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WiCAU: Comprehensive Partial Adaptation with
Uncertainty-aware for WiFi-based

Cross-environment Activity Recognition
Wei Cui, Keyu Wu, Min Wu, Xiaoli Li, and Zhenghua Chen*

Abstract—Recently, WiFi-based human activity recognition
(HAR) has emerged as a promising technique for human-
computer interactions, owing to its widespread availability and
non-invasiveness. However, deploying WiFi-based HAR systems
in new environments often results in performance degradation.
Existing WiFi-based HAR systems across different environments
typically assume identical category spaces between the source
and target, an assumption challenged by practical scenarios. In
this paper, we present WiCAU, a comprehensive adaptation with
uncertainty-awareness for WiFi-based HAR across environments,
designed to tackle the challenges of environments with unequal
category spaces—a scenario known as Partial Domain Adaptation
(PDA). Different from conventional PDA methods that usually
focus on training the feature extractor to align feature distribu-
tions or implement separate reweighting models to adjust source
domain feature weights, WiCAU integrates feature alignment and
source data reweighting to mitigate the risk of negative transfer.
It also introduces an uncertain complement entropy to effectively
handle uncertainty within the source environment. Moreover,
WiCAU employs a hybrid network that combines wavelet analysis
with deep neural networks to capture both the temporal and
spatial dynamics present in WiFi Channel State Information
(CSI) data. WiCAU’s superior performance in PDA scenarios
for HAR is demonstrated through comprehensive experiments
with both self-built and publicly available datasets.

Index Terms—Human Activity Recognition, Channel State In-
formation, WiFi, Partial Domain Adaptation, Negative Transfer.

I. INTRODUCTION

Accurate and efficient human activity recognition (HAR) is
crucial for facilitating personalized and context-aware services
within human-computer interaction. It can be utilized in a
wide range of applications, including healthcare monitoring,
assisted living, and smart homes. As a result, HAR has
garnered significant attention in recent years [1].

Numerous techniques have been proposed for HAR, involv-
ing diverse modalities such as visual images, wearable sensors,
and wireless signals [2], [3]. Among these, WiFi-based HAR
has garnered significant attention due to its distinct advantages,
including device-free sensing and privacy preservation [4], [5].
WiFi-based HAR leverages the ubiquitous WiFi infrastructures
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to capture and analyze variations in WiFi signals introduced by
human activities [6]. Unlike wearable sensors that require in-
dividuals to carry devices, WiFi-based methods enable activity
recognition in a device-free manner. Moreover, WiFi signals
can penetrate walls and other obstacles, allowing for the cap-
ture of activity information without directly capturing visual
or personal identifying details of individuals. Consequently,
WiFi-based HAR offers an additional advantage in terms of
privacy preservation.

To effectively analyze changes in WiFi signal characteristics
and classify activities, existing WiFi-based HAR techniques
employ various machine learning techniques such as support
vector machine, hidden markov model (HMM), random forest
(RF), as well as deep learning techniques such as the convo-
lutional neural network (CNN) and recurrent neural network
(RNN) [7]. These algorithms are utilized to learn complicated
patterns and relationships present in the extracted features
derived from WiFi signals, enabling activity classification.

However, in wireless-based HAR, the same behavior per-
formed in different environments can have distinct data
distributions due to environmental variations. This poses a
challenge for traditional WiFi-based recognition approaches,
leading to reduced performance and accuracy across diverse
environments. To address this challenge, domain adaptation
algorithms have been developed to mitigate the effects of
environment-specific variations and improve the generalization
capability of behavior recognition models. Nevertheless, tradi-
tional domain adaptation (DA) methods in WiFi-based HAR
rely on aligning the labeled source domain samples with the
unlabeled target domain samples, assuming that both domains
share the same category space. However, achieving identical
category spaces between two domains in practical WiFi-based
HAR scenarios is often unrealistic, particularly when the target
domain represents only a subset of the classes present in the
source domain. This situation is known as the Partial Domain
Adaptation (PDA) problem. The presence of the PDA problem
poses a significant challenge when using traditional domain
adaptation approaches to address the domain shift in WiFi-
based activity recognition, as these techniques may struggle to
effectively adapt the models due to the mismatch in category
spaces between the domains. Consequently, the performance
of the activity recognition system may be degraded.

Typically, PDA presents additional challenges compared to
regular closed-set domain adaptation due to the presence of
categories that exist exclusively in the source domain. This
situation causes a feature mismatch when aligning distribu-
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tions, leading to negative transfer and degrading the learning
performance of the target domain. In order to address the
problem of negative transfer, current PDA methods commonly
employ reweighting strategies on the source domain sample to
reduce the influence of source-only classes. These methods
train the feature extractor using a reweighted distribution
alignment loss defined on the target and reweighted source
data. However, these reweighted feature distribution align-
ment methods lack robustness in handling the uncertainties
associated with source data weights, potentially assigning
non-zero weights to source-only-class data in the alignment
losses. Moreover, previous PDA methods have predominantly
focused on enhancing feature transferability by developing
various domain alignment strategies, often overlooking the
aspect of feature discriminability. These methods typically
rely on conventional cross-entropy loss in the labeled source
domain to learn features. However, these approaches can
introduce confusion and uncertainty propagation issues in the
target domain, as the source classes are not equally separated
from each other [8]. Furthermore, existing PDA methods are
primarily designed for the computer vision domain and do not
fully leverage the specific features provided by WiFi-based
HAR, such as temporal and spatial Channel state information
(CSI) data of WiFi. These features are essential for accurately
recognizing human activities in WiFi signals.

In this paper, we propose WiCAU (Comprehensive Adap-
tation with Uncertainty-aware), a novel approach for WiFi-
based HAR that addresses the challenges of domain shift and
uncertainty propagation when adapting to the target domain.
Specifically, in contrast to traditional PDA methods that either
align feature distributions or employ separate reweighting
models, our proposed approach takes a comprehensive ap-
proach. We simultaneously adapt the feature extractor and
reweight the source domain data features to reduce the negative
transfer and improve the adaptability of the model.

Furthermore, to tackle the issue of uncertainty propagation
in the source domain, we introduce an uncertain complement
entropy. This entropy measure takes into account the uncer-
tainty present in the source domain data and helps improve the
classification performance of the model during the adaptation
process. By addressing uncertainty propagation, our approach
enhances the model’s robustness and accuracy in recognizing
activities in the target domain. Additionally, to exploit the
temporal and spatial relations in the CSI data, we introduce
an integrated network that combines wavelet and deep neural
network architectures as the feature extractor. This integration
allows us to effectively capture and utilize the rich information
present in CSI data. The proposed WiCAU can be applied in
various practical domains, including human-computer interac-
tion, security and surveillance, and smart living. For example,
WiCAU can be used to monitor individuals’ daily activities
and optimize energy usage and automation in smart homes
by adjusting lighting, temperature, and security systems in
response to occupants’ activities. The proposed WiCAU en-
ables health monitoring across varying environments, ensuring
accurate human activity recognition even when the available
labeled data only partially aligns with the target domain. To
sum up, this paper makes the following contributions:

(1) We develop the WiCAU method, which comprehensively
addresses the challenges of negative transfer and uncer-
tainty propagation in WiFi-based HAR by jointly align-
ing feature distributions, optimizing source domain data
weights, and incorporating the uncertain complement en-
tropy.

(2) We introduce an integrated network that combines wavelet
analysis and deep neural networks to capture the infor-
mation inherent in CSI data. By leveraging the comple-
mentary strengths of both, our approach can improve the
performance of CSI-based HAR systems.

(3) We perform extensive experiments on various datasets,
using diverse datasets, including both self-created and
publicly accessible WiFi-based HAR datasets. The ex-
perimental results show the efficiency of our proposed
approach, achieving state-of-the-art performance in HAR
tasks.

II. RELATED WORK

A. Cross-domain WiFi-based HAR
In recent years, WiFi-based HAR has witnessed significant

advancements through the application of various deep learn-
ing methodologies, including CNNs, RNNs, and transformer
architectures. These techniques have proven to be adept at
automatically extracting features from fine-gained CSI data,
offering a promising avenue for WiFi-based HAR research.
Deng et al. introduced a residual module coupled with depth-
wise separable convolution in their work [9]. Meanwhile,
the Long Short-Term Memory (LSTM), renowned for its
capacity to model temporal dependencies, found utility in
HAR tasks leveraging WiFi CSI data [10]. Yang et al. designed
a WiFi-based gesture recognition model, fusing the strengths
of CNNs and RNNs [11]. Their approach used CNNs to
extract spatial features while employing RNNs to capture the
temporal dynamics in gestures. Similarly, Wang et al. explored
the fusion of CNN and LSTM to achieve reliable activity
recognition using CSI [12]. Zou et al. introduced an AE-
LRCN framework [13], which incorporates an autoencoder
module, a CNN module, and an LSTM module for WiFi-based
HAR. Furthermore, they explored EfficientFi using a quantized
representation learning framework to reduce communication
overhead for WiFi-based HAR. Zhang et al. [6] introduced a
fusion deep model that integrates semantic features extracted
from CNN with temporal features derived from bidirectional
gated recurrent units (BGRU). Li et al. employed transformer
architectures for WiFi-based HAR, presenting the Two-stream
Convolution Augmented Human Activity Transformer (THAT)
model [14].

Though deep learning models exhibit strong fitting capac-
ities, these WiFi-based HAR models using these techniques
often perform well within well-defined domains but degrade
when confronted with new and varying environments. This
limitation stems from WiFi-based HAR environments that
may undergo significant dynamics, leading to the challenge of
domain shifts. To address this issue, domain-adaptive methods
for WiFi-based HAR have been proposed. Pioneering efforts
[15], [16], [17] mainly adopted the adversarial training frame-
work as a means to address the domain shift. These approaches
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operate on the premise that unlabeled data can be accessed
within the target domain. These approaches have proven to
be effective in mitigating the influence of domain-specific
variations. However, it has been observed by Zhou et al. [18]
that these methods do not use the entirety of the available
data. Typically, they either concentrate on unlabeled data or
labeled data within the target domain. To address this limi-
tation, they introduced the Target-Oriented Semi-Supervised
(TOSS) domain adaptation approach for WiFi-based HAR.
This approach employs both labeled and unlabeled data in
the target domain. It’s noteworthy that the aforementioned
methods primarily focus on addressing closed-set domain
adaptation, thus overlooking the partial domain adaptation
scenarios in WiFi-based HAR.

B. Partial Domain Adaptation

Domain adaptation in transfer learning aims to minimize the
discrepancy between source and target domains by learning
domain-invariant features, thereby reducing the labeling cost
in the target domain. Approaches can be categorized into
two types: statistical feature-based methods and adversarial-
based methods. Statistical feature-based methods utilize tech-
niques such as maximum mean discrepancy (MMD) [19],
[20] or higher-order moment matching [21], [22] to align the
distributions between domains. Adversarial-based methods,
on the other hand, employ domain discriminators to train
feature extractors that confuse domain differentiation, enabling
the capture of domain-invariant representations for effective
knowledge transfer [23], [24].

However, in more realistic and general scenarios of DA, it
is common to encounter situations where the label space of the
target domain is a subset of the source domain. This setting
also is referred to as PDA. The pioneering work by Hsu et
al. [25] tackles the challenge of imbalanced scenarios, where
there exists a discrepancy in the label distribution between
the source and target domains. This work has paved the way
for subsequent research in this field. The Selective Adver-
sarial Network (SAN) proposed by Cao et al. [26] tackles
the challenge by employing a multi-discriminator approach.
It assigns weights to different discriminators, allowing for
selective emphasis on source-only classes during the adap-
tation process. In contrast, Importance Weighted Adversarial
Nets (IWAN) [27] employs a single domain discriminator
and assigns weights to each source sample based on its
probability of belonging to the target domain. Similarly, the
Deep Residual Correction Network (DRCN) introduced by Li
et al. [28] presents a weighted class-wise matching approach
that aims to align the target data with the most relevant
classes in the source domain. The Example Transfer Network
(ETN) proposed by Cao et al. [29] takes a distinct approach
by simultaneously learning domain-invariant representations
across domains. ETN employs a weighting strategy to as-
sess the transferability of source examples. Previous methods
often match the entire source domain to the target domain,
leading to negative transfer due to the presence of source-
negative classes that do not exist in the target domain. To
address this issue, Discriminative Partial Domain Adversarial

Network (DPDAN) [30] introduces a hard binary weighting
algorithm. This algorithm assigns high weights to positive
classes and near-zero weights to negative classes, effectively
reducing negative transfer. In a similar vein, Gu et al. [31]
proposed an Adversarial Reweighting (AR) approach that
utilizes adversarial learning to determine the weights of the
source domain data. Moreover, Balanced and Uncertainty-
Aware Approach for Partial Domain Adaptation (BA3US) [8]
tackles the challenge of asymmetric label distributions by
augmenting the target domain and effectively transforming it
into a problem resembling unsupervised domain adaptation
(UDA). In general, the PDA methods mentioned above either
focus on training the feature extractor to align the feature
distributions of the reweighted source and target domain
data or employ a separate reweighting model to adjust the
weights of the source domain data features. In comparison,
our proposed method takes a comprehensive approach by
simultaneously adapting the feature extractor and reweighting
the source domain data features. This dual strategy aims to
effectively reduce the negative transfer in PDA by jointly
aligning the feature distributions and optimizing the weights
of the source domain data.

III. PROPOSED COMPREHENSIVE ADAPTATION

In this section, we provide a detailed explanation of the
WiCAU framework. We begin by introducing the definitions
and notations used in the PDA scenarios for WiFi-based HAR.

A. Channel State Information

We employ CSI measurements as our wireless input data.
CSI provides detailed channel information between the WiFi
transmitter and receiver, offering fine-grained information for
analysis. In an Orthogonal Frequency Division Multiplexing
(OFDM) system, the transmission channel typically com-
prises multiple subcarriers. Considering a scenario with Nt

transmitters and Nr receivers, and each channel containing
Nk subcarriers, the channel model for the k-th subcarrier is
expressed as:

b = xk × a+ n (1)

where b ∈ CNr represents the received wireless signal vectors,
a ∈ CNt denotes the corresponding transmitted wireless signal
vectors, and n represents additive white gaussian noise. The
channel matrix for the k-th subcarrier is denoted as xk ∈
CNt×Nr . The complete CSI can be represented as a multi-
dimensional matrix x ∈ CNt×Nr×Nk .

B. Problem Setting

We are given a labeled dataset Ds = {xs
i , y

s
i }n

s

i=1, x
s ∈ Rd

in the source environment, where xs
i ∈ Rd represents the

collected CSI data and ysi ∈ Ys indicates the corresponding
activity label for xs

i . Additionally, we have an unlabeled target
environment dataset Dt = {xt

j}n
t

j=1, where xt
j ∈ Rd represents

the collected wireless signals in the target environment. It is
important to note that the label space for the target environ-
ment, denoted as Yt, is a subset of the label space for the
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source environment, i.e., Yt ⊂ Ys. This is in contrast to the
closed-set domain adaptation setting where Yt = Ys. Our aim
is to learn a deep neural network to predict the activity yt ∈ Yt

of the corresponding CSI data xt in the new environment.
In Partial Domain Adaptation, wireless-based HAR encoun-

ters the challenge of negative transfer. This challenge arises
from the discrepancy in joint distributions, particularly in
the asymmetry of marginal label distributions within PDA.
This asymmetry exposes source-only classes to the risk of
being inappropriately matched with target classes, thereby
creating negative transfer. To address this issue, popular PDA
methods frequently employ re-weighting mechanisms to dif-
ferentiate source-only classes and facilitate positive trans-
fer across shared classes between domains. Conventionally,
PDA solutions have focused on aligning feature distributions
through the adaptation of the feature extractor. However, in
situations where the domain discrepancy is significant, the
predictions from the source classifier on target domain data
can exhibit uncertainty. This uncertainty can lead to non-
zero probabilities of classifying target data as source-only
classes. Consequently, re-weighting source classes based on
classifier outputs may inadvertently introduce “noisy” weights.
As noise levels increase, alignment performance, as measured
by alignment losses, diminishes markedly and can even lead
to significantly degraded results.

To address this challenge, we introduce a novel compre-
hensive adaptation approach. This approach not only involves
adapting the feature extractor through reweighted distribution
alignment but also aligns the distributions of source and
target domain features using adversarial learning. The overall
framework is depicted in Fig. 1, comprising four key modules:
a shared feature extractor F , a reweighting model W , a
classifier C, and a domain discriminator Da for adapting the
feature extractor.

C. Feature Distribution Alignment with Reweighting Model

As mentioned in [29], source domain data that belongs to
the shared class yt exhibits closer proximity to target domain
data compared to those from the source-only class ys/ yt. In
order to reduce the influence of source-only data, our approach
introduces a weight learning mechanism by maximizing the
similarity between the weighted source domain distribution
and the target domain distribution. This weight learning pro-
cess is realized through adversarial learning, involving inter-
actions between a domain discriminator Dr and the similarity
measurement, as illustrated in Fig. 1.

Within the reweighting model, the domain discriminator
Dr is characterized by its parameters θdr , and the domain-
shared feature extractor F is parameterized by θf . This
feature extractor yields extracted features, zsi = F (xs

i ; θf )
and ztj = F (xt

j ; θf ), derived from source and target wire-
less signals, respectively. The empirical distribution of target
domain data is expressed as Pt = 1

nt

∑nt

j=1 δ(z
t
j), wherein

δ(·) signifies the Dirac delta function. Our approach involves
weights, denoted as w = {w1, w2, · · · , wns}T , which specify
the relative significance of source domain data, subject to
the constraint

∑ns

i=1 wi = ns. These weights facilitate the

creation of a reweighted source domain distribution, Ps =
1
ns

∑ns

i=1 wiδ(z
s
i ). To quantify the similarity between source

and target probability distributions, we adopt the Wasserstein
distance [32], chosen for its superior continuity in distri-
bution learning. The Wasserstein distance is represented as
W (Ps, Pt) = minπ∈Π E(Ps,Pt)∼π||Ps − Pt||, where ∥ · ∥
denotes the l2 norm, and Π signifies the set of couplings of Ps

and Pt. We learn the weights w by maximizing the similarity
between the reweighted source feature distribution Ps and the
target feature distribution Pt, namely,

max
w

(
1−W (P s(w), P t)

)
(2)

In parallel, we employ adversarial training where the weights
w remain fixed, while the domain discriminator within
reweighting model Dr is trained to minimize its average
output on the target domain, while maximizing its average
output on the source domain, thereby distinguishing the source
and target domains, which can be defined as:

min
θdr

 1

ns

ns∑
i=1

wilog [1−Dr(z
s
i )] +

1

nt

nt∑
j=1

log
[
Dr(z

t
j)
]

(3)
This optimization process ensures that the weights w are
learned to maximize feature distribution similarity while the
domain discriminator within reweighting model Dr distin-
guishes between source and target domains effectively.

D. Adapting Feature Extractor by Reweighted Distribution
Alignment

In addition to aligning the source weighted feature distri-
bution with the target feature distribution, our approach also
involves adapting the feature extractor through reweighted
distribution alignment. This process is illustrated in Fig. 1.
The weighted features, derived from the reweighting model,
are input into the classifier denoted as C(xs

i ; θc) and the
domain discriminator for feature extractor adaptation denoted
as Da(·; θda

). The objective is to learn the parameters θf
of the feature extractor F by maximizing the loss of the
domain discriminator da, while simultaneously learning the
parameters θda

of the domain discriminator Da by minimizing
its loss. Furthermore, the loss of the source classifier C(xs

i ; θc)
is minimized to ensure reduced source domain classification
errors. The objective for reweighted distribution alignment can
be expressed as:

min
θf ,θc

max
θda

Ladv(θf , θda) + Lcls(θf , θc) (4)

where Ladv represents the adversarial loss as defined in Eq.
(5), while Lcls stands for the classification loss incurred
by source labeled samples, which will be elaborated in the
subsequent subsection (III-D2).

Ladv(θf , θda
) =

1

ns

ns∑
i=1

wilog [Da(F (xs
i ))]

+
1

nt

nt∑
j=1

log
[
1−Da(F (xt

j))
] (5)
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Fig. 1: Architecture of our proposed network.

1) Deep wavelet based feature extractor: CSI measure-
ments obtained from commercial WiFi often suffer from
significant noise caused by dynamic range variations and fluc-
tuations within high-dimensional channels. These fluctuations
arise from various sources, including multipath interference
and radio signal disruptions, and are observed even in stable
environments. To address such challenges, wavelet analy-
sis has found extensive utility in wireless signal denoising.
Wavelet analysis offers the advantages of multidomain anal-
ysis for wireless signal, allowing signal examination in both
the time and frequency domains, and fine-grained multiscale
analysis, which provides a comprehensive understanding of
signal characteristics across multiple scales. The conventional
wavelet approach involves a multi-step process, including
the transformation of data into distinct frequency intervals,
followed by targeted denoising of high-frequency components.
This transformation, exemplified by methods like Discrete
Wavelet Transform (DWT), encompasses filtering and down-
sampling operations. However, these traditional DWT proce-
dures necessitate the development of bespoke techniques to
attain optimal performance, leading to system recalibration
upon environmental changes. Meanwhile, deep learning meth-
ods have gained considerable attention due to their capacity
to recognize hidden patterns within wireless signals. In a
majority of studies, these methods achieve state-of-the-art
results in wireless-based HAR in an end-to-end manner. For
example, in previous research [33], [10], [14], it has been
consistently observed that employing advanced deep learning
techniques, such as LSTM and CNN, yields superior accuracy
compared to simpler shallow learning algorithms like RF and
HMM. It’s worth noting, that widely adopted deep learning
architectures such as CNNs and RNNs do not incorporate
filtering mechanisms, which may result in degrading the noise-
robustness of networks.

In response to this challenge, we introduce a deep wavelet-
based feature extractor, a combination of DWT and deep
neural networks, to enhance signal feature representation for
noise-resistant signal processing in wireless signal based HAR.

The foundation of our proposed feature extractor lies in
the DWT which operates as follows. Given a time-windowed
series of CSI measurements, denoted as x = {xi}, collected
from a single subcarrier, we first feed it to the conventional

convolution layer to get the representatives l = {li}. Then
we employ the DWT to decompose this signal into two
components: a low-frequency component, l1 = {l1,d}, and a
high-frequency component, h1 = {h1,d}. The decomposition
process is mathematically represented as follows:{

l1,d =
∑

i s
l
i−2dli

h1,d =
∑

i s
h
i−2dhi

(6)

where sl = {sld}d∈Z and sh = {shd}d∈Z represent the low-
pass and high-pass filters of an orthogonal wavelet. This DWT
process, outlined in Eq. (6), consists of filtering and down-
sampling operations.

With the matrix and vector, the mathematical expressions
in Eq. (6) can be rewritten as Eq. (7).{

l1 = sll

h1 = shl
(7)

Practically, during backward propagation, we differentiate
Eq. (7), resulting in the following gradients:{

∂l1
∂l = (sl)T

∂h1

∂l = (sh)T
(8)

For the signal reconstruction, a critical step is the filtering of
high-frequency components. Notably, high-frequency elements
are conventionally treated as noise within wireless signals.
Thus, considering the unique characteristics of CSI data, our
approach chooses to directly remove these high-frequency ele-
ments. To be specific, our feature extractor leverages wavelets
with finite filters. We employed a CNN with four layers as
the backbone, wherein the commonly used downsampling is
replaced by DWT with the low-frequency component. This
modification effectively reduces the size of the feature maps.
In summary, our deep wavelet-based feature extractor can

effectively remove high-frequency components and denoise
the signal while preserving its low-frequency core.

2) Classifier with anti-uncertain propagation: In the partial
domain adaptation framework, it is customary to employ the
cross-entropy loss, denoted as Lce. This loss, used for the
source classifier, is usually defined as follows [34], [23]:
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Lce(θf , θc) =
1

ns

ns∑
i=1

wilce(C(F (xs
i )), y

s
i ) (9)

where lce(·, ·) denotes the softmax cross-entropy loss.
However, traditional domain adaptation methods utilizing

this classifier loss primarily focus on enhancing feature trans-
ferability through diverse domain alignment strategies. They
rely solely on the conventional cross-entropy loss within the
labeled source domain for feature learning, often overlooking
the crucial aspect of feature discriminability. Meanwhile, CSI
data is susceptible to variations induced by human activities,
typically exhibits high discriminability across different envi-
ronments or subjects (i.e., domains). Consequently, although
traditional DA techniques may mitigate domain shifts for
Cross-Domain CSI-based HAR, they might compromise clas-
sifier performance on target data. This issue particularly rooted
in the unequal separation of source classes from each other,
which subsequently triggers the propagation of confusion,
or uncertainty, into target predictions. This phenomenon is
also recognized as the “uncertainty propagation problem.”
To illustrate, consider the cross-entropy loss lce(ŷ, y) =
−
∑

i yilog (ŷi), it essentially leverages information solely
from the ground-truth class while disregards information from
other incorrect classes. For instance, if the source output is
[0.60, 0.35, 0.05], it is more uncertain than [0.60, 0.20, 0.20],
yet both situations yield the same cross-entropy loss.

To solve this problem, we propose a classifier with anti-
uncertain propagation loss, which employs an additional com-
plement entropy aiming for uniformly low prediction scores
regarding incorrect classes for labeled source samples. To
better mitigate uncertainty, we further pay more attention to
the uncertain samples that own smaller cross-entropy loss. The
complement anti-uncertain entropy objective Lace is defined
as below:

Lace(θf , θc) =
1

nslog(K − 1)

ns∑
i=1

m(ysi )lace(C(F (xs
i )), y

s
i )

lace(ŷ
s
i , y

s
i ) = (1− ŷq)

γ
∑
j ̸=q

ŷj
1− ŷq

log(
ŷj

1− ŷq
)

(10)
where γ is a hyperparameter that modulates the emphasis on
uncertain samples, and q denotes the index of the ground-
truth class. This formulation effectively tackles the uncertainty
propagation problem by giving due consideration to the con-
fidence levels of predictions for each class. Consequently, our
classifier loss Lcls is defined as a weighted combination of
Lace and Lce:

Lcls(θf , θc) = αLace(θf , θc) + βLce(θf , θc) (11)

where α and β are hyperparameters that allow us to control
the influence of each loss component in the final objective.
Thus, the objective of Eq. (4) can be rewritten as:

min
θf ,θc

max
θda

Ladv(θf , θda) + αLace(θf , θc) + βLce(θf , θc)

(12)

By combining the complement entropy-based loss with
the traditional cross-entropy loss, our classifier effectively
mitigates the uncertainty propagation problem, enhancing the
robustness and reliability of the classifier in cross-domain CSI-
based HAR.

E. Training Algorithm

During the training of the network, we adopt an alternating
optimization strategy involving the network parameters (θf ,
θc, θda

, θdr
) and the weight vector w while keeping the other

components constant. The weight vector w is initialized with
wi = 1 for all i. The training process alternates between two
main procedures:

1) Updating θf and θc with fixed w
With w held constant, we update the parameters θf and θc

using Eq. 12. As Eq. 12 represents a min-max optimization
problem, we iteratively optimize the parameters θf , θc and
θda while keeping the other one fixed. Initially, we freeze
the parameters for the feature extractor and classifier, θf , θc,
and optimize the parameters of the discriminator within the
reweighting model, θda

, to maximize the objective. Then, with
the discriminator fixed, we optimize the feature extractor and
classifier.

2) Updating w with Fixed θf and θc
With fixed θf and θc, we extract features from all training

data in both the source and target domains and adjust the
weights w by training the reweighting model. This weight
learning process leverages adversarial learning, and we itera-
tively optimize the weights w and the parameters θdr

of the
discriminator for feature extractor adaptation while keeping
the other constant. Initially, according to Eq. 2, we fix w
and optimize θdr to maximize the similarity between the
reweighted source feature distribution and the target feature
distribution. Subsequently, with the discriminator fixed, we
fine-tune w using optimization techniques as described in [31],
[35] (as shown in Eq. 3).

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: In our experimental evaluation, we employed
two distinct datasets: our self-built dataset, WiHAR, and a
publicly accessible dataset named CSLOS [36].

For WiHAR, we selected three typical environments (i.e.,
an office room, a pantry room, and a seminar room, their
layouts are shown in Fig. 2) to collect data that are close
to real-world scenarios. The data acquisition process involved
the use of two laptops equipped with Intel5300 network cards,
serving as the hardware platform for signal reception. In each
of the selected environments, a signal transmitter (Tx) and
receiver (Rx) were positioned at a fixed distance of 3.5 meters,
and their antenna height was maintained at 1.2 meters. To
capture high-quality WiFi signal data, we equipped both the
Tx and Rx terminals with three gain antennas, resulting in a
total of six external antennas. The Intel 5300 wireless network
card was instrumental in obtaining data from 30 sub-carriers,
effectively creating a 30-channel CSI dataset. Throughout the
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data collection phase, we maintained a sampling rate of 500Hz,
resulting in the generation of 2000 packets per sample.

Our WiHAR dataset contains seven behavior types, including
“stand still,” “jump,” “bend over,” “run,” “sit,” “walk,” and
“wave hand.” To ensure the robustness and diversity of our
dataset, seven individuals participated in the data collection
process for each of the seven behavior types within each
environment. Remarkably, each participant performed each
behavior a total of 101 times. The selection of individuals for
participation was carried out by taking into account variations
in height, weight, size, gender, and other distinctive charac-
teristics. Overall, our dataset contains a total of 4949 samples
for each environment, ensuring the comprehensive coverage
of human actions in various settings.

CSLOS involved three distinct environments: a research
laboratory, a university hallway, and an NLOS indoor envi-
ronment. For the laboratory environment, experiments were
conducted within the confines of a laboratory space. The
hallway environment simulated a dynamic scenario, with stu-
dents and university employees moving in the vicinity of the
hallway alongside the subjects performing experiments. 30
subjects volunteered for the experiments in each of the three
environments. Each subject performed five experiments with
12 activities, including “Sit still”, “Fall down from sitting
position”, “Lie down”, “Stand still”, “Fall down from standing
position”, “Walk from transmitter to receiver”, “Turn”, “Walk
from receiver to transmitter”, “Turn in a different direction”,
“Stand up”, “Sit down”, “Pick a pen from the ground”. Each
experiment was repeated 20 times for each environment.

2) Methods for Comparison and Training Details: We
compared our proposed approach WiCAU with six widely
recognized models, including supervised WiFi-based HAR
model, domain adaptation methods, and partial domain adap-
tation approaches. Here, we provide a brief overview of each
of these methods:

CNN [37]: [37] utilizes a Convolutional Neural Network
to analyze channel data and infer user behaviors. In our
experiments, we trained the CNN model solely on source
samples and subsequently evaluated its performance on the
target domain data.

Domain-adversarial Neural Network (DANN) [23]:
DANN is a typical unsupervised domain adaptation technique
that employs a gradient reversal layer to train a domain
classifier in an adversarial manner while optimizing a feature
extractor network.

Adversarial Discriminative Domain Adaptation (ADDA)
[38]: ADDA is a state-of-the-art unsupervised domain adver-
sarial adaptation model in computer vision that effectively
mitigates the effects of domain shift by combining adversarial
learning with discriminative feature learning.

Entropy conditioning variant of Conditional Domain
Adversarial Network (CDAN+E) [39]: CDAN+E introduces
two innovative conditioning strategies for domain adaptation.
Multilinear conditioning captures cross-covariance between
features and classifier predictions for enhanced discriminabil-
ity, while entropy conditioning controls classifier prediction
uncertainty to ensure transferability.

Partial Adversarial Domain Adaptation (PADA) [40]:
PADA is designed for partial domain adaptation, specifically
addressing negative transfer by down-weighting data from
outlier source classes during the training of both the source
classifier and domain discriminator.
BA3US [8]: BA3US is a state-of-the-art PDA technique

that employs a strategic selection of source samples to enhance
the target domain during the domain alignment process. This
technique is aimed at achieving class symmetry across distinct
domains.

All the methods were implemented in Python 3.8 using Py-
Torch 1.11 with CUDA 11.7. The implementation was carried
out on an NVIDIA 3060 GPU with 12 GB of memory. We
utilized the stochastic gradient descent (SGD) algorithm for
optimization, setting the learning rate to 1e−4. The batch size
for training was 64. The architecture of the discriminator Dr

and Da consisted of three fully connected layers with 1024,
1024, and 1 nodes, respectively. In the deep wavelet-based
feature extractor with a CNN of four layers, the strides were
set to 2, and the kernel size was 5 × 5. The Rectified Linear
Unit (ReLU) activation function was applied. To maintain
fairness in our comparative analysis, the same discriminator
architecture was used in all models where necessary.

B. Results
1) Overall results: For each dataset, we conducted exper-

iments across six domain adaptation settings, each involving
the adaptation from one environment to another. Considering
that each dataset encompasses three distinct environments,
this results in a total of six unique adaptation scenarios.
We randomly selected 5 activities to build the target domain
for both datasets. The experimental results of our proposed
method alongside several state-of-the-art domain adaptation
techniques on WiHAR and CSLOS are present in Tables I and
II.

Overall, in comparison, traditional supervised CNN exhib-
ited limited adaptability, with average accuracies of 23.4%
(WiHAR) and 31.4% (CSLOS). Significantly, across various
domain adaptation methods, our proposed WiCAU consistently
delivered superior accuracy on both the WiHAR and CSLOS
datasets. This highlights its outstanding performance in effec-
tively tackling the challenge of domain shift.

With the WiHAR dataset, we observed substantial improve-
ments in action recognition accuracy compared to existing
methods. Remarkably, our proposed WiCAU achieved an
average accuracy of 80.8%, outperforming the second-best per-
forming approach, BA3US, by a significant margin of 6.4%.
Specifically, when examining the results from different domain
pairs (1→2, 2→1, 2→3, 3→2, 3→1, 1→3), our approach
consistently outperformed other methods. In the 2→1 scenario,
our accuracy reached an impressive 86.4%, showcasing the
superiority of our model in adapting to challenging domain
shifts. The results in all other domain pairs further support the
efficacy of our method. The performance of previous state-of-
the-art PDA techniques such as PADA and BA3US is better
than traditional domain adaptation techniques ADDA, DANN,
and CDAN+E, demonstrating their effectiveness in handling
partial domain adaptation tasks.
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Fig. 2: The layouts for three indoor environments

TABLE I: Accuracy (%) on WiHAR for partial domain adaptation.

Accuracy
(%)

WiHAR
1 → 2 2→ 1 2→ 3 3→ 2 3→ 1 1→ 3 Avg

CNN [37] 16.3 27.1 25.6 30.9 23.9 16.6 23.4
ADDA [23] 44.1 32.3 60.8 52.1 44.4 47.3 46.8
DANN [38] 71.1 66.3 46.5 56.4 76.9 74.2 65.2

CDAN+E [39] 75.2 64.2 55.4 74.6 67.9 67.6 67.5
PADA [40] 78.9 75.6 72.4 71.0 73.7 73.2 74.1
BA3US [8] 72.9 73.9 72.2 75.1 77.1 74.9 74.4

WiCAU (Ours) 84.9 86.4 82.6 77.3 78.2 75.1 80.8

TABLE II: Accuracy (%) on CSLOS for partial domain adaptation.

Accuracy
(%)

CSLOS
1 → 2 2→ 1 2→ 3 3→ 2 3→ 1 1→ 3 Avg

CNN [37] 30.4 28.3 26.6 23.7 38.1 41.2 31.4
ADDA [23] 33.3 23.7 36.6 34.5 43.7 39.5 35.2
DANN [38] 37.0 20.4 29.5 32.9 39.5 55.8 35.8

CDAN+E [39] 33.7 28.7 29.5 30.4 36.2 44.5 33.8
PADA [40] 44.5 27.0 22.5 35.0 41.6 56.1 37.8
BA3US [8] 43.3 34.1 40.4 44.1 45.2 56.2 43.9

WiCAU (Ours) 60.0 34.2 41.2 53.3 61.2 62.9 52.1

On the CSLOS dataset, our method also demonstrates re-
markable domain adaptation capabilities. We achieved an aver-
age accuracy of 52.1%, which is notably higher than the results
obtained by competing methods. In particular, it outperforms
the second-best approach, BA3US, by a significant margin
of 8.2%. This dataset presents its unique challenges due to
only 5 activities selected in the target domain, whereas the
source domain has 12 activities, making domain adaptation
crucial. Our method consistently outperforms others across
various domain pairs, highlighting its robustness. In particular,
the 1→3 scenario yielded an accuracy of 62.9%, indicating
the effectiveness of our approach in adapting human action
recognition models to different environments.

2) Ablation study: In the ablation study, we aimed to assess
the individual contributions of several key components pro-
posed in our approach, including feature distribution alignment
with reweighting model, reweighted distribution alignment
with feature extractor adaptation, deep wavelet-based feature
extraction, and the anti-uncertain propagation module. Table
III presents the results of this study. It’s important to note
that we conducted these tests by substituting the ablated
component with an existing alternative method. Specifically,
we used a four-layer CNN to replace our deep wavelet-based
feature extraction, employed the framework for reweighting
distribution alignment in PDA [8] as a substitute for our
reweighting model, and integrated the framework for feature
distribution alignment in PDA [31] in place of our reweighted

distribution alignment with feature extractor adaptation.
From Table III, we can see that removing the deep wavelet-

based feature extraction component resulted in a noticeable
decrease in accuracy across all adaptation settings. On average,
this ablation led to a 1.6 percentage point decline in accuracy.
This suggests that the deep wavelet-based feature extraction
method contributes to recognizing domain-specific patterns,
which is important for effective adaptation. Moreover, the
exclusion of the anti-uncertain propagation module led to a 1.0
percentage point reduction in accuracy across all adaptation
scenarios. This shows the anti-uncertain propagation module
plays a role in handling data uncertainty, and its presence
improves the model’s robustness.

Besides, ablating the distribution alignment with the
reweighting model resulted in a significant decrease in accu-
racy. On average, there was a 3.9 percentage point reduction
in accuracy. This highlights the importance of this module
in aligning the distributions with weights between the source
and target domains, a fundamental aspect of PDA. Removing
the reweighted distribution alignment with feature extractor
adaptation component also led to a notable decrease (i.e.,
3.3%) in accuracy across all adaptation settings. This module’s
role in adapting the feature extractor to align the distributions
for PDA is evidently crucial.

3) Accuracy with varying number of target classes: In our
exploration of the impact of varying target class numbers,
we conducted an assessment of our proposed method with
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TABLE III: Ablation study results compared with the full WiCAU model using WiHAR dataset

Accracy(%) 1 → 2 2→1 2 → 3 3 → 2 3→1 1→3 Avg △
WiCAU 84.9 86.4 82.6 77.3 78.2 75.1 80.8 -
-̃ Deep wavelet based feature extraction 83.7 85.5 81.3 76.2 76.3 73.9 79.2 -1.6
-̃ Anti-uncertain propagation module 84.1 85.8 81.3 76.1 77.5 74.2 79.8 -1.0
-̃ Distribution alignment with reweighting model 81.7 82.6 79.7 72.9 73.5 71.2 76.9 -3.9
-̃ Reweighted distribution alignment with feature extractor adaptation 81.2 84.4 79.2 74.3 76.4 69.6 77.5 -3.3

Fig. 3: Accuracy with the varying number of target classes.

two other PDA approaches. The range of target class counts
spanned from 1 to 6 (7 activity classes in the source domain).
From the results shown in Fig. 3, we can observe that all
methods start with heightened accuracy for a single target class
and then experience a gradual decline as the number of target
classes increases. However, our method, WiCAU, exhibits
consistently the highest accuracy across different numbers of
target classes. This observation strongly indicates that WiCAU
excels in WiFi-based HAR partial domain adaptation scenarios
where there is a mismatch in the label space between the
source and target domains.

4) Parameter sensitivity: We conducted a sensitivity anal-
ysis of the parameters α and β in Eq. 12 of our WiCAU
model using the WiHAR dataset. We systematically varied
these parameters over a range of values (0.05, 0.1, 0.5, 1, 5,
10) to observe their impact on model performance. The results,
as depicted in Fig. 4, reveal that our model’s performance is
relatively stable across different values of α and β. Notably,
the accuracy remains consistent in the vicinity of 1 and 5,
indicating that our method is not particularly sensitive to these
parameter values.

5) Performance for closed-set domain adaptation: In this
section, we further investigate the effectiveness of the proposed
WiCAU for vanilla closed-set domain adaptation. We compare
our method with other state-of-the-art methods using the
WiHAR dataset. Table IV presents the accuracy results for
closed-set domain adaptation. As demonstrated, our proposed
method achieves a competitive average accuracy and ranks
among the top two when compared to the other methods. This
outcome verifies the effectiveness of our approach even in the
scenario of closed-set domain adaptation.

V. CONCLUSION

The ability to recognize activities across varying WiFi
environments presents a formidable challenge for WiFi-based
HAR. Traditional domain adaptation methods for WiFi-based

Fig. 4: Accuracy vs. α and β.

HAR typically confine their scope to closed-set domain adap-
tation scenarios, a limitation that can manifest as challenges
when the source and target domains encompass different activ-
ity categories. Furthermore, current Partial Domain Adaptation
techniques are mainly developed for the computer vision
field and do not consider the unique attributes provided by
WiFi-based HAR. To address these challenges, we proposed
WiCAU, an innovative approach for WiFi-based HAR. Wi-
CAU comprehensively tackles negative transfer and uncer-
tainty propagation by simultaneously adapting the feature
extractor and reweighting source domain data features. Our ex-
tensive experiments, spanning various datasets, including self-
built, publicly available datasets, have demonstrated WiCAU’s
superior performance. In the future, we plan to investigate the
integration of wireless signals with other sensing modalities,
including wearable devices or visual images, to significantly
enhance HAR performance and robustness across diverse
scenarios.
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