN to the empty set, while
Steps 2-3 initialize the positive set P (current positive
set DC) and the unlabeled set U (the union of the pos-
itive set Dmp and negative set Dmn in the last time
instance). Steps 4 and 5 build the Spy extraction clas-
sifier FS−EM [12] and the Rocchio extraction classifier
FRoc−SV M [14] respectively. For each document d in
unlabeled set U, steps 6-10 classify it into reliable neg-
ative set RN if both classifiers FS−EM and FRoc−SV M

classify them into negative class. The sets P ′ and U ′

are used to store the remaining documents of Dmp and
Dmn respectively in Steps 11 and 12, excluding the reli-
able negative documents already identified in RN. Note
that due to potential concept drift in the data stream
environment, it is possible that some reliable negative
documents are from the previous positive set Dmp (Step
11). Finally, Step 13 outputs the unbiased reliable neg-
ative set RN, the remaining positive set P ′, as well as
the remaining negative set N ′. Note that set P ′ ∪ N ′

becomes the new unlabeled set.

Algorithm 1 Extract Reliable Negative Documents

1: RN = ∅;
2: P = DC ;
3: U = Dmp ∪Dmn;
4: Build a Spy extraction classifier FS−EM using P and

U ;
5: Build a Rocchio extraction classifier FRoc−SV M

using P and U ;
6: for each document d ∈ U do
7: if ((FS−EM (d) = −1)&&(FRoc−SV M (d) = −1))

then
8: RN = RN ∪ {d};
9: end if

10: end for
11: P ′ = Dmp −RN ;
12: N ′ = Dmn −RN ;
13: Output RN , P ′ and N ′

4.2 Building representative positive and neg-
ative prototypes. At this point, we have a positive
set P and a reliable negative set RN. Ideally, we can
use them directly to build a classifier using a supervised
classification technique to classify any other uncertainty
documents. However, we noticed that in practice, while
the topics in P are usually related, the set of negative
documents in RN typically consists of a large quantity
of documents of diverse topics. As such, it is good to
first cluster the negative documents in RN into sev-
eral homogenous groups, i.e. RN1, RN2, . . ., and RNr.
Based on the positive data P and each homogenous neg-
ative data RNi (i = 1, 2, . . ., r), we can then build a
more accurate classifier by constructing the correspond-
ing positive and negative representative prototypes for
one-versus-one classification.

The detailed algorithm is shown in the Algorithm
2. In step 1 of the algorithm, each document d is first
represented as a vector [31] ~d = (q1, q2, . . ., qn). Each
element qi in ~d represents a word feature wi which is
calculated as the combination of term frequency (tf )
and inverse document frequency (idf ), namely, qi =
tfi ∗ idfi, where tfi is the number of times that the
word wi occurs in d, while idfi is computed as

idfi = log
|D|

df(wi)

Here |D| is the total number of documents and
df (wi) is the number of documents where the word wi

occurred at least once.
After representing each document into a vector, the

second step of the algorithm (Step 2) is to cluster the
documents in RN into r groups such that documents
within each group are more similar with each other. In
this work, we employ the k -means clustering algorithm
[32] as an efficient and effective clustering technique
to cluster RN. In k -means clustering, cosine similarity
[31] is used to evaluate the similarity between any two
documents ~d = (q1, q2, . . ., qn) and ~d′= (p1, p2, . . ., pn):

cos(~d, ~d′) =
Σn

i=1qi ∗ pi√
Σn

i=1q
2
i ∗

√
Σn

i=1p
2
i

In steps 3 to 6, we construct the positive and
negative representative prototypes ~pi and ~ni (i = 1,
2, . . ., r) which can then be used to classify the
documents in the unlabeled set P ′∪N ′. Note that α and
β are two user-customisable parameters for adjusting
the relative impact of positive and negative training
examples. In this work, we use α= 16 and β= 4 which
were recommended in [33].

4.3 Extracting Likely Positive and Negative
Micro-Clusters. In the data stream environment, the
number of positive documents in P is often insufficient,



Algorithm 2 Building representative positive and nega-
tive prototypes

1: Represent each document in P and RN, using
TFIDF representation;

2: Partition the reliable negative RN into r clusters
RN1, RN2, . . ., and RNr, where the number of
clusters r is set as r = |RN |/(|P ′|+ |N ′|+ |RN |)∗k;

3: for i = 1 to r do
4: ~pi = α 1

|P |Σ~d∈P

~d

||~d|| − β 1
|RNi|Σ~d∈RNi

~d

||~d|| ;

5: ~ni = α 1
|RNi|Σ~d∈RNi

~d

||~d|| − β 1
|P |Σ~d∈P

~d

||~d|| ;
6: end for

while the reliable negative documents in RNi may be
far away from the boundary between the actual positive
and negative documents. It is thus quite likely that the
classifier built by using only P and RNi may not be
accurate enough. As such, an important step in our
LELC method is to extract the more likely positive
documents LP as well as the more likely negative
documents LN from the new unlabeled set P ′ ∪ N ′.
The new sets LP and LN can then be used to enhance
the original small positive set P and reliable negative
training set RN to build accurate classifiers.

With the positive and negative prototype vectors
~pi and ~ni (i = 1, 2, . . ., r) built using the Algorithm
2, we may build a Rocchio classifier to classify each
document d from P ′ ∪ N ′ by checking if d is nearer
to the positive or negative prototype vectors based on
cosine similarity. However, since Rocchio is a linear
classifier, when the decision boundary is non-linear
or does not conform to the separating plane resulted
from cosine similarity, Rocchio may inaccurately classify
some documents into false positives or false negatives.
This will lead to further damage in our final classifier.
Figure 1 shows a possible scenario when we learn a
Rocchio classifier with P and RNi. In the figure, ~pi

and ~ni represent the positive and negative prototypes
(or prototype vectors) respectively. H is the decision
hyperplane produced by Rocchio classifier. It has the
exactly same distance (similarity) to ~pi and ~ni. If a
documentd is located on the right-hand-side of H, i.e.
sim (d, ~pi ) < sim (d, ~ni), it is classified as negative;
otherwise it is classified as positive where sim (d, ~pi) ≥
sim (d, ~ni). However, the positive and negative classes
in the data cannot be separated by H well in Figure
1, and some positive documents in the regions 1 and 3
are misclassified as negative documents (false negatives)
while the negative documents within the region 2 are
misclassified as positive documents (false positives).

From the discussion above, it is clear that classifi-
cation based on individual document classification may
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Figure 1: False positives and false negatives classified by
using a Rocchio classifier

not work well. As such, we investigate how to extract
likely positive and negative micro-clusters instead us-
ing a novel approach based on label consistent micro-
clustering. First, we cluster P ′ into micro-clusters P1,
P2, . . ., Pm and N ′ into micro-clusters N1, N2,. . ., Nn

using the k -means clustering. Instead of directly decid-
ing the label of each individual document in P ′∪N ′, we
classify each micro-cluster Pi and Nj (i = 1, 2, . . ., m,
j = 1, 2, . . ., n). Since the documents in each micro-
cluster are similar, they should have higher possibility
to belong to same class. Thus, for each micro-cluster,
we can first classify each document in the micro-cluster
to give them temporary labels. We then employ a voting
strategy to decide the micro-cluster’s category and use
it to decide the final label for each document (namely,
a document final label is assigned by using its micro-
cluster’s category). This is a robust technique since
it not only considers the similarities of each individ-
ual document to the positive and negative prototype
vectors, but it also takes the relationships between doc-
uments in the micro-clusters (i.e. similar documents in
one micro-cluster should belong to the same class) into
account when assigning the final labels for the docu-
ments. In the example shown in Figure 1, the likely pos-
itive set LP would consist of all the documents within
the entire micro-clusters, namely regions 1 and 3, which
are classified as belonging to the positive class because
most of the documents in the micro-cluster were clas-
sified as positives. Similarly, the documents in region
2 will be classified as negatives together as a micro-
cluster, and stored into the likely negative set LN, since
most of the documents in the micro-cluster were classi-
fied as negatives. Note that some micro-cluster Pi can
become likely negative (LN ) and micro-cluster Ni may



become likely positive (LP) due to the concept drift in
data stream environment.
Algorithm 3 Extracting the likely positive and nega-
tive micro-clusters
1: Partition P ′ and N ′ into micro-clusters CP =
{P1, P2, . . . , Pm}, CN = {N1, N2, . . . , Nn} respec-
tively. The number of micro-clusters for P ′ is m =
|P ′|/(|P ′|+ |N ′|+ |RN |) ∗ k, The number of micro-
clusters for N ′ is n = |N ′|/(|P ′|+ |N ′|+ |RN |) ∗ k;

2: LP = ∅, LN = ∅;
3: for each micro-cluster Ci ∈ CP =
{P1, P2, . . . , Pm} ∪ CN = {N1, N2, . . . , Nn} do

4: pos vote = 0;
5: neg vote = 0;
6: for each document d ∈ Ci do
7: if (maxr

i=1 sim(d, ~pi) > maxr
i=1 sim(d, ~ni))

then
8: pos vote + +;
9: else

10: neg vote + +;
11: end if
12: end for
13: if (pos vote > neg vote) then
14: LP = LP ∪ Ci;
15: else
16: LN = LN ∪ Ci;
17: end if
18: end for

Algorithm 3 shows the detailed procedure. In step
1, to exploit label consistent micro-clustering, we cluster
separately the past positive set P ′ into m groups P1, P2,
. . ., Pm and the past negative set N ′ into n groups N1,
N2,. . ., Nn. The number of the micro-clusters for m (for
P ′) and n (for N ′) is proportioned to the size of RN,
P ′ and N ′ and is decided by a parameter k (similarly r
for RN in Algorithm 2). From our experimental results
in Section 5, we observe that the choice of k does not
affect classification results much as long as it is not too
small or too big.

Next, the likely positive set LP and the likely
negative set LN are initialized as empty set in Step
2. Then, from Step 3 to Step 18, we decide the
class label of the each micro-cluster Ci in CP and
CN . We initialize the two variables pos vote (count
the number of positive support for micro-cluster Ci)
and neg vote (count the number of negative support for
micro-cluster Ci) as zero. In Steps 6 to 12, we classify
each document d in micro-cluster Ci, by comparing its
biggest positive similarity (the highest similarity with
all the positive prototype vectors) with the biggest
negative similarity (the highest similarity with all the
negative prototype vectors) and update the pos vote

and neg vote according to d ’s temporary label. Finally,
in steps 13 to 17, we classify the entire micro-cluster
Ci based on the values of pos vote and neg vote – if
pos vote is bigger than neg vote, then the whole micro-
cluster Ci and its corresponding documents will be
classified as positive documents and put into the likely
positive set LP ; otherwise they are classified as negative
documents and put into the likely negative set LN.

4.4 Building the Final Classifier. Finally, we
build an SVM classifier with the positive set P and the
reliable negative set RN, enhanced by the likely positive
set LP and the likely negative set LN.

Algorithm 4 Building the final SVM classifier

1: P = P ∪ LP ;
2: N = RN ∪ LN ;
3: Build a final SVM classifier FSV M using P and N.

In Steps 1 and 2 of Algorithm 4, we update the
positive set P by its union with LP, and build a negative
set N by the union of the reliable negative set RN
with the likely negative set LN. We finally build an
SVM classifier by using the resulting positive set P and
negative set N. We use SVM in this work because of its
superior performance in text classification [16] [34]; the
other classification techniques could also be applied, if
preferred.

4.5 Analysing the Efficiency of LELC algo-
rithm. The main steps for our LELC algorithm include
1) integrating Rocchio (using Rocchio classifier) with
Spy extraction (using näıve Bayesian classifier) to ex-
tract reliable the negative documents, 2) k -means clus-
tering to partition the reliable negatives RN and the
remaining uncertainty unlabeled set P ′ and N ′, 3) Roc-
chio classifier for extracting the likely positive and neg-
ative micro-clusters, and 4) employing SVM to build
the final classifier. Since the steps from 1) to 3) can be
performed using efficient algorithms implemented in lin-
ear time, the main time complexity is the time used to
build the final SVM classifier. While current PU learn-
ing techniques such as S-EM, Roc-SVM and PEBL all
need to iteratively build their SVM or EM classifiers,
our proposed LELC technique is much more efficient
than these state-of-the-art PU learning techniques since
it only needs to build a single SVM classifier. This is
very important in the data stream environment where
the need to quickly respond to a user’s request is often
expected.

5 Empirical Evaluation.

In this section, we evaluate the proposed LELC tech-
nique under different experimental settings and com-



pare it with three main existing methods, namely S-EM
[12], PEBL [13] and Roc-SVM [14]. Both Roc-SVM
and S-EM are available on the Web as a part of the
LPU system (http://www.cs.uic.edu/~liub/LPU/LPU-
download.html). We implemented PEBL ourselves as
it is not publicly available. We do not compare with
other current data stream classification techniques as
they cannot be applied to the scenario that we are con-
sidering in this work, namely having only a small set of
positive documents and no negative data available for
training.

We use the 20 Newsgroups text collection [35],
which is commonly used in evaluating text classifica-
tion methods, to simulate the data stream environment
by generating different data at different time stamps.
The 20 Newsgroups collection contains documents from
20 different UseNet discussion groups, which are also
categorized into 4 main categories, i.e. computer, recre-
ation, science, and talk. For a fair comparison, we have
removed all the UseNet headers (thereby discarding the
potentially telling subject line) in our experiments.

We use the F-measure to evaluate the performance
of the final classifier to identify or retrieve positive
documents from the future data stream. The F-measure
is the harmonic mean of precision (p) and recall (r), and
it is defined as F = 2 ∗ p ∗ r/(p+ r). In other words, the
F-measure reflects an average effect of both precision
and recall. When either of them (p or r) is small, the
value will be small. Only when both of them are large,
F-measure will be large. This is suitable for our purpose
to accurately identify all the positive documents from
the future data stream. Having either too small a
precision or too small a recall is unacceptable and would
be reflected by a low F-measure. Note that the F-
measure is a commonly used metric for evaluating the
performance of many classification systems; the reader
may refer to [36] for further details of its theoretical
bases and practical advantages.

5.1 Experiment settings . Our objective is to
evaluate whether our technique can handle scenarios
where there is a concept drift in the data stream. Let us
describe how we can use the benchmark 20 Newsgroups
data to simulate such data streams. Specifically, we
describe how to generate the positive data P, unlabeled
data U and test set T at different time stamps.

First, we define a super positive set SP which
consists of several related newsgroups (classes) out
of the 20 newsgroups. The corresponding base neg-
ative set BN is defined as the remaining newsgroups
of all the 20 Newsgroups. For example, suppose
SP is a set of 5 classes of computer related doc-
uments, i.e. SP = {pc.hardware, mac.hardware,

windows.x, ms-windows, comp.graphics}. Then,
the base negative set BN would comprise the re-
maining 15 newsgroups, i.e. BN = {rec.autos,
rec.motorcycles, rec.sport.baseball, rec.sport.hockey,
sci.crypt, sci.electronics, sci.med, sci.space, alt.atheism,
misc.forsale, soc.religion.christian, talk.politics.guns,
talk.politics.mideast, talk.politics.misc,
talk.religion.misc}. Table 1 shows all the 4 possi-
ble super positive sets SP used in this paper (BN is
not shown in table 1).

Table 1: Super positive set SP

Categories Super positive set SP

Computer pc.hardware, mac.hardware, windows.x,
ms-windows, comp.graphics

Recreation rec.autos, rec.motorcycles,
rec.sport.baseball, rec.sport.hockey

Science sci.crypt, sci.electronics, sci.med,
sci.space

Talk talk.politics.guns, talk.politics.mideast,
talk.politics.misc, talk.religion.misc

Given a super positive set SP and the corresponding
base negative set BN, we generate positive data, unla-
beled data and test data that simulate the data stream
at different time stamps as follows. Suppose at time in-
stance Ti−1 we have the data Di−1 = Di−1,p ∪ Di−1,n

where the Di−1,p is the set of positive documents gener-
ated from some classes PC, PC ⊆ SP and Di−1,n is the
set of negative documents generated from the classes in
BN. We need to generate the new positive set in time
instance Ti – note that we do not need to generate any
negative documents here, since only positive data are
available at the current time Ti. Figure 2 illustrates
how we simulate a concept drift in the data stream en-
vironment. Given the positive and negative data in time
Ti−1, the data generation process for time Ti consists of
two random steps. First, we randomly select either an
“Add” or a “Remove” action (i.e. each with the same
50% probability). “Add” represents the event that the
user has got a new class of interest besides the original
ones. “Remove” indicates that the user has dropped a
class of interest that he/she currently has. Then, we
randomly decide a class Pi from SP - PC to add or a
class Pj to remove from PC, depending on the action
selected. If we do not have any class in Ti−1, then we
do not remove any class in Ti. Instead, we add one new
class Pi. If we already have all positives class in Ti−1,
then in Ti we do not add any class but we remove an
old class Pj from PC instead.

Once we have selected to “add” or “remove” a class,
let us now describe how to generate the documents for
the positive data set, unlabeled data set, and test data
set in time stamp Ti−1 and Ti:
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Figure 2: Simulate the concept drift in data stream envi-
ronment

Case1. We have selected to “add” a class Pi.
For each class in PC, 30% of documents are randomly
selected as test positive set in T. Out of the remaining
70% of documents, a small number of documents, say s
documents for each class in PC, is randomly selected
and put into the new positive document set Di,p in
Ti. The remaining positive documents are placed in
the positive set Di−1,p in Ti−1.

For the newly added positive class Pi, we randomly
select 30% of the documents as the positive documents
in the test set T. Also, we randomly select s documents
from Pi and place them in the new positive document
set Di,p in Ti. The remaining documents are ignored
so that we can keep a similar proportion of documents
for each class in the test set and the unlabeled set
(or Di−1). Since the number of positively labeled
documents available in practice can be quite small
(either because there were few documents to start with,
or it is simply too tedious and expensive to hand-label
the training examples on a large scale), to reflect this
constraint, we experiment with various small numbers
of (randomly selected) positive documents, namely, s =
30, 50, or 70.

Case2. We have selected to “remove” a class Pj . In
this case, for each class in PC -Pj , we randomly select
30% of the documents as the test positive set in T. Out
of the remaining 70% of documents, a small number
of the documents, say s documents for each class in
PC -Pj , is randomly selected and placed in the new
positive document set Di,p in Ti. The remaining positive
documents are all put into the positive set Di−1,p in
Ti−1.

For the positive class Pi that is to be removed,
we randomly select 30% documents as the negative
documents in the test set T, since the user is no longer
interested in this class of documents. Also, we randomly

select s documents from Pi and remove them. The
remaining documents are placed in the old positive
document set Di−1,p in Ti−1.

In both Case 1 and Case 2, we also randomly
select 30% of the documents from the base negative set
BN as the negative test set in T. The remaining 70%
documents are placed in Di−1,n in Ti−1.

For every entry (super positive set SP) in Table 1,
we randomly select an “add” or a “remove” action as
well as the class to “add” or “remove”. We perform the
data generation step 100 times to simulate a data stream
with concept drift in 100 time instances, from T1 to
T100. Because of the random nature of the experiments,
the results reported below are the average values for
the results from the 100 randomly assembled positive,
unlabeled and test sets.

5.2 Experimental Results. We performed various
evaluation experiments to show the effectiveness of
our LELC method. First of all, let us present the
comparative results on the different data sets.

1)Comparing overall performance of various tech-
niques. To illustrate the relative performance of vari-
ous techniques when the number of available positively
labeled documents is quite small, we show the results
obtained by using s = 50, i.e. each positive class having
only 50 documents. For completeness, we have also ex-
perimented with two different numbers of positive doc-
uments, namely s = 30 and s = 70; the results will be
shown later (Figure 4).

Table 2: The overall performance of various techniques

Data Sets S-EM PEBL Roc-SVM LELC

Computer 59.3 4.6 31.3 83.9

Recreation 83.2 5.8 34.9 90.8

Science 71.2 5.2 20.5 78.2

Talk 66.8 4.7 35.7 79.6

Average 70.1 5.1 30.6 83.1

Table 2 shows the classification results of various
techniques in terms of F-measure with the cluster
parameter k = 30 (note that we also experimented with
different k in the later part of the experiments). The
first column lists the 4 different data sets (categories),
each having 4 to 5 classes of related documents as SP
(See Table 1). Columns 2 to 4 show the results of
the three existing PU techniques S-EM [12], PEBL [13]
and Roc-SVM [14] respectively. Column 5 gives the
corresponding results of our proposed LELC technique.
As mentioned, each result in the table is the average
result of 100 random runs where we randomly select
the “Add” or “Remove” a class at each time stamp to
simulate the data stream scenario with concept drift.
Due to the space limitation, we can only show the



average results for each data set. Table 2 shows that
LELC produces the best results consistently across all
the data sets, achieving an F-measure of 83.1% on
average, which is 13.0%, 78.0% and 52.5% higher than
the F-measures of the three existing techniques S-EM,
PEBL and Roc-SVM respectively. We notice S-EM
was the best of the three existing techniques but PEBL
performed poorly in this setting. This observation of the
current technique is consistent with the previous results
reported in [18] [14] where there were also only small
positive example sets available. However, it is clear that
LELC is much better suited for accurate data stream
classification than the current PU learning methods.

2)Extracting Reliable Negative Documents. A key
step of PU learning is to extract reliable negative docu-
ments from the unlabeled set U. To better understand
the overall results presented above, we also compared
the first step of the four techniques S-EM, PEBL, Roc-
SVM and LELC that extracts the reliable negative doc-
uments.

Table 3: The first step of PU learning techniques to extract
reliable negative examples in data set computer

Techniques ExtN TN FN RFN

S-EM 8371.4 8142.9 228.5 2.7

PEBL 173.6 170.6 3.0 1.7

Roc-SVM 10474.5 10198.4 276.1 2.6

LELC 8117.6 8028.3 89.3 1.1

Table 3 compares the performance of the four tech-
niques for extracting the negative documents in the data
set computer, again using cluster parameter k = 30.
Columns 2 to 5 show the number of extracted reliable
negatives (ExtN), the number of extracted true neg-
atives (TN), the number of extracted false negatives
(FN), and the ratio of extracted false negatives (RFN)
respectively. We observe that S-EM, Roc-SVM and our
proposed LELC extracted 8371.4, 10474.5 and 8117.6
reliable negative documents on average, while PEBL
(using 1-DNF) can only extract 173.6 negative docu-
ments (column 2). From the column 3 and 4, we can
see that S-EM and Roc-SVM extracted 228.5 and 276.1
false negatives on average, while LELC only extracted
89.3 false negatives, which is significantly smaller than
both S-EM and Roc-SVM. This indicates that the de-
sign of our LELC method was effective in minimizing
the bias of each method for extracting very pure nega-
tive examples. Most importantly, LELC can extract a
large number of reliable negatives (higher recall) and its
number of false negatives is much smaller than the indi-
vidual S-EM and Roc-SVM (higher precision). We can
clearly see from column 5 that LELC is lowest in terms
of the ratio of extracted false negatives, i.e. only 1.1%.
This is crucial for our algorithm since the false negatives

will affect the accuracy of the remaining steps and the
final classification results. We notice that while PEBL
has a relatively lower ratio of extracted false negatives
than S-EM and Roc-SVM, it still performed poorly since
it managed to extract only a very small number of likely
negatives.

Table 4: Comparison of extracting individual likely posi-
tive/negative documents and micro-clusters

Data Sets Positive Negative
Individual Cluster Individual Cluster

Computer 1159.5 1219.6 2586.5 2875.3

Recreation 1276.0 2557.4 3563.7 4057.7

Science 899.5 1021.7 4877.1 5668.2

Talk 1122.1 3139.0 4838.3 5433.6

Average 1114.3 1984.4 3966.4 4508.7

3)Extracting Likely Positive & Negative Micro-
Clusters. Recall that instead directly deciding the indi-
vidual document’s class labels, our LELC algorithm (as
shown in Algorithm 3) partitions the unlabeled docu-
ments into micro-clusters and then decide the category
of each micro-cluster (and subsequently the labels of the
documents in the micro-clusters) by a voting strategy.
Table 4 shows the detailed results that compare using
“individual” document extraction with using “micro-
cluster” extraction for determining the positive and neg-
ative training data across the four evaluation data sets.
Using our LELC algorithm with “micro-cluster” extrac-
tion on the four data sets, we can extract, on average,
1984.4 positive documents and 4508.7 negative docu-
ments correctly (with all the documents in the micro-
cluster classified as positive if the cluster’s positive vot-
ing is larger than negative voting, and vice versa). If
we adopt the “individual” document labelling strategy
(i.e. using the positive and negative prototype vectors
to classify each individual document directly), we can
only correctly extract 1114.3 positive documents and
3966.4 negative documents. In other words, on aver-
age, our proposed LELC algorithm can correctly clas-
sify 870.1 (1984.4-1114.3) more positive documents and
542.3 (4508.7-3966.4) more negative documents, with
the use of the novel micro-cluster assignment approach.
By being able to extract larger sets of likely positive
and negative documents with less false positive and false
negative documents, our LELC is therefore able to build
more accurate classifiers than existing techniques, as we
have already shown in the beginning of this subsection.

4)Evaluating the effectiveness of the parameters. To
study the sensitivity of the number of the micro-clusters
for our LELC algorithm, we also performed a series of
experiments using different numbers of micro-clusters k
from 10 to 100 with a step of 10. The results on the
four evaluation data sets are shown in Figure 3. We



observe that LELC’s performance is quite stable across
the different values of k. The choice of k is not crucial
to obtain the best results as long as the k is not too
small or too big.
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Figure 3: The sensitivity of the number of micro-clusters
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Figure 4: F-measures of different techniques with different
numbers of positive documents of each class in P

We also experimented with different number of
positive documents for each class in P , i.e. s = 30,
50 and 70 (Figure 4) for the different techniques S-
EM, PEBL, Roc-SVM and LELC. The purpose of these
experiments is to investigate the relative effectiveness
of various techniques for different number of positive
documents.

We observe from Figure 4 that our proposed tech-
nique LELC consistently performed much better than
the three current methods S-EM, PEBL and Roc-SVM
when positive data is small e.g. s=30, 50 and 70. As
expected, all techniques improved their results when the
size of positive data increases (especially Roc-SVM in-
creases much faster than other techniques). However,
since in the data stream environment with concept drift,
it is more often than not that the positive data is small,

it is important for the data stream classification method
to perform well with small positive data, and our LELC
method is clearly the current best PU learning method
for such classification tasks.

6 Conclusions.

Learning from positive and unlabeled examples (PU
learning) has been investigated in recent years as an
alternative learning model to handle the common situ-
ations where negative training examples are not avail-
able. PU learning has many real world applications but
it has yet to be applied in the data stream environment.
This research is the first attempt to propose the appli-
cation of PU learning in the data stream environment.

An important challenge in data stream classifica-
tion is to address the issue of concept drift, one which
the current PU learning techniques have not been able
to handle well. This paper studies how to devise novel
techniques to enable robust PU learning in such data
stream environment. We have proposed a novel PU
learning technique called LELC (PU Learning by Ex-
tracting Likely positive and negative micro-Clusters).
As a PU learning method, LELC is fundamentally dif-
ferent from existing data stream classification methods
which assume both positive and negative training data
are available for learning. In fact, our LELC method
only requires a small set of positive documents and a
set of unlabeled documents to build accurate classi-
fiers. This is important for the data stream environment
where it is often the case that not only the negative
training examples are absent, but the number of pos-
itive examples available for learning can also be fairly
limited.

Our proposed LELC technique works well because
it can extract reliable negative documents much more
effectively than existing techniques, as shown by our
experimental results. In addition, LELC technique
has been designed to extract high-quality positive and
negative micro-clusters from unlabelled data. The
main innovation is in the technique for selecting likely
positive and negative instances from the unlabeled
set, which exploits the characteristics of data streams,
i.e. data points close together change their labels
together under concept drift rather than each changing
its label randomly. In contrast to the existing PU
learning methods, which extract likely negative/positive
instances point by point, the new method extracts them
by micro-clusters. The micro-clusters are formed by
utilizing labels in the past streams to produce good
clustering, i.e. label consistent micro-clustering.

Since LELC can automatically extract high-quality
positive and negative micro-clusters from data streams,
the limitations associated with the original positive set



P, such as its limited size, does not have a great impact
on our algorithm. Augmented by the high quality
likely positive set LP and likely negative set LN that
resulted, our LELC algorithm is thus able to build
a robust classifier for data stream classification. The
experimental results showed that LELC can be used in
the data stream environment much more effectively than
the current PU learning methods, with significantly
better speed and accuracy.
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