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Abstract—Enabling precise forecasting of the remaining
useful life (RUL) for machines can reduce maintenance
cost, increase availability, and prevent catastrophic conse-
quences. Data-driven RUL prediction methods have already
achieved acclaimed performance. However, they usually
assume that the training and testing data are collected
from the same condition (same distribution or domain),
which is generally not valid in real industry. Conventional
approaches to address domain shift problems attempt to
derive domain-invariant features, but fail to consider target-
specific information, leading to limited performance. To
tackle this issue, in this article, we propose a contrastive
adversarial domain adaptation (CADA) method for cross-
domain RUL prediction. The proposed CADA approach
is built upon an adversarial domain adaptation architec-
ture with a contrastive loss, such that it is able to take
target-specific information into consideration when learn-
ing domain-invariant features. To validate the superiority of
the proposed approach, comprehensive experiments have
been conducted to predict the RULs of aeroengines across
12 cross-domain scenarios. The experimental results show
that the proposed method significantly outperforms state-
of-the-arts with over 21% and 38% improvements in terms
of two different evaluation metrics.

Index Terms—Domain adaptation, deep learning, remain-
ing useful life (RUL), transfer learning.
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I. INTRODUCTION

PROGNOSTICS and health management (PHM) is a mile-
stone technology for realizing predictive maintenance of

industrial systems, e.g., manufacturing machines and aerospace
engines. The PHM technology can shorten inspection time,
reduce costs, and enable maintenance scheduling in advance [1].
A key task of the PHM technology is the precise prediction of
remaining useful life (RUL) of an industrial system. Numerous
approaches have been developed for RUL prediction, which
can be divided into two main categories: model-based and
data-driven. Model-based approaches require domain expertise
to accurately model the dynamics of a system and estimate
the fault progression [2]. These approaches include physics-
based methods, empirical-based methods, and Kalman/particle
filtering techniques [1]. However, they may fail to model the
dynamics of highly complex systems. Recently, data-driven
prognosis is becoming more and more attractive with the avail-
ability of large amount of data and the less requirement of expert
knowledge [3]. Data-driven approaches, including conventional
machine learning methods and deep learning models, rely on
the available data to extract hidden patterns for accurate RUL
prediction.

For the conventional machine-learning-based RUL predic-
tion, the first step is to extract various features from different
sensor readings such as vibration, temperature, and pressure.
Then, the traditional learning algorithms, such as support vector
machines, random forest, and artificial neural networks, can be
adopted for RUL prediction [4], [5]. These approaches rely heav-
ily on the features extracted from the sensor readings. However,
the extraction and selection of these important features require
domain knowledge and human intervention.

Deep learning is also popular for RUL prediction [6]. It is able
to automatically learn representative features from raw sensory
data. Moreover, it jointly optimizes feature learning and RUL
prediction in an end-to-end manner, and thus, achieves a better
generalization performance. Recently, various deep learning
algorithms have been used for machine RUL prediction such
as convolutional neural network (CNN) [7], [8], deep belief
network (DBN) [9], deep autoencoder (DAE) [10], and long
short-term memory (LSTM) [11], [12].

Data-driven approaches can only work well under the fol-
lowing two main assumptions: training and testing data are
collected under the same operating condition, and rich-labeled
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data are available for the RUL prediction task [13], [14]. These
assumptions can be impractical for many real-world applications
with the following reasons. First, the collection of labeled data
(failures) is expensive. For some complex and critical machines,
running to failure can be costly and cause catastrophic conse-
quences [14], [15]. Furthermore, machine deterioration process
may prolong up to years, which can also limit the availability of
faulty data [16]. Second, the labeled data may only be available
under a specific working condition, which can be leveraged to
build a model for RUL prediction. However, when the working
condition changes, the previously trained model often cannot
work well, due to the distinct data distributions for different
working conditions [13], [15], [17].

With the aforementioned problems, the RUL prediction for
scarce-labeled machines/working conditions can be very chal-
lenging. Therefore, there is an urgent need for a prognostic
model that is able to estimate RUL of new working condi-
tions with no labeled data available. Domain adaptation (DA),
which enables knowledge transfer from rich-labeled domain to
a different but related scarce-labeled domain [17], provides a
good candidate solution for this problem. Most of the existing
DA algorithms are designed for the image-related tasks [18].
Recently, some approaches extended DA for fault diagnosis
problems (classification problems) to classify faults among dif-
ferent machines or working conditions [10], [19]. However,
less attention has been paid to domain adaptation for the RUL
prediction, which is a typical time-series regression problem.

To promote the intelligent fault prognosis applications with
unlabeled data, we propose a novel contrastive adversarial do-
main adaptation (CADA) approach for machine RUL prediction
across different working conditions. More specifically, CADA
aims to transfer the knowledge learnt from one working condi-
tion to solve the RUL prediction problem in another working
condition. Generally, adversarial adaptation approaches aim to
find a feature representation of the target domain that can be
invariant from the source domain. The existing deep feature
extractors with its large complexity can find arbitrary transfor-
mation of the target domain that can be similar to the source.
However, only finding domain invariant features does not guar-
antee good performance on the target domain [20], [21]. Specif-
ically, forcing target domain features to be similar to source
domain features with no constrains can remove the target specific
information, i.e., the mutual information between the target
data and the target extracted features, which could hinder the
model performance. To handle this issue, inspired by the noise
contrastive estimation (NCE), we propose a novel approach that
leverages the InfoNCE loss [22] to preserve the structure of the
target domain features during the domain adaptation process.
We jointly optimize the target feature extractor to minimize both
the domain adaptation loss and the InfoNCE loss. Specifically,
the domain adaptation loss guides the target feature extractor to
produce source-like features, and the InfoNCE loss preserves the
target specific features by maximizing the mutual information
between the target input data and the target features. Maximizing
the mutual information between the input space and the feature
space can preserve intrinsic structure of the target data during
domain alignment process, which can boost the performance of

domain adaptation. We have performed extensive experiments
to verify the performance of the proposed CADA method on
machine RUL prediction across different working conditions.

The main contributions of this work are summarized as
follows.

1) We designed a novel adversarial domain adaptation ap-
proach for challenging yet practical machine RUL predic-
tion. This approach successfully transfers knowledge for
RUL prediction from one condition (distribution/domain)
to another.

2) We proposed a novel solution based on the InfoNCE
loss to learn the invariant representation and preserve
the original structure for the target domain. As such,
satisfactory performance for the RUL prediction can be
achieved.

II. RELATED WORKS

In this section, we highlight the related works in data-driven
RUL prediction and domain adaptation.

A. Deep Learning for RUL Prediction

Deep learning approaches for RUL prediction can be cate-
gorized into feed-forward neural networks and recurrent neural
networks [6]. For instance, Zhu et al. [8] used the CNN to extract
features in multiple scales for the detection of the fault growth
and the prediction of the machine RUL [8]. Liu et al. [23]
proposed a CNN network with joint loss to detect fault and
predict RUL concurrently. Deutch and He [9] applied a DBN to
extract features and a deep neural network to predict the RUL.

The recurrent neural network (RNN) with its sequential mod-
eling capability can be more suitable to model dynamic systems.
The LSTM is one of the most popular recurrent approaches
that can model long-term dependencies and tackle vanishing
gradient problems of the RNN. In [11], the authors proposed a
bidirectional LSTM (BiLSTM) approach with auxiliary features
to predict the RUL under multiple operation conditions. Chen et
al. [12] developed an attention-based LSTM approach to adap-
tively select important features, resulting an accurate prediction
of the RUL.

B. Domain Adaptation

Most of RUL prediction methods assume the following: ac-
cess to enough labeled failure information; and training data
(source) and testing data (target) are drawn from the same
distribution. In reality, labeled data can be scarce and marginal
distribution of data can vary according to the variation of work-
ing conditions.

A subset of transfer learning named unsupervised domain
adaptation (DA) is developed to address distribution shift prob-
lem of unlabeled domains. The conventional approaches for DA
reweight source samples according to their similarity with target
samples [24]. While other approaches aim to reduce the domain
shift problem in the feature space by minimizing the divergence
between the source and target features. In [25], the maximum
mean discrepancy (MMD) metric was developed to mitigate
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the domain shift problem. Sun et al. [26] aimed to minimize
the covariance shift between the source and target features to
align the two domains. Recently, adversarial domain adaptation
approaches, which intend to find invariant features in both source
and target domains, have achieved the state-of-the-art perfor-
mance. Inspired by generative adversarial networks (GANs),
adversarial adaptation entails a domain classifier to discern
between the source and target features and a deep network to
extract features that can fool the domain classifier. For instance,
the authors in [27] proposed a reverse gradient (RevGrad) strat-
egy to adversarially train the domain classifier and the feature
extraction network. While in [28], a typical GAN loss was
employed with flipped labels to find domain-invariant features.
Russo et al. [29] proposed a generative domain adaptation
approach to align the source and target domains. Specifically,
they used a bidirectional mapping from source to target and
from target to source, while using self-labeling for the target
domain. Satio et al. [30] aligned distributions of the source and
target domains by designing task-specific decision boundary.
To achieve that, they minimized the maximum discrepancy loss
between two different classifiers for the same sample. Lee et
al. [31] proposed a similar approach, which attempts to replace
the L1_loss term with a new sliced Wasserstien distance. In [32],
a teacher model was employed to generate psoudolabels for the
target domain and align the source and target clusters. In [33],
the authors proposed a new adversarial loss that aims to align
the joint distribution explicitly. Particularly, they introduced a
classifier-aware adaptation method, where the classifier has one
additional neuron for the domain classification task.

Li et al. [34] developed a heterogeneous adaption approach,
where the source and target have different feature space. They
considered both the sample space and feature space for the
domain alignment with the MMD. Then, a graph-based sample
reweighting method was used to transfer knowledge on the
sample space. In [35], a progressive domain alignment approach
has been developed to adapt two heterogeneous domains. Specif-
ically, a shared codebook was employed to align the feature
discrepancy while progressively minimizing the domains dis-
crepancies. In [36], the feature space and the sample space were
jointly adapted to preserve the local consistency among samples.
In [37], the authors designed the maximum density divergence
to enforce clustering assumption while adversarially adapting
the two domains.

In RUL domain, very few works have tried to address knowl-
edge transfer problem among different domains. Zhang et al.
[25] proposed a transfer learning approach for the RUL problem,
where they trained the model on the source dataset and fine tuned
the model on target working condition. Yet, they assumed acces-
sibility to labeled data for the target domain, which cannot hold
for real-world scenarios. Very recently, Costa et al. proposed a
deep domain adaptation (DDA) method for the RUL prediction
problem using unlabeled target domain data. The DDA applied
the LSTM network to extract features and the reverse gradient
approach to alleviate the domain shift problem [26]. Most of
these approaches aim to find a domain-invariant features be-
tween the source and target domains. Yet, simply enforcing the
target features to be similar to the source with no constrains may

remove useful target-specific information in target domain, i.e.,
the mutual information between the target data and the target
extracted feature. This would limit the performance of domain
adaptation for the RUL prediction task.

Differently, in our method, we develop a robust adversarial
domain adaptation approach that can find domain-invariant fea-
tures while preserving the target-specific features. To achieve
that, we propose a novel contrastive loss-based approach to
maximize the mutual information between the input space and
the latent space of the target domain data during the domain
alignment. To the best of our knowledge, the proposed CADA
is the first approach that realizes adversarial domain adaptation
while preserving the target-specific features for RUL prediction.
Specifically, the CADA can find new feature representation of
the target domain data that can be similar to the source and have
maximum mutual information with the target where no labeled
data are available.

III. METHODOLOGY

A. Problem Formulation and Notations

To clearly formulate the problem, we introduce the basic
standard notations of domain adaptation [17]. Let a domainD =
{X , P (X)}, where X is the feature space, X ∈ X , and P (X)
is the marginal distribution of data in this feature space. Given
a labeled source domain DS = {XS , PS(X)} and unlabeled
target domain DT = {XT , PT (X)}, the unsupervised domain
adaptation problem aims to transfer knowledge from the labeled
source to improve the performance on the unlabeled target.
In our problem, DS and DT are both multivariate time-series
data of aircraft engines under different working/fault conditions.
Particularly, we have labeled data from aircraft engines with a
specific working/fault condition, and we aim to improve the
RUL prediction of unlabeled data with different working/fault
conditions. We denote the source domain DS = {Xi

S , y
i
S}nS

i=1,
with nS the total number of samples, where Xi

S ∈ RM×K is
the input source sample with M sensors and K time steps,
yiS ∈ R is the corresponding RUL label. Similarly, the unlabeled
target domain DT = {Xj

T }nT
j=1, where Xj

T ∈ RM×K and nT is
the number of target domain samples. Table I summarizes the
notations used in this article.

B. Overview

Domain adaptation for multivariate time-series regression can
be a very challenging task. Therefore, only few works have been
presented for RUL estimation problems across domains [14].
In this article, we develop a novel CADA approach for the
machine RUL prediction. Specifically, it is able to transfer the
knowledge learned from the data under one condition (labeled
source domain) to the data from another condition (unlabeled
target domain). The proposed CADA can find domain invari-
ant representations of the target domain data while preserving
their intrinsic structure, which is crucial to achieve satisfactory
performance in the target domain.

Fig. 1 shows the overall framework that presents the detailed
steps of learning procedure of the CADA model. The first stage

Authorized licensed use limited to: Nanyang Technological University. Downloaded on May 12,2021 at 10:18:07 UTC from IEEE Xplore.  Restrictions apply. 



5242 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 8, AUGUST 2021

TABLE I
NOTATIONS

Fig. 1. Flowchart of the proposed approach.

involves data preparation for both source and target domains. In
the second stage, the source and target features are extracted by
the source and target encoders, respectively. Given the target
features, the target encoder ET is updated to optimize both
the adversarial loss and the InfoNCE loss. In the last stage,
the trained target feature extractor and the trained source RUL
predictor are combined to predict the RULs for the target domain
data. We will provide a detailed explanation of each module in
the following subsections.

C. Supervised Pretraining on the Source Domain

In this section, we will present our approach that models the
dynamics of multivariate time series and automatically extracts
salient features. In addition, we will provide details about the
RUL prediction network that maps from the latent features to
the RUL.

1) Recurrent Multivariate Modeling: Recurrent-based ap-
proaches are widely adopted for modeling temporal dependen-
cies of time-series data. But RNNs often suffer from the problem
of vanishing gradient with long-term sequences [38]. Alterna-
tively, the LSTM, which is a strong variant of the RNN can
handle long-term dependencies and tackle vanishing gradient
problem. In this work, we design a very deep bidirectional
LSTM network with five successive layers for automatic and
representative feature extraction. The LSTM feature extractor

Fig. 2. Deep BiLSTM feature extractor.

Fig. 3. Structure of an LSTM cell.

represents the multivariate time series to a single-vector hid-
den representation as shown in Fig. 2. Specifically, the LSTM
network can be represented as multiple sequential feed-forward
layers. The transition function between these layers is a key
function to model the temporal dependence along the data, which
can be formulated as follows:

hk, ck = Hcell(xk,hk−1, ck−1) (1)

where Hcell receives the current input xk, the previous hidden
hk−1, and the previous memory cell ck−1. The output will be the
updated hiddenhk and cellck at the current time step as shown in
Fig. 3. The following equations formalize the transition function
of the LSTM cell at time step k as

ik = σ(Vixk +Wihk−1 + bi) (2)

ek = σ(Vexk +Wehk−1 + be) (3)

fk = σ(Vfxk +Wfhk−1 + bf ) (4)

gk = δ(Vgxk +Wghk−1 + bg) (5)

ck = ek � ck−1 + ik � gk (6)

hk = fk � δ(ck) (7)
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Fig. 4. Proposed CADA approach.

whereσ and δ represent nonlinear activation functions of logistic
sigmoid and hyperbolic tangent, respectively, xk ∈ RM , the
V∗ ∈ RM×d and W∗ ∈ Rd×d are shared model weights. The
operator � represents the element-wise multiplication.

2) RUL Prediction Network: Given the extracted features
from the LSTM feature extractor fS = ES(XS). The RUL pre-
dictor is a multilayer network R : Rd → R that maps the latent
features into the corresponding RUL value. The RUL predictorR
and the feature extractorES are trained in an end-to-end manner
using the mean square error loss between the predicted RULs
and the true RULs, which can be formalized as follows:

Lmse =
1
nS

nS∑
i=1

(ŷ
(i)
S − y

(i)
S )2 (8)

where ŷS = R(ES(XS) is the predicted RUL label, yS is the
ground-truth RUL values, and nS is the number of source
samples.

D. Contrastive Adversarial Domain Alignment (CADA)

The contrastive adversarial adaption module consists of a
domain discriminator D and the InfoNCE module as shown in
Fig. 4. First, the weights of the trained source feature extractor
are adopted to initialize the target feature extractor. The output
features from both the source and target domains are fed into an
adversarial discriminator network to minimize the discrepancy.
Concurrently, the target features are fed into the InfoNCE loss
module to preserve the target specific features during the align-
ment process. In particular, the InfoNCE loss will maximize
the mutual information between the target domain inputs and
the target domain features to preserve task-specific information.
Algorithm 1 shows the formal procedure of our CADA approach.
The domain discriminator network that encourages the source
and target features to be domain invariant. While the contrastive
estimation module maximizes the mutual information between
the learned target domain features and the input target domain
data to preserve the task-specific features during the adversarial
alignment process. Detailed procedures are presented in the
following paragraphs.

1) Adversarial Adaptation Module: Let ES and RS be the
source-trained LSTM feature extractor and the RUL predictor,
respectively. To predict the RUL labels of the unlabeled target

Algorithm 1: Contrastive Adversarial Domain Adaptation.

Input: Source domain: DS = {Xi
S , y

i
S}nS

i=1
Target domain:DT = {Xi

T }nT
i=1

Output: Trained target encoder ET

ES ← Trained source encoder
ET ← Initialize with Es parameters
D ← Domain Discriminator
for number of iterations do

1. Sample minibatch of m source samples XS ∼ PS

2. Sample minibatch of m target samples XT ∼ PT

3. Extract source features: fS = ES(XS)
4. Extract target features: fT = ET (XT )
5. Feed fS and fT to D
6. Compute adversarial loss Ladv by (9)
7. Update D by Ladv

8. Compute InfoNCE loss LInfoNCE based on
Algorithm 2

9. Update ET by L = LE + λLInfoNCE

end

domain data, we can naively initialize our target model (i.e., ET

and RT ) with pretrained source models. However, due to the
large discrepancy among the data from different working/fault
conditions, the model can fail to predict RUL accurately. To
tackle this domain discrepancy problem, we adversarially train
the LSTM feature extractor against a domain discriminator
network to minimize the distribution differences between the
source features and the target features. Specifically, the domain
discriminator networkD is trained to discern between the source
and target features. Concurrently, we train the target feature
extractor ET to produce target features such that the domain
discriminator network cannot distinguish them from the source
features. The adversarial training between the discriminator
network D and the target ET can be expressed as follows:

min
ET

max
D
Ladv = EXs∼PS

[logD(ES(XS))]

+ EXT∼PT
[log(1−D(ET (XT )))] (9)

where XS and XT are the source and target samples, respec-
tively. The target feature extractor ET is updated to minimize
Ladv, and the discriminator network D is adversarially trained to
maximize Ladv. Eventually, the trained target feature extractor
ET will be able to extract features fT that have minimum
discrepancy from the source features.

2) Contrastive Estimation Module: Adversarial domain
adaptation can successfully find target domain features that
are invariant from the source features. However, it can remove
task-specific information from the target features to minimize
the adversarial loss, which can deteriorate the performance on
the target domain—even with perfect domain alignment. Hence,
it is required to preserve target-specific features during the
domain alignment task. To achieve that, we rely on InfoNCE
loss [22] to maximize the mutual information between the
encoded representations of the target domain and the original
inputs, as shown in Algorithm 2. Given a sample XT ∼ XT ,
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Algorithm 2: Contrastive Loss.

Input: XT = {x1, . . . ,xK}, fT = ET (XT )
Output: Contrastive loss LInfoNCE

Θk ← Linear layer at timestep k
for K timesteps do

1. qk ← ΘkfT
2. Apply φk(xk,q

ᵀ
k) as in (11)

3. Compute LInfoNCE using (12)
end
return LInfoNCE

Fig. 5. Computation of InfoNCE loss at time step k=1.

where XT ∈ RM×K , we apply the target encoder ET on XT to
obtain its corresponding feature representation fT = ET (XT ).
To model the mutual information between xk, and fT , following
the previous studies [39], we define a density ratio function φk

at each time step, which is formalized as follows:

φk(xk; fT ) ∝ p(xk|fT )
p(xk)

. (10)

By maximizing the mutual between the latent target features fT
and the input xk, we can preserve the common latent variables
between the target features fT and the input xk. To compute
φk, the latent features fT and the input xk should be mapped to
the same dimension. To achieve that, we use a fully connected
network Θ : Rd → RM that maps feature dimension d to input
dimension M . Thereafter, the density ratio φk is estimated by
a dot product between the transformed features qk = Θk(fT )
and the original input xk, which can be compactly represented
as follows:

φk(xk, fT ) = xᵀ
kqk (11)

where Θk = {θ1, . . ., θM} are the weights of a fully connected
layer at time step k. Note that Θk is different among the time
steps.

To maximize the density ratio function, we jointly optimize
the target feature extractor ET and the fully connected layers
Θ using the contrastive estimation loss. The InfoNCE loss
maximizes the mutual information by contrasting between the
positive and negative samples. Fig. 5 illustrates the positive and
negative samples for time step k = 1. The overall InfoNCE loss
can be formulated as

min
ET ,Θ

LInfoNCE = − E
XT

[
log

eφk(xk,fT )∑
xj∈XT

eφk(xj ,fT )

]
. (12)

The optimal probability of the NCE loss p(d = k|XT , fT ) can
be formulated as

p (d = k|XT , fT ) =
p (xk|fT )

∏
l 	=k p (xl)∑K

j=1 p (xj |fT )
∏

l 	=j p (xl)
(13)

=

p(xk |fT )
p(xk)∑K

j=1
p(xj |fT )
p(xj)

. (14)

By substituting (12) into the aforementioned equations, we
can formalize the mutual information in terms of the InfoNCE
loss LInfoNCE, detailed derivation can be found in [39]. The
resulting formula can be written as

I(xk, fT ) = log(K)− LInfoNCE (15)

where I(·) represents the mutual information between xk and
fT . It can be seen that minimizing InfoNCE loss is maximizing
the lower bound of I(xk, fT ), which in turn maximizing the
mutual information.

3) Overall Loss Function: In this work, the adversarial adap-
tation loss and contrastive estimation loss are jointly optimized
in an end-to-end manner. The total domain alignment loss can
be summarized as follows:

min
ET ,Θ

max
D

V (D,ET ,Θ)

= Ladv + λLInfoNCE

= EXS∼pS
[logD (fS)]

+ EXT∼pT

[
log (1−D (fT ))− λ log

eφk (xk, fT )∑
xj∈XT

eφk(xj ,fT )

]

(16)

where Ladv is the adversarial loss, LNCE is the contrastive
estimation loss, and λ is a weight parameter that controls the
proportion of learning domain-invariant features and preserving
task-specific information.

IV. EXPERIMENTS AND RESULTS

A. Preparation of Data

To evaluate the performance of our approach, we employ
the popular C-MAPSS [40] benchmark dataset that describes
the run-to-fail experiments of aeroengines shown in Fig. 8. It
contains four different subsets, namely FD001, FD002, FD003,
and FD004, which differ in terms of working conditions, fault
modes, life spans, and number of engines, as shown in Table II.
Particularly, “# Training engines” represents the number of
available engines to train the model, while “# Testing engines”
represents the number engines available for testing. “# Training
samples” is the total number of training samples per data subset.
“# Testing samples” is the total number of testing samples per
data subset. “# Max life span” is the maximal number of cycles
that an engine takes to go from healthy to the failure condition. “#
Operating conditions” represents the number of operating con-
ditions. “# Fault types” represents the number of failure modes
occurblue. Particularly, we take the scenario FD001→FD002 as
an example. We use both the training samples of FD001 (17731
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TABLE II
PROPERTIES OF C-MAPSS DATASET

Fig. 6. Readings of 21 sensors for a randomly selected engine in
FD001 dataset.

samples with labels) and FD002 (48558 samples without labels)
to train our CADA model.

Different types of sensors have been used to monitor rotating
components of each engine. Here, we briefly introduce our
procedure for data processing. First, we select sensors that are
informative for RUL prediction, following the previous stud-
ies [11], [12]. The informative sensors are those sensors that
can show clear degradation trend from run to failure. Here,
we visualize the sensor readings of the randomly selected en-
gines. Figs. 6 and 7 show the sensor readings from FD001 and
FD002 subsets, respectively. Clearly, some sensors are almost
constant during the whole degradation, which can hinder the
model from correctly modeling the deterioration process. In the
cross-domain problem, we intend to transfer the knowledge from
a source data subset (e.g., FD001) to a target data subset (e.g.,
FD002). Thus, we only select the common sensors among source
and target domains that are the most informative ones. Following
this strategy, we have selected the following sensors, i.e., S2, S3,
S4, S7, S8, S9, S11, S12, S13, S14, S15, S17, S20, and S21.

Second, the same type of sensors may have quite different
readings under different working conditions. To reduce the effect
of working conditions, we apply the Min–Max normalization
with respect to each working condition. As such, the data under
different working conditions are normalized into the range of
[0,1]. Third, we apply sliding windows to generate data samples

Fig. 7. Readings of 21 sensors for a randomly selected engine in
FD002 dataset.

Fig. 8. Diagram of the engines in C-MAPSS dataset [40].

from run-to-fail cycles. Following previous studies [11], [12], we
set the window size and the step size as 30 and 1, respectively.
Moreover, a piece-wise linear RUL [2] is adopted instead of the
true RUL, i.e., if the true RUL is larger than the maximal RUL,
then it is set to the maximal RUL.

B. Experimental Settings

Our CADA approach consists of the following five main mod-
els: Source feature extractor (ES), target feature extractor (ET ),
RUL predictor (R), domain discriminator (D), and InfoNCE
module. A detailed structure of each model has been shown
in Fig. 4. Specifically, the source and target feature extractors
are deep BiLSTM networks with five layers, where each layer
has 32 neurons. The discriminator is composed of three fully
connected (FC) layers with 64, 32, and 1 hidden neurons. The
RUL predictor also consists of three FC layers, i.e., hidden
layer 1 with 32 neurons, hidden layer 2 with 16 neurons, and
output layer with a single neuron. Each layer is followed by a
nonlinear activation function called rectified linear unit (ReLU)
and the dropout regularization technique to relieve the overfitting
problem. The detailed architecture of the RUL predictor is shown
in Fig. 9.

To train our model, we adopt the minibatch training with a
batch size of 256. To reduce overfitting, dropout regularization
is adopted across the whole structure and the dropout ratio is set
to be 0.5. We use an Adam optimizer to minimize the joint loss
with the learning rate of 0.5e-4 for the feature extractor and the
domain discriminator. As the InfoNCE module is trained from
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TABLE III
COMPARISON OF THE PROPOSED METHOD AGAINST STATE-OF-THE-ART APPROACHES

The bold entities represent the best performance among each cross-domain scenario.

Fig. 9. Detailed architecture of the RUL predictor network.

scratch during the alignment process, we apply larger learning
rate of 1e-2. The training epochs range from 20 to 150 epochs.
The weight of the InfoNCE loss λ can vary across different
cross-domain scenarios and later we will show its effect on the
prediction performance through a sensitivity analysis.

To quantify the performance of models, we adopt two eval-
uation metrics, i.e., root mean square error (RMSE) and score
metric, as in [11] and [14]. The RMSE metric is defined as
follows:

RMSE =

√√√√ 1
N

N∑
i=1

(ŷi − yi) (17)

where ŷi and yi represent the predicted RUL and ground-truth
RUL, respectively.

The RMSE metric treats the early and late RUL predictions
equally. For prognostics applications, late RUL prediction can
be more harmful to the systems. To handle this issue, the score
metric is used to impose bitter penalty for late RUL predictions.
It can be formalized as follows:

Score =

{
1
N

∑N
i=1(e

ŷi−yi
13 −1), if (ŷi < yi)

1
N

∑N
i=1(e

ŷi−yi
10 −1), if (ŷi > yi).

(18)

C. Comparison With State-of-the-Art Methods

To evaluate our approach in cross-domain scenarios, we train
the model using a labeled source domain (e.g., FD001) and
evaluate on an unlabeled target domain (e.g., FD002, FD003,
or FD004). As we have four subdatasets (i.e., domains), we thus
have 12 cross-domain scenarios. In this article, we implement
five state-of-the-art approaches as follows. In addition, we re-
port the average performance (i.e., RMSE and Score) over five
consecutive runs with different random seeds.

1) Correlation alignment (CORAL) [26]: CORAL mini-
mizes the covariance shift between the source and target
features to align the distribution.

2) Deep domain confusion (DDC) [25]: DDC employs a
distance metric called MMD to confuse the source and
target features.

3) Wasserstein distance guided representation learning
(WDGRL) [41]: WDGRL employs a neural network to
measure the empirical Wasserstein distance, while utiliz-
ing the feature extractor network to minimize this distance
between the source and target domain.

4) Adversarial discriminative domain adaption
(ADDA) [28]: ADDA uses a typical GAN loss to
find target domain features that can be similar to the
source features.

5) Deep domain adaptation (DDARUL) [14]: In DDARUL,
an LSTM feature extractor is trained to confuse the source
and target domains, while a domain classifier network is
trained to classify between the source and target features.

Table III shows the experimental results. The CADA outper-
forms all the competing approaches across the 12 cross-domain
scenarios in terms of both RMSE and Score. In addition, we
observe that knowledge transfer between simple and complex
datasets is challenging due to the large domain shift, yet our
CADA can successfully align the two distant domains. For
example, FD001 and FD004 are the simplest and most complex
data subsets, respectively. As shown in Table III, simply forcing
the features to be similar among these two datasets can signif-
icantly harm the performance. Overall, we achieve significant
improvement over the second best approach (underlined) in
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TABLE IV
ABLATION STUDY OF THE PROPOSED APPROACH

The bold entities represent the best performance among each cross-domain scenario.

Fig. 10. Experimental results with different λ values for 12
cross-domain scenarios.

each scenario with an average of more than 21% and 38% for
RMSE and Score, respectively. Our domain adaptation strategy
can preserve task-specific information and our proposed deep
feature extractor has large generalization capability, leading to
the superior performance of our proposed CADA.

D. Model Ablation Study

Here, we perform our ablation study to verify the contribution
of individual components in our CADA approach. We derive two
variants of CADA, namely, “Source-Only” and “w/o InfoNCE”.
In particular, “Source-Only” refers to the nonadapted version of
our model, whereas the “w/o InfoNCE” is our adversarial adap-
tation approach without using the contrastive estimation loss.

Table IV shows the comparison between the CADA and its
two variants. We observe that the “Source-Only” has the worst
performance, indicating that the big gap between the source and
target domain data distributions. The proposed CADA method
outperforms the one without the InfoNCE loss in most of cases,

TABLE V
VALUES OF λ AND THE NUMBER OF LSTM LAYERS FOR

DIFFERENT SCENARIOS

Fig. 11. Experimental results with different number of LSTM layers for
12 cross-domain scenarios.

which signifies the effectiveness of the InfoNCE loss on domain
adaptation-based RUL prediction.

E. Sensitivity Analysis

1) Coefficient of the InfoNCE Loss λ: In this section, we
investigate the sensitivity of the proposed CADA with respect
to the coefficient of the InfoNCE loss λ. We have conducted
experiments with λ varying from 0.001 to 1.0 for the 12 cross-
domain scenarios. The results are shown in Fig. 10. It can be
found that different scenarios may require different λ to boost
the performance. Table V summarizes the selected λ values for
the 12 cross-domain scenarios in experiments.

2) Number of LSTM Layers: Another important hyperpa-
rameter for the proposed method is the number of LSTM layers.
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We have investigated the model performance with different num-
ber of LSTM layers, i.e., 1, 3, 5, and 7, in order to find a balance
between the model performance and the training time. Fig. 11
shows the experimental results. We can find that the proposed
method with five layers can achieve the best performance in most
of scenarios. However, some scenarios require fewer layers to
obtain a better or comparable performance. For example, for the
scenario FD004–>FD003, the method with seven LSTM layers
performs the best. However, the performance of the method with
one LSTM layer is comparable to the best performance, but
much more efficient. In this case, using a single LSTM layer
is more reasonable when considering the balance between the
performance and the efficiency of the algorithm. Table V shows
the selected number of LSTM layers for each cross-domain
scenario.

V. CONCLUSION

In this article, we proposed a novel CADA approach that can
automatically find domain-invariant features while preserving
domain-specific information for the machine RUL prediction.
The proposed CADA method was built upon the adversarial
domain adaptation architecture with the novel InfoNCE loss. We
performed extensive experiments to verify the effectiveness of
the CADA method. More specifically, a detailed comparison was
made with five state-of-the-art approaches for domain adaptation
in RUL prediction. Our experimental results showed that the
proposed CADA method significantly outperforms all the state-
of-the-arts. Moreover, we also conducted ablation study to show
the effectiveness of the InfoNCE loss when performing domain
adaptation.
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