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Abstract—Sensor accuracy is vital for the reliability of
sensing applications. However, sensor drift is a common
problem that leads to inaccurate measurement readings.
Owing to aging and environmental variation, chemical gas
sensors in particular are quite susceptible to drift with time.
Existing solutions may not address the temporal complex
aspect of drift, which a sequential deep learning approach
could capture. This article proposes a novel deep sequential
model named Concatenated GRU & Dense layer with Atten-
tion (CGDA) for drift compensation in low-cost gas sensors.
Concatenation of a stacked GRU (Gated Recurrent Unit) block
and a dense layer is integrated with an attention network, that
accurately predicts the hourly drift sequence for an entire day.
The stacked GRU extracts useful temporal features layer by layer capturing the time dependencies at a low computational
expense, while the dense layer helps in retention of handcrafted feature knowledge, and the attention mechanism
facilitates adequate weight assignment and elaborate information mapping. The CGDA model achieves a significant
mean accuracy over 93%, outperforming several state-of-the-art shallow and deep learning models besides its ablated
variants. It can greatly enhance the reliability of sensors in real-world applications.

Index Terms— Attention network, deep learning, drift compensation, gas sensor drift, gated recurrent unit.

I. INTRODUCTION

GAS sensors are substantially significant given their wide-
spread applications ranging from environmental moni-

toring to air quality and pollution checks, biometrics, food and
agriculture, medical diagnosis and robotics. However, chemi-
cal changes by aging and environmental variation commonly
lead to sensor drift with the passage of time. This results in
inaccurate measurement readings and deterioration of sensor
reliability [1]. Low-cost metal-oxide gas sensors in particular
are attractive owing to their cost-effectiveness, operational ease
and spatial coverage, but they get problematic with time by
their susceptibility to drift [2], [3]. Although several methods
have been developed over the past decades, drift compensation
still remains a challenge.

Drift compensation approaches can be categorised as
(1) univariate approaches, (2) multivariate approaches and
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(3) adaptive approaches [4], [5]. Univariate approaches
comprise sensor signal processing such as baseline manip-
ulation, frequency domain filtering, multiplicative correc-
tion or estimation theory [6]–[8]. These are simplified methods
where compensation is applied to each sensor independently.
Their drawbacks are that firstly, they may not be adequate
when the drift is complex in nature which is often the real
case, and secondly, they are sensitive to sample rate changes.

Multivariate approaches comprise cluster analysis such as
self-organizing maps [9], signal correction and deflation by
dimension reduction methods [10], or system identification
methods [11]. Their drawbacks are that firstly, they need
frequent sampling and secondly, these approaches may not
accurately separate the undesired component from the useful
components in the case of complex drift effect with noise [12].

On the other hand, the adaptive approaches comprise
machine learning algorithms. These approaches are popular
because they allow the flexibility to add non-linear relation-
ships in the drift model, without making any prior assumptions
of the drift signal. Some of the related works on machine
learning based drift correction are discussed in the next
section.

A. Related Works on Adaptive Approaches
An electronic-nose (e-nose) in the machine olfaction sys-

tem serves the purpose of odor recognition and has wide
applications. However, drift in the gas sensors affects their
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measurements and thereby hampers the reliability of the e-nose
predictions. Marco et. al provides an excellent review of the
machine learning pattern recognition methods used for gas dis-
crimination in sensor arrays [4]. Many of these methods seek
to overcome the time-dependent drift while classifying gases.
In this respect, Support Vector Machine (SVM) classifiers have
been widely used [13], [14]. Vergara et. al used a weighted
combination of SVMs trained at different points of time which
helped to counteract the drift [13]. Verma et. al [14] added reg-
ularization to this weighted ensemble which further improved
accuracy and reduced over-fitting as well. Rehman et. al [15]
proposed heuristic Random Forest (RF) to classify gases where
RF learning was embedded with particle swarm optimization
to compensate the drift. Brahim et. al [16] adopted Gaussian
Mixture Models (GMM) to develop a gas classifier which
counteracts the drift by extracting robust features using a
simulated drift.

Recently, deep learning has been explored for gas recogni-
tion with drift suppression. Tian et. al [17] designed a gaussian
Deep Belief Network (DBN) to identify gases under sensor
drift. It used the DBN as a non-linear function to learn the
drift based differences between the source and target domains.
Liu et. al [18] adopted DBN and stacked sparse autoencoder
(sSAE) to extract deep features, and these features were later
used to train a gas classifier that could reduce the drift.
Luo et. al [19] adopted DBN to extract depth characteristics
of the drifted gas sensor data. Then, the DBN model was
coupled with an SVM which improved gas recognition under
drift. Altogether, several such drift correcting machine learning
classifiers have progressed the odor recognition arena over the
last decade.

The drifted data has a different projected distribution than
the clean data. Capturing this difference helps to separate
the two types of data and reduce the drift through subspace
learning. Zhang et. al [20] proposed an unsupervised subspace
projection approach that reduced the drift by projecting the
data onto a new common subspace using principal component
analysis (PCA). Such projection approaches were extended to
transfer learning based feature adaptation in [21]. The drift
was compensated by aligning the principal component sub-
space between the clean and the drifted data. Similarly, these
subspace learning capabilities were extended to cross-domain
discriminative learning in [22]. Odor recognition models could
be transferred between different e-noses using this method.
Such dimensionality reduction methods are often incorporated
as a pre-processing technique in gas classifiers.

In this respect, several transfer learning based domain adap-
tation methods have been proposed. Yan et. al [23] proposed
a drift-correcting autoencoder using transfer learning while
Zhang et. al [24] proposed domain-adaptation Extreme Learn-
ing Machines (ELM) to suppress drift. Liu et. al proposed a
semi-supervised domain adaption method to compensate drift
using a weighted geodesic flow kernel (GFK) and a classifier
with manifold regularization [25].

In most of these adaptive methods, it is assumed that the
drift trend can be traced through its direction in projected
subspace or its distribution. However, long-term drift do
not always have a consistent direction trend or a regular

pattern [12]. Very few studies such as [26] have considered
this aspect and explored the time-series prediction of drift
signal. In this study [26], Zhang et. al developed a drift
prediction model using chaotic time series prediction method
based on phase space reconstruction (PSR) and single-layered
neural networks (SNN). Mumyakmaz et. al [27] employed
two neural networks with the first as a classifier to identify
the gases, and the second to predict the concentration ratios
of the gases in a sensor array. De Vito et. al [28] applied time
delay support vector regressor (SVR) and time delay neural
network to predict the real-time gas concentrations in sensor
array. However, the sensor drift was not studied in both these
works.

B. Contributions of This Paper
Although a great many excellent works have been done

on adaptive approaches to compensate drift, there are a
few concerns. Firstly, most of the existing machine learning
approaches are pattern recognition algorithms aimed at clas-
sification of gases in sensor arrays. Very few studies have
explored direct prediction of the drift values. In this study,
we aim at building a model focused on the prediction of
sensor drift. The predicted drift can be used to correct sensor
readings, which can make applications like gas recognition
more reliable.

Secondly, the parameters that cause sensor drift have rarely
been incorporated in the classification or prediction mod-
els. Based on the causes, sensor drift is categorised into
two types: (a) The ‘first-order’ or ‘real’ drift, results from
sensitivity changes in chemical sensors due to aging and
poisoning. It often occurs over long periods of time. (b) The
‘second-order’ drift, may result from the slow changes in the
external environment such as ambient temperature, pressure
etc. It may occur over short time periods, but the fluctuations
can significantly alter sensor response [1], [6], [9], [13].
Moreover, practically it is extremely difficult to empirically
differentiate between these two drifts [13]. In this study,
we incorporate these aging and environmental drift-causing
factors into the feature space of our drift prediction model.

Thirdly, most of the current machine learning based drift
solutions are shallow learning methods. The few methods that
have explored deep learning are focused on gas classification
as well. Deep learning has definitive power to capture the
complexities in data and therefore would be more suitable for
handling complex drift signals. Furthermore, given the ‘tempo-
ral’ nature of ‘time’-varying drift, sequential neural networks
such as the Gated Recurrent Unit (GRU) network [29] could
be apt for modelling the drift. Several advantages of the GRU
such as the ability to capture time dependencies, temporal
feature learning and low computational cost make it suitable
for modelling the drift in our study. However, modelling longer
sequences can suffer from information loss. The attention
mechanism [30] can prevent such loss, besides providing
better interpretability and appropriate information mapping.
Attention mechanism is a recent revolutionary concept in deep
learning. It selectively pays ‘attention’ to the most relevant
information in deep neural networks while ignoring the non-
relevant parts, by assigning appropriate weights. It can help
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Fig. 1. Architecture of the proposed CGDA model for drift prediction. Here, fCGDA: the overall CGDA model, X : the CGDA model input, �: the
CGDA model drift output, nd: the number of days (batch size), nf: the number of input features, and ‘24’ represents the number of hours in a day.
Enclosed dotted portion illustrates a single day (sample) for simplicity purpose, where fg: the GRU network, fd1: the first dense network, fa: the
attention network, and fd2: the second dense network. X ,X d1,X a ,X d2 are the inputs and Y g ,Y d1,Y a ,� are the outputs of fg, fd1, fa and fd2
networks, respectively.

our model focus on the most relevant hidden states of the
input sequences for drift prediction.

In this article, we propose a deep learning based sequential
model for drift compensation in low cost gas sensors, incorpo-
rating the aging and environmental drift-causing factors. The
specific contributions are:

• We propose a novel deep sequential model termed as
the Concatenated GRU and Dense layer with Attention
(CGDA) model for drift compensation in low-cost gas
sensors. Concatenation of a stacked GRU block and a
dense layer is integrated with attention mechanism, that
accurately predicts the drift sequence for an entire day.

• The stacked GRU block extracts useful temporal features
layer by layer capturing time dependencies at a low com-
putational expense, which enhances the drift prediction.

• The dense layer helps in better retention of feature
information by supporting handcrafted features, while the
attention network facilitates adequate weight assignment
and prevents information loss along the input sequence;
this aids in appropriate representation of the drift and
further enhances its prediction.

• Intensive feature extraction by the GRU and dense lay-
ers, and elaborate information mapping by the attention
network improve the model’s drift prediction ability. It’s
efficacy is validated through a comprehensive chronolog-
ical comparison with 8 different state-of-the-art shallow
and deep learning models including an ablation study.

• The input feature space addresses the environmental and
aging factors of drift. The study findings are corroborated
through an experimental dataset generated by our institute
by deploying a robust sensor-network that collected data
over 4 to 14 months duration at indoor and semi-indoor
locations within office premises.

The rest of the paper is organized as follows: Section II
introduces the proposed CGDA model’s framework.
Section III describes the experimental settings and the
sensor dataset followed by the results and discussions in
section IV. Finally, section V highlights the concluding
remarks and future work.

II. PROPOSED CGDA MODEL

This section describes the framework of the Concatenated
GRU and Dense layer with Attention (CGDA) model.

A. Overall Framework
The architecture of the proposed CGDA model is illustrated

in Fig. 1. Broadly, the CGDA model fCG D A comprises a GRU
block that is concatenated with a dense layer, and followed by
an attention network.

The input feature space comprises of a batch of data over
nd number of days. Each day is a sample in the data. Each
sample (day) consists of a time-series sequence of n f different
features. The length of each sequence is 24, considering there
are 24 hourly points in a day corresponding to time-slots
1, 2, .. 24. Considering nd = number of days in the data
(batch size) and n f = number of features, the input feature
tensor set X ∈ R

nd×n f ×24 is denoted as:

X1,2,..nd
1,2,..n f

[t] where t = {1, 2, ..24}
We consider the target drift � ∈ R

nd×24 as a time sequence
of hourly drift values along a day which is denoted as:

�k = {δk
1, δk

2, . . . δk
24}, where k = {1, 2, ..nd}

The CGDA model can be symbolically represented as fCG D A :
X → �.
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B. GRU Block
The feature input tensor is fed to the GRU network fg .

Note that the GRU may be single or multi-layered (stacked)
depending upon hyperparameter optimization. For a given
time-step t , the input is X[t] ∈ R

nd ×h and the computations
are:

R[t] = σ
(
X[t]W xr + H[t − 1]Whr + br

)
(1)

Z[t] = σ
(
X[t]W xz + H[t − 1]Whz + bz

)
(2)

H̃[t] = tanh
(
X[t]W zh + (R[t] � H[t − 1])Whh + bh

)
(3)

H[t] = Z[t] � H[t − 1] + (
1 − Z[t] � ˜H[t]) (4)

where, H[t − 1] ∈ R
nd×h is the hidden state of the last

time-step, R[t] ∈ R
nd×h is the reset gate, Z[t] ∈ R

nd ×h is
the update gate, W xr , W xz ∈ R

nd×h and Whr , W hz ∈ R
h×h

are weight parameters, br , bz, bh ∈ R
1×h are the biases, and

h is the number of features in the layer (h = n f for first
layer). H̃[t] is the candidate hidden state and H[t] is the new
state. σ denotes sigmoid function and � denotes Hadamard
product. In case of a multi-layered GRU network, the input
of a particular layer is the hidden state H[t] of the previous
layer. No dropout has been used between the layers.

C. Concatenation With Dense Layer
Simultaneously, the feature tensor is reshaped to

Xd1 ∈ R
nd×(n f ∗24) vector which is fed to a single dense

layer network fd1. Rectified Linear Unit (ReLU) is used as
the activation function. Assuming that (Xd1)

k is the input
vector and (Yd1)

k is the output vector for the kth training
sample, the dense layer can be formulated as:

V k
i = ReLU

( ∑
wi j (xd1)

k
j − bhi

)
(5)

(Yd1)
k
p =

∑
V k

i wpi − bop (6)

where, V k
i is the output of hidden neuron i , wi j is weight

parameter from input layer neuron j to hidden layer neuron i ,
bhi is the bias of hidden neuron i , wpi is the weight parameter
from hidden neuron i to output neuron p, and bop is the bias
of output neuron p. The output Yg from the last layer of GRU
and the output Yd1 from the dense layer are concatenated.

D. Attention Mechanism
The concatenated layer Xa(Yg, Yd1) is fed to an attention

network fa . Soft attention is used. The attention mechanism
is explained below.

Firstly, the input concatenated sequence is encoded into
a set of internal states h1, h2, . . . hm . Alignment scores are
calculated for each encoded state by training a feedforward
network that learns to recognize relevant states by creating
higher scores for states that deserve attention, and vice-versa.
Attention weights α1, α2, ..αm are generated by applying soft-
max function to the scores. Note that the attention weight
vector gives a probabilistic interpretation i.e. α ∈ [0, 1] and∑

α = 1. Next, the context vector is computed:

C = α1 ∗ h1 + α2 ∗ h2 + . . . + αm ∗ hm (7)

C is concatenated with the output generated from the previous
time step. The process repeats for all time steps. Finally, this
is followed by a second dense layer network fd2 also with
ReLu as the activation function (similarly using equations 5-6),
to map the attention layer output Y a to the target drift
sequence �. The CGDA model fCG D A : X → � can thus be
summarized as:

GRU fg : X → Yg (8)
Dense1 fd1 : Xd1 → Yd1 (9)

Attention fa : Xa(Yg, Yd1) → Ya (10)
Dense2 fd2 : Xd2(Ya) → � (11)

The equations of all activation functions used in the model
are summarized below:

σ(x) = 1

(1 + e−x)
(12)

tanh(x) = (ex − e−x)

ex + e−x
(13)

ReLU(x) = max(x, 0) (14)

so f tmaxi (�x) = exi∑m
j=1 ex j

for i = 1, . . . , m (15)

E. Rationale Behind Model Structure
The advantages of the GRU are manifold. First, its suitabil-

ity for sequence modelling is apt for our time-varying drift
which is a time-series data. Secondly, its ability to capture
time dependencies is apt for our fixed-length drift sequences.
The reset gate and the update gate help capture the short-
term and long-term dependencies, respectively. Moreover,
the GRU extracts important temporal features layer-by-layer
that improves model robustness. Additionally, a GRU unit has
few parameters leading to faster training which is an important
requirement for the stacked layers in our model. The dense
layer helps in better retention of the feature information. While
the GRU generates deep features, the dense layer retains the
handcrafted features. The placement of the attention network
in the CGDA model has multiple benefits:

• Without the attention layer, equal weights would be
assigned to all the states in the concatenated output from
the GRU and the dense layer. With attention network,
we have weighted attention to the states i.e., assigning
adequate weightage to each state in the concatenated
output. It also allows us to better interpret the contribution
of the two participating models i.e. GRU vs. Dense1.

• It gives attention to the entire input sequence instead
of just the last state. This prevents information loss for
long input sequences unlike a seq2seq network where
information tends to get lost towards the end.

• For each time step, a separate context vector is computed
by computing the attention weights. Thus, through this
mechanism, our model can discover interesting mappings
between various segments of the input sequence and their
corresponding parts in the output sequence.

F. Feature Space
A 3-stage approach is used for feature refinement: firstly,

the initial feature space is selected based on domain knowledge
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of drift-causing factors; secondly, filter method is used to
statistically evaluate the relevant subset, and lastly, intrinsic
method is used by the deep layers of the CGDA model. The
following parameters are selected for the initial feature set,
that addresses the factors causing drift:

• Environmental factors: air temperature (Ta), air pressure
(Pa), relative humidity (RH ), particulate matter (P M2.5)

• Aging factors: elapsed days (elap-day), hourly time-slot
in the day (time-slot)

The elap-day feature denotes the number of days elapsed
since the sensor deployment. Note that elap-day is not the
same as the sample number; there may be missing samples
in the data. In Fig. 1, the days 1 to nd are samples, each
containing elap-day as a feature. The time-slot feature denotes
the time-slot among the 24 hours in a day. While the aging
effect is predominantly represented by elap-day, the time-slot
can represent the daily cyclic influence.

Thereafter, a filter method namely a simple Pearson
Product-Moment correlation analysis is performed to eval-
uate the linear relationships. A confidence interval of 90%
(p < 0.1) is used for the significance tests. Finally, an intrin-
sic method performs automatic feature selection during the
model’s training process, which in this case is facilitated by
the deep layers of the CGDA model.

III. EXPERIMENTAL SETTINGS AND DATA

A. Experimental Settings
1) Hyperparameter Optimization: For each experiment,

a hyperparameter optimization is performed to select the best
model during training. The ranges covered are- learning rate:
[10−6, 10−4], recurrent layers in the GRU block: [1, 5],
hidden GRU units in a layer: [12, 400], hidden neurons in
the dense layer: [12, 200]. For each experiment, the number of
neurons in the output layer of GRU (Yg) and Dense1 (Yd1) are
kept equal before concatenation. Early-stopping regularization
based on the validation error is used, with train:validation size
ratio set at 80:20, and the number of epochs limited to 50,000.
The Adam optimizer is implemented and the loss function of
the model is set as root-mean-squared-error (RMSE).

2) Performance Metric: We evaluate the model’s perfor-
mance using the drift-prediction-accuracy (DPA) based on the
mean-absolute-percentage-error (MAPE):

M AP E = 1

N

N∑
i=1

∣∣∣∣∣
δi − δ̂i

δi

∣∣∣∣∣ (16)

DP A = (1 − M AP E) × 100 (%) (17)

where, δi and δ̂i are the true and the predicted drifts, respec-
tively, and N is the number of samples.

3) Ablation Study: An ablation study is important for under-
standing the causality in the model. The ablated variants
of the CGDA model are implemented which are, GRU
(a single/stacked GRU model) [29], SNN (a single-layered
neural network model) [26] and CGD (concatenated GRU
block and dense layer model without an attention mechanism).

4) Comparison With State-of-the-Art: To comprehensively
evaluate our proposed CGDA model, we compare against

Fig. 2. A labelled sensor node deployed at measurement site.

several state-of-the-art machine learning methods. Shallow
models namely, decision tree regression (DTR) [31], support
vector regression (SVR) [32], and random forest (RF) [15]
are implemented besides the SNN. Deep models namely, long
short-term memory (LSTM) [33] and 1D convolutional neural
network (CNN) [34] are employed besides the deep ablated
variants (GRU, CGD). LSTM is a popular gated sequential
network, and 1D-CNN is suitable for time-series regression
with sensor data. Therefore, 4 shallow models (DTR, SVR,
RF, SNN) and 4 deep models (LSTM, CNN, GRU, CGD) are
implemented besides CGDA for the comparative analysis.

It is to be noted that although both GRU and LSTM
keep long-term dependencies while handling the exploding/
vanishing gradient problems, GRU does not require mem-
ory units unlike LSTM. Since our input sequence length is
fixed (24 time-steps), GRU is a better choice compared to
LSTM whose benefits weigh up mainly for longer sequences.
Moreover, GRU uses less training parameters thereby having
lower computational cost and faster response. Therefore, we do
not compare a model with LSTM in place of GRU.

B. Sensor Data Collection
Several sensors namely, an environmental sensor, a par-

ticulate matter sensor, an air-flow sensor, a CO2 sensor,
an ambient light sensor, an odor sensor, a thermal sensor and
a microphone, are embedded together using a TI AM335x
BeagleBone Black Robotics Cape, and encased into a compact
box referred to as a ‘sensor node’ or simply ‘node’ as
labelled in Fig. 2. The sensor models are listed in Table I.
The BME680 environmental sensor is a widely used low-
cost MOX based gas sensor meant for monitoring volatile
organic compounds (VOC). It measures three environmental
parameters namely, air temperature, air pressure and humidity.
Freshly manufactured new BME680 sensors are cased. A node
continuously senses the environment, performs edge process-
ing, and sends the analysed data to a backend server where it
is stored and viewed real-time through a web portal.

Several sensor nodes were deployed within the office
premises of the Institute for Infocomm Research, ASTAR,
Singapore, for collection of long-time drift performance as
described in Table II. Nodes A and B were placed in indoor
locations, while nodes C and D were deployed in semi-indoor
locations. The indoor locations are rooms in the interior of
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TABLE I
SUMMARY OF THE ENCASED SENSORS WITHIN A NODE

TABLE II
DEPLOYMENT LOCATIONS AND DURATIONS OF THE SENSOR NODES

USED FOR COLLECTION OF DRIFT PERFORMANCE

building with no access to outdoors, while the semi-indoor
locations have an enclosed boundary with direct access to the
outdoors. The data collection duration spanned 4 to 14 months.

Multiplicative drift is used in this study and is denoted
by δ (unitless) as the ratio between the current (drifted state)
resistance to the actual (non-drifted state) resistance response.
Similar to previous works [13], [35], [36], the multiplicative
drift is based on the assumption that the sensors are calibrated
before being deployed and therefore the response during the
initial period post deployment can be considered drift-free.
The data was logged at intervals of 3 seconds. For this study,
we averaged the data per hour. Besides the hourly drift,
the hourly mean of features air temperature, pressure, relative
humidity, and PM2.5 were computed. Note that air-flow is
removed from consideration as a feature, due to its almost con-
stant value. The CO2, light intensity, odor and thermal sensors,
and the microphone were meant for monitoring purposes only.

C. PCA for Time-Varying Drift Illustration
Principal component analysis (PCA) is used to inspect the

drift across the months as shown in Fig. 3a. PCA is applied
to project the samples to a 2-D subspace, where each day is
a sample consisting of 24 timeslot (hourly) drifts. The plots
depict the first two principal components (PC) and the first
component PC1 accounts for the majority of variance in the
drift: 0.957 (node A), 0.806 (node B), 0.958 (node C) and
0.839 (node D). For simplicity, only the first three months
are analysed. Firstly, it is evident from the visual inspec-
tion that there is an obvious drift with time across months,
which are separable while sliding horizontally along PC1.
Secondly, different data distributions among the nodes indicate
that the drift varies from one sensor to another. For visual
clarity, the sensor response (VOC resistance) of only the first
4 months are illustrated in Figure 3b. The scale of response
varies between the four nodes as they are placed in different
environments. Therefore, it is vital to develop separate drift
model for each node. While the basic model architecture may
be same, the hyperparameters have been tuned per node for
best performance.

Fig. 3. (a) Illustration of the drift across months M1 to M3. (b) Sensor
response along first 4 months M1-M4.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Feature Significance by Filter Method
The results of the Pearson correlation and the significance

tests between the sensor drift and the features are summa-
rized in Fig. 4. Here, hs, ls, and ns denote high significance
(p < 0.05), low significance (p < 0.1), and no significance
(p ≥ 0.1), respectively. Most features reveal significant
correlation with the sensor drift. Aging as the major cause
of first-order drift is validated by the highest correlations with
elap-day. All features show significance except for RH in
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Fig. 4. Significance of Pearson correlation between the sensor drift and
the initial features. hs = high significance (p < 0.05), ls = low significance
(p < 0.1), ns = no significance (p ≥ 0.1).

node C and time-slot in node D, which could be attributed to
the comparatively smaller sample sizes. Interestingly, the sig-
nificance of time-slot feature supports our speculation that the
time of the day can have some catalytic effect on the drift.
The movements and the occupancy in office spaces usually
tend to have a daily as well as a weekly pattern, which
the combination of elap-day and time-slot may represent.
The collective effect of these factors have complex non-
linearities that the non-linear CGDA as an intrinsic method
can adequately model.

B. Drift Prediction Performance
The chronological drift prediction performance of all the

models are presented in Table III and Fig. 5. Table III lists the
test MAPE values and Fig. 5 graphically summarizes the DPA
values. The first column in Table III depict the test month.
Note that the table lists the test error; a model trained on the
first month (M1) is tested on the second month (M2), next a
model trained on the first two months (M1-2) is tested on the
third month (M3) and so on.

It is observed from Table III that the proposed CGDA
model achieves the best performance consistently across most
of the chronological experiments. It exhibits mean MAPE
of 5.5% to 7.59% only, as compared to much larger errors
in the traditional shallow models. It predicts the drift in
sensor nodes A, B, C and D with excellent mean accuracies
of 94.50%, 93.66%, 92.41% and 92.58%, respectively. As seen
for node A in Fig. 5, DTR, SVR, and RF perform poorly due
to low training data in the first experiment (M2). However,
CGDA performs well even with just one month training data.
From Fig. 5, it is further evident that the CGDA model
consistently achieves high DPA (above 90%) across most
months. This is a remarkable advantage of the CGDA model
in terms of reliability, as compared to the remaining models.

As for ablation study, GRU is better able to predict the
drift as compared to SNN. The integration of the GRU layers
with a dense layer in CGD further enhances its ability to
formulate the drift. While the dense layer uses the supplied
handcrafted features, the deep GRU layers generate important
temporal features. The addition of the attention layer to
this concatenated integration helps to compute the weights
appropriately, thereby preventing loss of information. This
weight assignment in CGDA allows extracting only the most

TABLE III
CHRONOLOGICAL COMPARISON OF MAPE (%) AMONG VARIOUS

MODELS. BEST PERFORMANCES ARE HIGHLIGHTED IN BOLD

Fig. 5. Comparison of the chronological DPA of all models.

relevant and adequate information, which further enhances the
ability to capture the drift.

The results are further categorised based on the type of
the sensor location: indoor vs. semi-indoor, and the type
of the learning model: deep learning vs. shallow learning.
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TABLE IV
SUMMARY OF CATEGORICAL MEAN DPA (%)

Fig. 6. Split-violin plot of the attention weights.

Table IV summarizes the mean DPAs for this categorical
analysis. CGDA achieves an overall mean DPA of 93.29%
across all nodes, outperforming the rest while DTR attains the
least mean DPA at 72.85%. Firstly, the deep learning models
with a mean DPA of 90.40% perform significantly better than
the shallow learning models that could attain only 78.22%
mean DPA. This reaffirms the ability of deep layers to better
decipher temporal features and is suggestive of its suitability
for sensor drift estimation which is a temporal dependency
problem. Secondly, the models are better able to predict drift
in the indoor sensors (87.64%) as compared to the semi-
indoor sensors (82.33%). This behaviour could be attributed to
the more stable environment in the indoor rooms. Prediction
would be further challenging for nodes located outdoors due
to the varied external factors. It will probably require an
enhanced model considering features like CO2 concentration,
rainfall status, pollution levels, air velocity etc.

C. Attention Network Analysis and Drift Compensation
The attention weights α’s are assigned to the states derived

from Xa which is the concatenation of Yg and Yd1 as was
described in Fig. 1. Fig. 6 presents a split violin plot of the
attention weights categorised by Ag and Ad1, which are the
attention weight vectors (A = {α1, α2, . . .}) corresponding to
GRU-derived Yg , and Dense1-derived Yd1, respectively, such
that the context vector is:

C = AgYg + Ad1Yd1 (18)

The plot in Fig. 6 reveals that the Yg weights cover a much
wider range with greater probability of larger values, while the
Yd1 weights are limited with probability of smaller values. The
larger weights for GRU indicate that the GRU block makes
a greater contribution as compared to Dense1. It denotes that
the deep features created by the GRU have more significance
than the handcrafted features fed to the dense layer.

V. CONCLUSION

In this article, we proposed a novel deep-sequential model
termed as the CGDA model for drift compensation in low-
cost gas sensors. Concatenation of a stacked GRU block and
a dense layer is integrated with attention mechanism, that
predicts the drift sequence for an entire day, through intensive
feature extraction and elaborate information mapping. The
stacked GRU layers extract useful deep temporal features
layer by layer capturing time dependencies at a low com-
putational expense, the dense layer helps retain handcrafted
feature information, while the attention network facilitates
adequate weightage assignment and prevents information loss.
In addition, the feature space addresses the environmental and
aging effects on the sensor. The efficacy of the CGDA model
is validated through its superior performance with over 93%
mean DPA as compared to 8 state-of-the-art shallow and deep
learning models across multiple nodes at varied locations.

The CGDA model can help realize remote sensor calibration
and greatly enhance the reliability of gas sensors in real-world
applications. Its utility can be extended to other sensors as
well through appropriate improvisations such as a suitable
feature-space. In future, we plan to address the issue of noisy
data [37] for sensor drift prediction. We will also continue
to work advanced machine learning methods (e.g., ensemble
deep learning [38] and deep transfer learning [39]) for this
task. In particular, we will extend the study to larger number
of sensors covering more varied locations, and then explore
cross-node and cross-location model transfer mechanisms for
better robustness.
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