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ABSTRACT
Keyphrases can concisely describe the high-level topics discussed
in a document that usually possesses hierarchical topic structures.
Thus, it is crucial to understand the hierarchical topic structures
and employ it to guide the keyphrase identification. However, in-
tegrating the hierarchical topic information into a deep keyphrase
generation model is unexplored. In this paper, we focus on how to
effectively exploit the hierarchical topic to improve the keyphrase
generation performance (HTKG). Specifically, we propose a novel
hierarchical topic-guided variational neural sequence generation
method for keyphrase generation, which consists of two major
modules: a neural hierarchical topic model that learns the latent
topic tree across the whole corpus of documents, and a variational
neural keyphrase generation model to generate keyphrases under
hierarchical topic guidance. Finally, these two modules are jointly
trained to help them learn complementary information from each
other. The experimental results demonstrate that our method sig-
nificantly outperforms the existing state-of-the-art methods across
five benchmark datasets.
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1 INTRODUCTION
Keyphrase prediction is to automatically produce a set of represen-
tative phrases that are related to the main topics discussed in a given
document. Since keyphrases (also referred to as keywords) can pro-
vide a high-level topic description of a document, they are beneficial
for a wide range of natural language processing (NLP) tasks, such
as information extraction [67, 73], text summarization [69], opinion
mining [7] and question answering [63]. However, the performance
of existing approaches is still far from being satisfactory [31, 44].
The main reason is that it is very challenging to determine if a
phrase or a set of phrases accurately capture the main topics (i.e.,
salient information) that are presented in a document.

Automatic keyphrase prediction models can be broadly divided
into traditional extraction and deep generation approaches. In par-
ticular, traditional extraction methods can only extract present
keyphrases that appear in a given document, while deep gener-
ation methods can generate both present keyphrases as well as
absent keyphrases that do not appear in the given document. In
recent years, some topic-based methods for keyphrase prediction
(including extraction and generation) have been proposed, mainly
including topic-based extraction methods such as topic-based clus-
tering methods [29, 45] and topical graph-based ranking meth-
ods [11, 12, 44, 64, 79, 83]. The work [70] is the only topic-based
neural keyphrase generation method for short text on social media,
which allows the joint learning of the latent flat topic representa-
tions. Although these topic-basedmethods have achieved promising
results for the keyphrase prediction task, they all assume that topics
are independent of one another and induce topics as flat structures,
making generated keyphrases fall into a single topic (i.e., generating
duplicate/similar keyphrases).

In practice, a document usually covers different topics that are or-
ganized into a hierarchical structure rather than a flat structure. For
example, we illustrate the corresponding hierarchical topic tree of
this paper in Figure 1. Obviously, this topic tree has captured the un-
derlying hierarchical document structure and associated semantics.
Thus, it is extremely important to first learn the topic tree discussed
in a given document, and subsequently leverage it to select most
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Figure 1: An example of hierarchical topic structure among
topics of this paper, in which the topics are represented by
corresponding candidate keyphrases (cp). The root conveys
generic topic, while the leaves cover specific topics. Three
candidate keyphrases with the high-level topic description
are selected as keyphrases (kp) of this paper finally.

representative candidate keyphrases as the final keyphrases. This
can ensure that the generated keyphrases cover all the major topics
and provide high-level topic description. Unfortunately, to the best
of our knowledge, none of the existing approaches leverage the
hierarchical topic to guide the keyphrase generation.

This paper makes the first attempt to develop HTKG, a varia-
tional neural generation model guided by neural hierarchical topic
to gain better performance in keyphrase generation. As illustrated
in Figure 2, this method consists of two major modules: (1) a neural
hierarchical topic model, and (2) a variational neural keyphrase
generation model with hierarchical topic guidance. Specifically, the
former aims to construct the latent topic tree across all the doc-
uments in a corpus (i.e., compute a topic distribution over a tree
for each word occurrence in a corpus) by adapting autoencoding
variational Bayes (AEVB) framework [39]. The latter is designed to
generate keyphrases with the designated hierarchical topic guid-
ance by leveraging the sequence to sequence (seq2seq) generation
model with the nonparametric variational neural inference. In the
above two modules, we assume that the latent topic of an input
document can be represented by a Gaussian mixture model (GMM),
where each Gaussian component corresponds to a latent topic of
the topic tree. Finally, these two modules are jointly trained to help
them learn complementary information from each other.

Different from existing deep keyphrase generation approaches
which directly encode from a source document and decode to its
keyphrases, our proposed method introduces the latent variables
to explicitly model underlying hierarchical topics of a source doc-
ument and to guide the keyphrase generation via collaborative
joint training of both the variational neural generation model and
the neural hierarchical topic model. This makes our method more
effective to capture the semantic hierarchical relations discussed in
a document and thus generate keyphrases based on its semantic un-
derstanding with good topic coverage and accuracy. To summarize,
our main contributions are as follows:

(1) To the best of our knowledge, this is the first attempt to lever-
age the neural hierarchical topics to guide deep keyphrase
generation.

(2) We propose a novel hierarchical topic-guided variational
neural keyphrase generation model, that not only effectively
captures the long and strong dependencies between neigh-
boring target words, but also utilizes the high-level topics
discovered for keyphrase generation.

(3) We compare our HTKG method with three different types of
existing methods, including seq2seq neural keyphrase gen-
eration methods, traditional keyphrase extraction methods
and one graph neural keyphrase extraction method. Compre-
hensive experimental results demonstrate that our proposed
method outperforms state-of-the-art baselinemethods across
five publicly-available datasets consistently.

The remaining part of this paper is organized as follows. We first
summarize state-of-the-art approaches of keyphrase prediction and
text generation via variational auto-encoders (VAEs) in Section 2.
The proposed HTKG model is presented in Section 3. Finally, we
introduce our datasets and experimental results in Section 4, before
concluding the paper in Section 5.

2 RELATEDWORK
2.1 Topic-based Keyphrase Extraction
The traditional extraction methods can be further classified into
supervised and unsupervised approaches. In particular, supervised
approaches treat keyphrase extraction as a binary classification
task, using some classifiers, such as Naïve Bayes classifier [26, 46],
boosted decision trees [59] and conditional random fields [2, 28].
In contrast, unsupervised approaches directly treat keyphrase ex-
traction as a ranking problem, scoring each candidate using dif-
ferent kinds of unsupervised learning techniques, such as cluster-
ing [29, 45] and graph-based ranking [11, 12, 44, 50, 64, 67, 79, 83].

Topic information is used mainly in graph-based methods and
most attempts involve biasing the ranking function towards topic
distribution. Existing graph-based methods incorporating topic
information induced by latent Dirichlet allocation (LDA) [10] in-
clude TopicalPageRank [44], cTPR [83], TPR [58], MIKE [79] and
SalienceRank [64]. The other two works [11, 12] represent a given
document as a multipartite graph of both topics and keyphrase
candidates, and then select keyphrases from the top-ranked candi-
dates, in which topics are defined as clusters of similar candidates.
Nevertheless, in all these topic-based extraction methods, topics
are independent of one another and organized as flat structures. In
addition, compared with the newly developed generation methods,
the traditional approaches suffer from poor performance [47].

2.2 Deep Keyphrase Prediction
CopyRNN [47] is the first to employ the attentional sequence
to sequence (seq2seq) framework [62] with the copying mecha-
nism [30] to generate both present and absent keyphrases for a
document. Following this work, numerous extensions have been
proposed to boost its generation ability. For instance, some studies
incorporate different types of side information into seq2seq neu-
ral networks to improve keyphrase generation, such as correlation
among keyphrases [17], title of source document [20], syntactic con-
straints [81] and topic information [70]. In addition, Ye et al., [74]
propose a semi-supervised keyphrase generation model that utilizes
both abundant unlabeled data and limited labeled data.

The above-mentioned early methods which use the standard
seq2seq network can not generate multiple keyphrases and deter-
mine the appropriate number of keyphrases at a time for a target
document. To overcome this drawback, Yuan et al., [78] introduce a
new One2Seq training paradigm in the seq2seq network to generate
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Figure 2: The overall architecture of the proposed HTKG model. This method consists of a variational neural keyphrase
generation model with hierarchical topic guidance (left) to generate keyphrases, and a neural hierarchical topic model (right) to
construct the topic tree as guidance signals. The two modules are jointly trained with an inconsistency loss (middle) to penalize
the disagreement between the two hierarchical topic-guided Gaussian mixture distributions in VNKG and NHTMmodules.

multiple keyphrases and decide the suitable number of keyphrases
for a target document. Ye et al., [76] propose a One2Set paradigm to
predict the keyphrases as a set, which eliminates the bias caused by
the predefined order in One2Seq paradigm [78]. In addition, some
works focus on improving the decoding process of seq2seq net-
works. Chen et al., [19] propose an exclusive hierarchical decoding
framework and use either a soft or a hard exclusionmechanism to re-
duce duplication. Ahmad et al., [1] introduce an extractor-generator
in the decoding to jointly extract and generate keyphrases from a
target document. Bahuleyan et al., [4] adopt neural an unlikelihood
objective to avoid generating duplicate keyphrases.

Besides the seq2seq networks (which can be implemented by
the long short-term memory (LSTM) [32] or gated recurrent units
(GRU) [22]), the neural graph-based networks, that extend tradi-
tional graph-based keyphrase ranking, have been used in keyphrase
generation. Prasad et al., [55] firstly combine the advantages of tra-
ditional graph-based ranking methods and recent neural network-
based approaches. Specifically, this method incorporates the global
information (i.e., TextRank ranking scores) into a graph attention
network (GAT) [65] to extract keyphrases. Sun et al., [61] employ
a graph convolutional neural network (GCN) [40] to encode the
word graph into the corresponding representations and then adopt
a pointer network [66] with diversity enabled attentions to generate
keyphrases. Subsequently, Kim et al., [35] extend the word graph
with structure information, and use GCN to extract the keyphrases
for Web documents. Ye et al., [75] also enrich the word graph with
related references and employ a GAT to generate the keyphrases.

We observe that almost all the existing deep keyphrase prediction
approaches do not consider integrating the latent hierarchical topic

information into the seq2seq framework to improve keyphrase pre-
diction. In this paper, we first incorporate the hierarchical topical
information into the variational neural sequence generation model,
which can ensure that the generated keyphrases cover comprehen-
sive topics and thus provide high-level topic description.

2.3 Text Generation via VAEs
Variational auto-encoders (VAEs) [39] are a type of deep genera-
tive models, which attempt to learn a compressed latent represen-
tation of the input by reconstructing the input data. VAEs have
been extended by many following works in various specific lan-
guage generation tasks, such as dialog generation [56, 82], text
summarization [43, 72] and other natural language generation
tasks [5, 49, 60, 77].

Additionally, several studies [23, 48, 57] directly use the VAE
framework [39] to infer the topic distribution for words in a corpus,
which improve data scalability comparing with probabilistic topic
models such as LDA [10]. Besides these flat neural topic models,
a few recent researches [21, 34, 54] reproduce the probabilistic
hierarchical topic model nCRP [68], also using the VAE framework
for improving data scalability. Different from these works, this
paper attempts to integrate the hierarchical topic information into
the neural sequence generation model for keyphrase generation.

3 METHODOLOGY: HTKG
3.1 Problem Definition and Framework
Given a corpus of documents 𝐷 = {𝑑𝑖 } |𝐷 |

𝑖=1 , where each document
𝑑 (𝑑 ∈ 𝐷) is treated as a sequence of words 𝑿 = (𝑥1, . . . , 𝑥𝑇𝑑 ) with



length 𝑇𝑑 , the goal of a keyphrase generation method is to find a
model to generate a set of keyphrases 𝐾 = {𝑝 𝑗 } |𝐾 |

𝑗=1 for document 𝑑 ,
where each keyphrase 𝑝 can be treated as a sequence of words 𝒀 =
(𝑦1, ..., 𝑦 |𝑝 |). Note that as in existing deep text generation models,
we use 𝑿 and 𝒀 to denote the word sequence of an input document
and the word sequence of its keyphrase, respectively.

The overall architecture of our proposed method is shown in
Figure 2. It consists of two main modules: (1) a neural hierarchical
topic model that computes a topic distribution over a tree for each
word occurrence in a corpus, and (2) a variational neural keyphrase
generation model to generate keyphrases with designated topic guid-
ance. We jointly train them with an inconsistency loss so that they
can learn complementary information from each other accurately.
Below we first introduce the two main modules and then describe
how they are jointly trained in detail.

3.2 Neural Hierarchical Topic Model (NHTM)
One innovation of this study is that it incorporates hierarchical
topical information into keyphrase generation explicitly. Based on
the current development of topic modeling, we follow the spirit
of the neural hierarchical topic models [21, 34, 54] and adapt it to
discover latent hierarchical topics. Figure 3 shows a topic tree in
which each node is a topic. The topic at the root is the most general
while topics at the leaf nodes are more specific. In this subsection,
we first introduce the technical background and preliminaries and
then describe the details of this model.

3.2.1 Technical Background and Preliminaries. Constructing a topic
tree involves mainly two aspects: how to infer the latent topics in
the text corpus, and how to organize these topics into a hierarchy.
Traditional hierarchical topic models such as HLDA[9], nHDP [52]
and rCRP [36], use conventional inference algorithms such as col-
lapsed Gibbs sampling [8] and mean-field approximation [68], to
infer the latent hierarchical topics. Current neural hierarchical topic
models TSNTM [34], HTV [54] and nTSNTM [21], leverage the
autoencoder variational Bayes framework, which can be trained
together with neural networks and therefore has better adaptability
and scales to large datasets.

To construct a topic tree with an infinite number of branches
and levels, the existing methods follow the classical hierarchical
LDA model nCRP [9, 68], which draws the path distribution from a
nested stick-breaking construction as followings

𝑣𝑘 ∼ Beta(1, 𝛾), 𝜋𝑘 = 𝜋𝑝𝑎𝑟 (𝑘)𝑣𝑘
∏𝑘−1

𝑗=1
(1 − 𝑣 𝑗 ), (1)

and draws the level distribution from a stick-breaking construction
as followings

𝜂𝑙 ∼ Beta(1, 𝛼), 𝜃𝑙 = 𝜂𝑙
∏𝑙−1

𝑗=1
(1 − 𝜂 𝑗 ), (2)

where 𝑘 ∈ {1, ..., 𝐾} and 𝑝𝑎𝑟 (𝑘) denote respectively the 𝑘-th topic
and its parent. 𝑙 ∈ {1, ..., 𝐿} denotes the 𝑙-th level. 𝑣𝑘 and 𝜂𝑙 are stick
proportions of topic 𝑘 and level 𝑙 , respectively.

3.2.2 Generative Process. Given a document 𝑑 , we process it into
a bag-of-words vector 𝑿𝑏 ∈ Z

|𝑉 |
+ , with Z+ denoting non-negative

integers and 𝑉 representing the vocabulary, in which each element
reflects the number of times the corresponding word occurs in the
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Figure 3: Sampling process of a topic for each word in a given
document. For example, for word 𝑥5, path 𝜋1 and level 𝜏3 are
sampled, and its assigned topic is 𝛽111.

document. To sample a topic for a word 𝑥𝑛 in document 𝑑 , a path
𝑐𝑛 from the root to a leaf node and a level 𝑙𝑛 are drawn. Let 𝜷𝑐𝑛,𝑙𝑛
be the topic distribution of the topic in path 𝑐𝑛 and at level 𝑙𝑛 . The
full generative process of each word is given as follows

1. For a document 𝑑 ,

Draw a breaking proportions: 𝒗𝑑 ∼ Beta(𝛼0, 𝛽0)
Obtain a path distribution: 𝝅𝑑 = 𝑓𝑠𝑏 (𝒗𝑑 )
Draw a Gaussian vector: 𝒈𝑑 ∼ N(0, 𝑰 2)
Obtain a level distribution: 𝝉𝑑 = 𝑓𝜏 (𝒈𝑑 )

2. For a word 𝑥𝑛 in document 𝑑 ,

Draw a path: 𝑐𝑛 ∼ Mult(𝝅𝑑 ), for 𝑛 ∈ [1, 𝑁𝑑 ]
Draw a level: 𝑙𝑛 ∼ Mult(𝝉𝑑 ), for 𝑛 ∈ [1, 𝑁𝑑 ]
Draw a word: 𝑥𝑛 ∼ Mult(𝜷𝑐𝑛,𝑙𝑛 ), for 𝑛 ∈ [1, 𝑁𝑑 ]

where 𝑓𝑠𝑏 (·) is a stick-breaking construction function, and 𝑓𝜏 (·) is a
neural perceptron with softmax activation to transform a Gaussian
sample to a level distribution.

3.2.3 Parameterizing Path Distribution and Level Distribution. Here
we first parameterize the path distribution of document 𝑑 . To by-
pass the obstacle that the Beta distribution does not have a dif-
ferentiable non-centered parametrization that gradient-based in-
ference requires [38], we approximate the Beta distribution by
the Kumaraswamy distribution [42], which is a Beta-like distribu-
tion with a closed-form inverse cumulative distribution function
and defined as Kumaraswamy(𝑥 ;𝑎, 𝑏) = 𝑎𝑏𝑥𝑎−1 (1 − 𝑥𝑎)𝑏−1 for
𝑥 ∈ (0, 1) and 𝑎, 𝑏 >0. Samples can be drawn via the inverse trans-
form 𝑥 ∼ (1 − 𝑢

1
𝑏 )

1
𝑎 , where 𝑢 ∼ Uniform(0,1).

Given 𝝅𝑙+1 which represents the path distribution of document
𝑑 at level 𝑙 + 1 (𝝅𝐿 = 𝝅𝑑 ), the path distribution at the upper level 𝑙
can be inferred by

𝝅𝑙 = 𝝅𝑙+1M𝑙 𝑙 = 1, ..., 𝐿 − 1 (3)

where M𝑙 is a 𝐾𝑙+1 × 𝐾𝑙 matrix representing adjacent parent–child
relationships between topics at level 𝑙 and level 𝑙 + 1. Here, 𝐾𝑙 is the
number of topics at level 𝑙 , and the itemM𝑙,𝑖, 𝑗 denotes the degree
of correlation between the 𝑖-th topic at level 𝑙 and its 𝑗-th parent
topic at level 𝑙−1 such that

∑
𝑗 M𝑙,𝑖, 𝑗 = 1.



The exclusive posteriors 𝑎 and 𝑏 are estimated by the correspond-
ing neural architectures 𝑎 = 𝑓𝑎 (𝑿𝑏 ) and 𝑏 = 𝑓𝑏 (𝑿𝑏 ), which are
neural perceptrons with softplus activation, respectively.

Next, we parameterize the level distribution of document 𝑑 . In
particular, the exclusive posteriors 𝝁 and 𝝈 are estimated by the
corresponding neural architectures 𝝁 = 𝑓𝜇 (𝑿𝑏 ) and 𝝈 = 𝑓𝜎 (𝑿𝑏 ),
which are linear transformations respectively. In practice, we sam-
ple a �̃�𝑑 by employing the reparameterization trick [39], i.e., �̃�𝑑 =

𝝁 + 𝝈 ·�̃� with the sample �̃� ∼ N(0, 𝑰 2).
As in existing probabilistic topic models, we also use the latent

variables 𝜽 and 𝒛 to denote respectively the topic proportion for a
document and the topic assignment for the observed word 𝑥 in the
document, in which 𝑥 is an element from the fixed vocabulary 𝑉 .
For a given document, its topic distribution 𝜽 is associated with a
path distribution 𝝅 over all the paths from the root to the leaf nodes,
and a level distribution𝝉 over all tree levels. More formally, the topic
distribution 𝜽 of document 𝑑 can be defined as 𝜽 = {𝜽 𝑙 }𝐿𝑙=1 (where
𝐿 is the depth of the topic tree), which is the topic distribution of
document 𝑑 , derived as

𝜽 𝑙 = 𝜏𝑙𝝅𝑙 , 𝑙 = 1, ..., 𝐿 (4)

3.2.4 Parameterizing Topic-word Distribution. Here we follow the
work [48] to explicitly compute topic-word distribution (i.e., word
distribution assigned to topic 𝑘) by

𝜷𝑘 = softmax(E𝑤 · 𝒆⊤
𝑘
) (5)

where 𝒆𝑘 is the embedding of topic 𝑘 , and E𝑤 is the embeddings of
all words.

3.2.5 Hierarchical Topic-guided Gaussian Mixture Prior. Given the
topic-word distribution 𝜷 and the topic distribution 𝜽 of a document,
the hierarchical topic-guided Gaussian mixture is

𝑝 (𝒛 |𝑿𝑏 ) =
∑︁𝐾

𝑘=1
𝜃𝑘 (𝑿𝑏 )N

(
𝒛𝑘 ; 𝝁𝑘 (𝑿𝑏 ),𝝈2

𝑘
(𝑿𝑏 )

)
(6)

where the mean 𝝁𝑘 and standard derivation 𝝈𝑘 are obtained by the
fully connected layer as

𝝁𝑘 = W𝜇𝜷𝑘 + 𝒃𝜇

log𝝈𝑘 = W𝜎𝜷𝑘 + 𝒃𝜎
(7)

where 𝜷𝑘 is the word distribution assigned to topic 𝑘 . Unlike a
normal GMMprior that sets eachmixture component to beN(0, 𝑰 2),
this topic-guided GMM provides the topic information for each
mixture component, thus making the model more interpretable for
keyphrase generation.

3.2.6 Variational Inference. Given topic-word distribution 𝜷 and
topic distribution 𝜽 of a given document 𝑑 , this document is recon-
structed and its marginal likelihood is

𝑝 (𝑿𝑏 |𝜷) =
∫
𝝅 ,𝝉

{∏
𝑛

∑︁
𝑐𝑛,𝑙𝑛

𝑝 (𝑥𝑛 |𝜷𝑐𝑛,𝑙𝑛 )𝑝 (𝑐𝑛 |𝝅)𝑝 (𝑙𝑛 |𝝉 )
}

𝑝 (𝝅)𝑝 (𝝉 )d𝝅d𝝉

=

∫
𝜽

{∏
𝑛

∑︁
𝑧𝑛

𝑝 (𝑥𝑛 |𝜷𝑧𝑛 )𝑝 (𝑧𝑛 |𝜽 )
}
𝑝 (𝜽 )d𝜽

=

∫
𝜽

{∏
𝑛

(𝜽 ·𝜷)𝑥𝑛
}
𝑝 (𝜽 )d𝜽

(8)

Based on the AEVB framework, the evidence lower bound for
the document log-likelihood is derived as

Lℎ𝑡 =E𝑞 (𝝅 ,𝝉 |𝑿𝑏 )
[∑︁
𝑛

log(𝜽 · 𝜷)𝑥𝑛 )
]

− KL
[
𝑞(𝝅 |𝑿𝑏 ) | |𝑝 (𝝅)

]
− KL

[
𝑞(𝝉 |𝑿𝑏 ) | |𝑝 (𝝉 )

] (9)

where 𝑞(𝝅 |𝑿𝑏 ) and 𝑞(𝝉 |𝑿𝑏 ) are posteriors modeled by the infer-
ence network, and the priors 𝑝 (𝝅) and 𝑝 (𝝉 ) are given in the previ-
ous Generative Process subsection.

3.3 Variational Neural Keyphrase Generation
(VNKG) Guided by Hierarchical Topic

Different from traditional seq2seq keyphrase generation methods
such as CopyRNN [47] and SEG-Net [1], our keyphrase generation
model is a variational sequence generation model, based on the
seq2seq framework model and the variational neural inference
(VNI) [13, 39, 60]. Specifically, we introduce a latent variable, which
is guided by the hierarchical topic model described in the previous
section, to model the underlying topic space as a global signal
for keyphrase generation. Thus, it should be able to capture the
high-level topic in a given document.

3.3.1 Variational Neural Encoder. This module aims at encoding
an input document into continuous vectors. Let 𝑿 = (𝑥1, ..., 𝑥𝑇 ) be
a sequence of words within an input document, and 𝒙 = [𝒙1, ..., 𝒙𝑇 ]
be its corresponding sequence of word embeddings. We adopt a bi-
directional gated recurrent unit (BiGRU) [3] as the encoder, which
maps the input word sequence𝑿 into a set of contextualized hidden
states 𝒉= [𝒉1, ...,𝒉𝑇 ] as

𝒉1,𝒉2, ...,𝒉𝑇 = BiGRU(𝒙1, 𝒙1, ..., 𝒙𝑇 ) . (10)

In this way, each contextualized vector 𝒉𝑖 encodes information
about the 𝑖-th word with respect to all the other surrounding words
in the sequence. The last hidden state of the encoder 𝒉𝑇 is used to
calculate the latent topic variable 𝒛.

3.3.2 Hierarchical Topic-guided Gaussian Mixture Posterior. In this
model, we consider incorporating the topic information into latent
variables. Each topic is drawn from a topic-dependent multivariate
Gaussian distribution, computed as

𝑝 (𝒛 |𝑿 ) =
∑︁𝐾

𝑘=1
𝜃𝑘 (𝑿𝑏 )N

(
�̂�𝑘 ; �̂�𝑘 (𝑿 ), �̂�2

𝑘
(𝑿 )

)
(11)

where 𝜃𝑘 is the usage of topic 𝑘 in a document, computed by our
NHTM model. To estimate �̂�𝑘 , we introduce the fully connected
layer to obtain vectors �̂�𝑘 and log�̂�k as follows

�̂�𝑘 = W𝜇𝑘𝒉𝑇 + 𝒃𝜇𝑘
log�̂�𝑘 = W𝜎𝑘𝒉𝑇 + 𝒃𝜎𝑘

(12)

Finally, to obtain a representation for the latent topic variable 𝒛,
we follow the reparameterization trick of VAE to implement it.

3.3.3 Variational Neural Decoder. Given a source document 𝑿 and
a continuous latent topic variable 𝒛, the process to generate its
keyphrase 𝒀 is defined as following conditional probability

𝑝 (𝒀 |𝑿 ) =
∏ |𝒀 |

𝑡=1
𝑝 (𝑦𝑡 |𝒀<𝑡 , 𝒛,𝑿 )𝑝 (𝒛 |𝑿 ) (13)

where 𝒀<𝑡 = (𝑦1, ..., 𝑦𝑡−1) is a previously generated word sequence.



Table 1: Summary of the training, validation and testing datasets.

Dataset #Abs #PKps %PKps #AKps %AKps #Avg.Kps #Avg.PKps #Avg.AKps
Train. KP20k 1,709,490 994,880 63.2 513,918 36.8 5.26 3.32 1.94
Valid. KP20k 19,992 66,355 63.1 38,772 36.9 5.25 3.31 1.94

Test.

Inspec 500 3,602 73.6 1,293 26.4 9.79 7.20 2.59
Krapivin 400 1,297 55.6 1,037 44.4 5.84 3.24 2.59
NUS 211 1,191 52.2 1,088 47.8 10.8 5.65 5.15

SemEval 100 612 42.4 831 57.6 14.43 6.12 8.31
KP20k 20000 66,267 62.9 39,076 37.1 5.26 3.31 1.95

The decoder is another forward GRU, which is used to generate
the sequence of keyphrases by predicting the next word 𝑦𝑡 based
on the hidden state 𝒔𝑡 of the decoder at timestep 𝑡 . Both 𝑦𝑡 and 𝒔𝑡
are conditioned on 𝑦𝑡−1 and 𝒄𝑡 of the input sequence. Formally, the
hidden state 𝒔𝑡 and decoding function can be written as

𝒔𝑡 = GRU𝑓 (𝑦𝑡−1, 𝒔𝑡−1, 𝒄𝑡 ) (14)

and
𝑝 (𝑦𝑡 |𝒀<𝑡 , 𝒛,𝑿 ) = 𝑔(𝑦𝑡−1, 𝒔𝑡 , 𝒄𝑡 ) (15)

where 𝒄𝑡 =
∑
𝑖 𝛼𝑡𝑖𝒉𝑖 is a source context vector computed as the

weighted sum of the source hidden states {𝒉𝑖 } using the attention
mechanism [3], and 𝑔(·) is a nonlinear multi-layered function that
outputs the probability of 𝑦𝑡 . The latent topic variable 𝒛 is used to
initialize the hidden state 𝒔0 in the decoder.

Finally, we minimize the cross entropy loss function to train this
generation model

L𝑘𝑔 = −
∑︁𝑁

𝑖=1
log (𝑝 (𝑦𝑖 |𝑿 , 𝒀<𝑖 , 𝒛)) (16)

where 𝑁 denotes the length of target keyphrases, and 𝒛 is the latent
topic of the given document.

3.4 Joint Learning
Since keyphrase generation and topic modeling both aim to distill
salient information from input documents, we jointly train the two
modules to help them learn complementary information from each
other. The loss function of our model consists of three parts. Two of
them, namely, hierarchical topic loss Lℎ𝑡 and keyphrase generation
loss L𝑘𝑔 , have been given in the previous subsections.

To push the hierarchical topic-guided Gaussian mixture com-
puted in VNKG towards the corresponding distribution computed
in NHTM, we devise the third loss — an inconsistency loss L𝑖𝑐 . For
these twomixture Gaussian distributions 𝑝 (𝒛 |𝑿𝑏 )=

∑𝐾
𝑖=1 𝜃𝑖N(𝜇𝑖 , 𝜎2𝑖 )

and 𝑝 (𝒛 |𝑿 )=∑𝐾𝑖=1 𝜃𝑖N(𝜇𝑖 , �̂�2𝑖 ), their Kullback–Leibler (KL) diver-
gence is upper-bounded by

L𝑖𝑐 = KL (𝑝 (𝒛 |𝑿𝑏 ) | |𝑝 (𝒛 |𝑿 ))

≤ KL(𝜽 | |𝜽 ) +
𝐾∑︁
𝑖=1

𝜃𝑖KL
(
N(𝜇𝑖 , 𝜎2𝑖 ) | |N (𝜇𝑖 , �̂�2𝑖 )

) (17)

where KL(𝜽 | |𝜽 ) is equal to 0. The general form of this formula has
been proven to be correct in the study [24].

The final overall loss of the entire framework’s training objective
is the linear combination of the three parts, defined as

L = Lℎ𝑡 + L𝑘𝑔 + L𝑖𝑐 . (18)

4 EXPERIMENTS
4.1 Datasets
We employ the dataset KP20k collected by Meng et al., [47], which
contains a large amount of high-quality scientific metadata in the
computer science domain from various online digital libraries. In
this dataset, each example contains a title and an abstract of a
scientific publication as source text, and multiple author-assigned
keywords as target keyphrases. Following previous works [47, 78],
we split this dataset into training, validation and test sets, and
use the training set to train all the deep seq2seq models. We use
the validation set to find the optimal hyperparameters during the
training process. Finally, we apply our models in the test set and
report their performance.

In order to evaluate the proposed model comprehensively, we
also test themodel trainedwith KP20k on other fourwidely-adopted
public datasets from the scientific domain, namely, Inspec [33],
Krapivin [41], SemEval-2010 [37] and NUS [51]. The detailed statis-
tic information of these five benchmarks are summarized in Table
1, along with the number of abstracts (#Abs), the number of and the
percentage of present keyphrases (#PKps and %PKps), the number
of and the percentage of absent keyphrases (#AKPs and %AKps), and
the average number of keyphrases, present and absent keyphrases
per document (#Avg.Kps, #Avg.PKps and #Avg.AKps).

4.2 Comparative Methods
To comprehensively evaluate the performance of our HTKG1, we
compare our methodwith two types of methods, including nine con-
ventional keyphrase extraction methods and seven deep keyphrase
generation methods. Conventional extraction methods consist of
three different types:

• Statistic-based unsupervised methods include (1) TF-IDF
which directly ranks each candidate word according to its
TF-IDF score (i.e., the term frequency-inverse document fre-
quency), and (2) YAKE! [15] which is a recently proposed
method and computes a combined score based on five word
features, such as casing aspect, frequency and position.

• Graph-based unsupervised methods include the following
four models. (3) TextRank [50] is the first to use the PageR-
ank algorithm on the word graph to rank candidate words.
(4) SingleRank [67] is a TextRank extension by adding a few
neighbor documents close to the target document. (5) Posi-
tionRank [25] is also a TextRank extension by incorporating

1The code of our model is available in public at https://github.com/HDKG/HTKG.

https://github.com/HDKG/HTKG


rat
io k

0.1

0.2

0.3

0.4

Number of topics K

10

20

30

40

50

F1
@

5 

0.370

0.375

0.380

0.385

0.390

0.395
Best

rat
io k

0.1

0.2

0.3

0.4

Number of topics K

10

20

30

40

50

F1
@

10

0.310
0.312
0.314
0.316
0.318
0.320
0.322
0.324

Best

rat
io k

0.1

0.2

0.3

0.4

Number of topics K

10

20

30

40

50

F1
@
O

 

0.375

0.380

0.385

0.390

0.395

0.400
Best

Figure 4: The influence of the structure of the topic tree on KP20k dataset.

the positional information of a word’s occurrences into a
biased PageRank. (6) KPRank [53] also extends TextRank
by exploiting both positional information and contextual
word embeddings into a biased PageRank.

• Traditional supervised methods include (7) KEA [71] which
employs only two features (TF-IDF and relative position)
and applies Naïve Bayes classifier, and (8) Maui [46] which
chooses nine features and applies bagged decision trees [14]
to determine whether a word is a keyword or not.

Due to the limited space, we select the best-performing base-
line (BL∗) from each of the three types of baselines with the best-
performing metrics to compare with our method for each dataset.
A current graph neural extraction method is given as

• (9) DivGraphPointer [61] employs a GCN encoder on the
traditional word graph for keyphrase extraction.

The seven current deep seq2seq generation baselines include:

(1) CopyRNN [47] is the first to use seq2seq network to gener-
ate keyphrases. Here, we replace it with CopyRNN+ which
is re-implemented CopyRNN with best results [78].

(2) CopyCNN [80] applies a convolutional neural network based
encoder-decoder framework to generate keyphrases.

(3) KG-KE-KR-M [18] is a multi-task learning method using
extractive and generative models to generate keyphrases.

(4) CatSeq [78] has the same framework as CopyRNN, with the
key difference in training paradigm.

(5) CatSeqTG-2RFl [16] is a simple extension of CatSeq us-
ing reinforcement learning to generate both sufficient and
accurate keyphrases.

(6) ExHiRD-h [19] uses an exclusive hierarchical decoder to
avoid generating duplicated keyphrases.

(7) One2Set [76] is a new training paradigm without predefin-
ing an order to concatenate the keyphrases.

4.3 Evaluation Metrics
For fairly comparing different approaches, we follow the literature
and adopt top-𝑁 macro-averaged precision, recall and 𝐹1-measure
as the evaluation metrics. In particular, precision is defined as the

number of correctly predicted keyphrases over the number of all
predicted keyphrases, recall is defined as the number of correctly
predicted keyphrases over the total number of data records, and 𝐹1
is the harmonic mean of precision and recall.

Note 𝐹1@𝑘 is used in almost all existing works on the keyphrase
extraction and generation, in which 𝑘 (usually 5 or 10) is a fixed
number of top-𝑘 predictions. 𝐹1@O is recently proposed in the
work [78] as one of our evaluationmetrics, inwhichO is the number
of author-assigned keyphrases. This means that the number of
predicted phrases taken for evaluation is the same as the number
of ground truth keyphrases for each document. The recall of the
top 10 predictions (𝑅@10) is used to evaluate the performance of
methods for predicting absent keyphrases.

4.4 Experimental Setup
We follow the previous works [47, 78] to pre-process the experi-
mental data, including lowercasing, tokenizing, etc. Particularly,
the top 50,000 and 10,000 most frequently-occurred words in the
training data are selected as the vocabulary shared in the sequence
encoder and decoder, and as the bag-of-words vocabulary in the
neural hierarchical topic model, respectively.

For the neural hierarchical topic model, we set the size of hidden
layers to 256 and use one sample for neural variational inference
by following the work [48]. The parameters 𝛼0 and 𝛽0 for the Beta
distribution are empirically set to 1 and 10, respectively.

For the neural keyphrase generation model, the word embed-
dings are initialized first using normal distribution by themethod [27],
and the size of word embedding is set as 150. The size of hidden
state of Bi-GRU encoder is set as 150, and the size of hidden state
of forward GRU decoder is set as 300.

In the training process, we adopt One2One training paradigm [47]
and use Adam [6] as optimizer to optimize all the parameters. The
initial learning rate is set as 0.001 and the gradient clipping is set as
1. The batch sizes of the topic model and the keyphrase generation
model are set to 1024 and 128, respectively. We halve the learning
rate when the validation performance drops, and stop training if
it does not improve for three successive iterations. In addition, we
pre-train the hierarchical topic model for 100 epochs before the



Table 2: Results of predicting present keyphrases of different methods on five datasets. Best/second-best performing score
in each column is highlighted with bold/underline. Gain reports the relative improvements between our HTKG and the
best/second-best performance results in the same deep generation methods.

Model
KP20k Inspec Krapivin NUS SemEval

𝐹1@5 𝐹1@10 𝐹1@O 𝐹1@5 𝐹1@10 𝐹1@O 𝐹1@5 𝐹1@10 𝐹1@O 𝐹1@5 𝐹1@10 𝐹1@O 𝐹1@5 𝐹1@10 𝐹1@O

Seq2seq neural generation methods

CopyRNN+ [78] 31.7 27.3 33.5 24.4 28.9 29.0 30.5 26.6 32.5 37.6 35.2 40.6 31.8 31.8 31.7
CopyCNN [80] 35.1 28.8 - 28.5 34.6 - 31.4 27.2 - 34.2 33.0 - 29.5 30.8 -
KG-KE-KR-M [18] 31.7 28.2 38.8 25.7 28.4 31.4 27.2 25.0 31.7 28.9 28.6 38.4 20.2 22.3 30.3
CatSeq [78] 31.4 27.3 31.9 29.0 30.0 30.7 30.7 27.4 32.4 35.9 34.9 38.3 30.2 30.6 31.0
CatSeqTG-2RF1 [16] 32.6 20.2 35.7 26.6 18.1 22.4 31.2 19.3 34.7 36.5 24.4 39.6 27.7 19.0 25.5
ExHiRD-h [19] 31.1 19.6 37.4 25.3 18.3 28.9 28.4 18.0 30.6 - - - 29.2 20.3 26.6
One2Set [76] 35.5 23.7 36.9 28.2 20.8 25.4 31.5 20.8 34.3 39.7 28.2 39.5 34.0 24.2 30.2
HTKG (This work) 39.1 32.3 39.4 32.4 34.9 33.8 32.3 26.3 31.8 42.2 39.1 42.8 32.5 31.4 30.8
Gain 3.6↑ 3.5↑ 0.6↑ 3.4↑ 0.3↑ 2.4↑ 0.8↑ -1.1↓ -2.9↓ 2.5↑ 3.9↑ 2.2↑ -1.5↓ -0.4↓ -0.2↓

Traditional extraction methods (unsup. denotes unsupervised.)

Statistic-unsup. BL∗ 14.1 14.6 6.3 20.4 26.9 24.8 21.5 19.6 13.3 15.9 19.6 12.5 15.1 21.2 15.3
Graph-unsup. BL∗ 18.1 15.1 18.4 28.6 33.9 33.5 18.5 16.0 21.1 23.0 21.6 23.8 22.5 25.7 22.9
Supervised BL∗ 4.6 4.4 5.1 9.8 12.6 3.9 11.0 15.2 1.7 6.9 8.4 8.1 6.8 6.5 6.6

Graph neural extraction method (Note that extraction methods can not predict absent keyphrases)

DivGraphPointer [61] 36.8 29.2 - 38.6 41.7 - 46.0 40.2 - 40.1 38.9 - 36.3 29.7 -

joint training as the convergence speed of our VNKG is much faster
than our NHTM. To alleviate the problem that the posterior col-
lapse issue in VAE framework, where the decoder tends to ignore
the latent variables, we employ the simple KL cost annealing tech-
nique [13]. More specifically, we add a variable weight to the KL
term in the loss function at training time. At the start of training,
we set that weight to 0, and then we gradually increase this weight
to 1 as the training progresses. In the testing process, our models
use the beam search with a width of 200 and a max depth of 6.

4.5 Influence of Topic-Tree Structures
In our NHTMmodel, we construct a three-level topic tree, in which
we fix one root topic at level 1 to capture the the highest-level
topic (i.e., generic topic) discussed in a document. To illustrate the
influence of the structure of the topic tree (i.e., width and depth),
we vary the number of total topics 𝐾 in the range of 10 to 50, and
the ratio of the number of level-2 topics to total of topics 𝑘 in the
range of 0.1 to 0.4. The empirical upper bound of 0.4 for 𝑘 is based
on the assumption that the number of level-3 topics is more than
that of level-2 topics. Here we adopt these two intuitive parameters
(i.e.,𝐾 and 𝑘) to replace the width and depth of the topic tree, which
can be computed from the former.

The results of 𝐹1@5, 𝐹1@10 and 𝐹1@O on KP20k dataset are
shown in Figure 4. From this figure, we observe that the perfor-
mance of HTKG is obviously influenced by changes on both the
number of topics 𝐾 and the ratio 𝑘 . In general, the 𝐹1@5, 𝐹1@10
and 𝐹1@O quickly increase and then slowly decrease on KP20k
dataset as 𝐾 grows, respectively. The 𝐹1@5, 𝐹1@10 and 𝐹1@O
slowly increase and then quickly decrease on KP20k dataset as 𝑘
grow, respectively. The best-performing setting is the number of
total topics 𝐾 =20 and the ratio 𝑘 =0.3 on KP20k dataset, which is

finally used in the comparison experiments. In practice, the best-
performing structure of the topic tree is related to the corpus.

4.6 Performance Comparison
We compare HTKG with the baselines on five datasets, and the
experimental results for present and absent keyphrase prediction
are shown in Table 2 and 3, respectively. Note that Table 2 also
includes a set of extraction methods, which can only extract present
keyphrases. That is to say, they are not quite suitable for directly
comparing different types of prediction methods. In addition, due to
space limitations and metric specialization, we present only results
obtained with the most suitable metrics for each type of methods.
Specifically, we choose 𝐹1@5, 𝐹1@10 and 𝐹1@O for the present
methods and 𝐹1@5, 𝐹1@O and 𝑅@10 for the absent methods.

4.6.1 Present keyphrase prediction. From the results of predicting
present keyphrases illustrated in Table 2, we can see that the neu-
ral prediction methods (including the seq2seq neural generation
methods and the graph neural extraction method DivGraphPointer)
substantially outperform the traditional extraction methods across
all the datasets. This improvement benefits from the deep semantic
understanding of a document.

The results also show that our HTKG outperforms all the seq2seq
baseline methods by significant margins in three out of five datasets
(including KP20k, Inspec andNUS) in terms of all themetrics. Specif-
ically, HTKG achieves the improvement of 3.6 𝐹1@5 points and 3.5
𝐹1@10 points on KP20k over the best baselines, of 3.4 𝐹1@5 points
and 2.4 𝐹1@O points on Inspec, and of 2.5 𝐹1@5 points and 3.9
𝐹1@10 points on NUS, respectively. These results illustrate HTKG
can achieve the average increase of 3 points on these metrics, which
is a significant improvement in the current keyphrase prediction
task. On both Krapivin and SemEval datasets, HTKG performs



Table 3: Results of generating absent keyphrases of different methods on five datasets.

Model
KP20k Inspec Krapivin NUS SemEval

𝐹1@5 𝐹1@O 𝑅@10 𝐹1@5 𝐹1@O 𝑅@10 𝐹1@5 𝐹1@O 𝑅@10 𝐹1@5 𝐹1@O 𝑅@10 𝐹1@5 𝐹1@O 𝑅@10

Deep generation methods

CopyRNN+ [78] 3.23 3.97 3.30 1.44 1.23 4.00 5.14 5.54 4.00 3.35 3.25 2.40 2.05 2.20 0.90
CatSeq [78] 1.50 2.51 6.00 0.40 0.35 2.90 1.80 1.67 7.00 1.60 1.22 3.70 1.60 1.44 2.50
CatSeqTG-2RF1 [16] 2.78 2.16 4.70 1.12 0.82 1.69 2.97 1.88 4.38 2.46 2.10 2.57 2.04 1.78 1.77
ExHiRD-h [19] 1.57 3.22 2.61 1.03 1.52 1.84 2.06 2.49 3.09 – – – 1.51 1.14 1.30
One2Set [76] 3.70 5.02 6.08 2.10 1.63 3.63 5.53 3.43 7.93 4.02 3.61 4.96 2.42 2.02 2.02
HTKG (This work) 5.85 6.04 13.2 2.20 1.83 5.38 5.64 5.68 12.2 5.06 5.03 10.2 3.25 3.60 4.02
Gain 2.2↑ 1.0↑ 7.1↑ 0.1↑ 0.2↑ 1.4↑ 0.1↑ 0.1↑ 4.3↑ 1.0↑ 1.4↑ 5.2↑ 0.8↑ 1.4↑ 1.5↑

slightly worse than the best baselines. This slight performance drop
may be caused by the various topics discussed in the given datasets.
For example, the selected articles in SemEval dataset belong to both
computer science and economics domains.

Even aside from generating absent keyphrases, HTKG outper-
forms DivGraphPointer (which is specially designed to extract
present keyphrases and can not predict absent keyphrases) on two
out of five datasets by a significant margin (2.3 𝐹1@5 points and
3.1 𝐹1@10 points on KP20k, and 2.1 𝐹1@5 points and 0.2 𝐹1@10
points on NUS). In short, unlike all previous methods, HTKG inte-
grates the hierarchical topics into keyphrase generation explicitly,
contributing most to the performance improvement on this task.

4.6.2 Absent keyphrase prediction. Unlike present keyphrases, ab-
sent keyphrases do not appear in the target document, and thus
predicting them is very challenging and requires comprehensive
understanding the latent document semantic. From the results of
predicting absent keyphrases presented in Table 3, we can see that
HTKG substantially outperforms the baselines according to all the
metrics, and correctly generates more absent keyphrases than the
baselines on the five datasets consistently in terms of 𝑅@10, espe-
cially on KP20k (7.1 𝑅@10 points over the best existing methods),
Krapivin (4.3 𝑅@10 points) and NUS (5.2 𝑅@10 points). Besides,
HTKG doubles the average 𝑅@10 on these three datasets, compared
to the best existing methods. Overall, the absent keyphrase predic-
tion results indicate that HTKG is capable of understanding the
underlying document semantic better than all the baselines, and
thus generating much better results.

4.7 Ablation Study
To analyze the relative contributions of different components to the
model performance in predicting present and absent keyphrases, we
compare our full model HTKG with the following ablated variants:
(1) w/o hierarchical topic where the hierarchical topic model is
replaced by the flat topic model NTM [48], (2) w/o VNI for topics,
where we directly concatenate the topic representations learned by
NTM [48] and last hidden state of the sequential encoder, and feed
into the decoder to generate keyphrases.

From the results shown in Table 4, we have the following obser-
vations: (1) Replacing the hierarchical topicswith the flat topics leads
to performance drops on all datasets, indicating that the hierarchi-
cal topic is effective information to improve keyphrase generation.
(2) The simple concatenation results in significant performance

drop on all datasets. However, compared to the earliest baseline
CopyRNN, slight improvements of the performance are observed in
conjunction with the results shown in Table 2 and Table 3. These re-
sults indicate that although the simple concatenation contributes to
improving the performance, this option can not effectively leverage
the topic information to guide the keyphrase generation.

Table 4: Ablation on HTKG without decoupling hierarchical
topic (HTopic) and VNI for topics (VNI). We preclude one
design choice at a time.

Dataset Method
Present Absent

𝐹1@5 𝐹1@O 𝐹1@5 𝐹1@O

KP20k
HTKG 39.1 39.4 5.85 6.04
w/o HTopic 36.5 37.1 5.13 5.62
w/o VNI 31.8 33.6 3.25 3.93

Inspec
HTKG 32.4 33.8 2.20 1.83
w/o HTopic 30.1 31.9 1.87 1.44
w/o VNI 24.5 29.1 1.46 1.25

Krapivin
HTKG 32.3 31.8 5.64 5.68
w/o HTopic 31.7 30.9 5.47 5.52
w/o VNI 30.6 32.5 5.22 5.53

NUS
HTKG 42.8 39.6 5.06 5.03
w/o HTopic 40.2 37.7 4.31 4.14
w/o VNI 37.3 34.6 3.36 3.15

SemEval
HTKG 32.5 30.8 3.25 3.60
w/o HTopic 32.2 30.4 2.83 3.01
w/o VNI 31.8 29.7 2.05 2.20

4.8 Case Study
A anecdotal example is shown in Table 5. The given paper focuses
on developing a new approach to “algebraic attack”, which is an
author-assigned absent keyphrase and appears in the first posi-
tion of keyphrase sequence. Obviously, the keyphrase “algebraic
attack” can be regarded as the root topic description, and the rest
of keyphrases are derived from this root keyphrase. Under the hi-
erarchical topic guidance, HTKG is capable of understanding the
underlying document semantic, and thus can accurately generate
this absent root keyphrase while all the baselines fail to generate
it. Besides, we also empirically observe more keyphrases with less
reputation are generated by HTKG.



Table 5: An example of generated keyphrases by different
methods. Author-assigned (i.e., Gold) keyphrases are shown
in bold, and absent keyphrases are labeled by the underline.

“New constructions of even variable rotation symmetric boolean func-
tions with maximum algebraic immunity” (#4434 in KP20k; 𝐹1@O)
Gold: algebraic attack; nonlinearity; rotation symmetry;

boolean function; algebraic immunity
HTKG: cryptography; algebraic attack; boolean functions;

nonlinearity; algebraic immunity
CatSeq: algebraic immunity; maximum algebraic immunity;

rotation symmetric boolean functions
CatSeqTG-2RF1: boolean functions; algebraic immunity;

rotation symmetric boolean functions; rotation symmetry
ExHiRD-h: even variable rotation symmetric boolean; algebraic

immunity; boolean function; symmetric boolean function
One2Set: rotation symmetric boolean functions; cryptography;

boolean function; maximum algebraic immunity; even variable

5 CONCLUSION
In this study, we propose a hierarchical topic-guided variational
neural keyphrase generation method, which incorporates the hi-
erarchical topic information into keyphrase generation explicitly.
In particular, we jointly learn both latent hierarchical topics and
keyphrases, allowing our model to better exploit the mutual rein-
forcement between them, and accurately capturing the topics and
relations between them discussed in a given document. We con-
ducted comprehensive experiments to demonstrate its advantages
and effectiveness. In future, we plan to evaluate HTKG on a large
corpus with comprehensive coverage of diverse topics.
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