
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Combine Topic Modeling with Semantic
Embedding: Embedding Enhanced Topic Model

Peng Zhang, Suge Wang, Deyu Li, Xiaoli Li, and Zhikang Xu

Abstract—Topic model and word embedding reflect two perspectives of text semantics. Topic model maps documents into topic
distribution space by utilizing word collocation patterns within and across documents, while word embedding represents words within a
continuous embedding space by exploiting the local word collocation patterns in context windows. Clearly, these two types of patterns
are complementary. In this paper, we propose a novel integration framework to combine the two representation methods, where topic
information can be transmitted into corresponding semantic embedding structure. Based on this framework, we construct a Embedding
Enhanced Topic Model (EETM), which can improve topic modeling and generate topic embeddings by leveraging the word embedding.
Extensive experimental results show that EETM can learn high-quality document representations for common text analysis tasks
across multiple data sets, indicating it is very effective for merging topic models with word embeddings.

Index Terms—Topic model, Word embedding, Topical embedding, Representation learning.
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1 INTRODUCTION

IN many text analysis tasks, such as text categorization,
sentiment analysis and text clustering, unstructured text

data need to be first converted to structured forms or rep-
resentations, namely known as Text Representation Learning
[1], [2], [3], [4]. Clearly, the quality of text representation
is essential for the subsequent text analysis tasks. As such,
researchers have proposed some methods to address this
problem, where topic models and word embeddings are two
major representatives, aiming to produce high quality text
representations.

Topic models discover the topics that occur in a corpus
according to words’ collocation patterns within and across
documents [5], [6], [7]. As such patterns reflect their seman-
tic relations, topic models can thus discover coherent topics
that comprise semantically relevant words. Represented by
Latent Dirichlet Allocation (LDA) [8], typical topic models
can be regarded as document-level representation methods,
which assume that each document has a discrete topic
distribution. The probability of a topic in a certain document
does not reflect what words are used in it, but indicates
how many words from that topic present in the document.
In addition, the word collocation patterns at document-
level, similar to bag-of-words models, ignore the sequential
relationship between words. Information implied in words’
sequence, such as syntax and dependence of words, thus
can not be modeled by LDA either.

Embedding methods, represented by word embeddings,
on the other hand, commonly focus on word-level rela-
tions between words and their contexts. The main idea of
word embeddings is that individual words are no longer
treated as independent symbols, but instead they reflect
similarities and correlations between words. Particularly,
word embedding methods represent words as continuous
vectors in a low-dimensional Euclidian space [9], [10], [11],
[12], [13]. The learned embedding of a word encodes its
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semantic and syntactic relations with its contextual words,
by utilizing local word collocation patterns. As such, the
specific functions of words can also be distinguished by
their embeddings, thus they can overcome the shortcomings
of topic models.

As topic models and embedding methods emphasize
two different types of text patterns from the text, each of
them only reflects partial but complementary aspects of the
whole semantics of text content. Thus, integrating topics
with semantic embeddings has recently become a feasible
approach to build up comprehensive text representation.

Existing methods use a dependent combination strategy
that modifies structures, inputs, or assumptions of original
topic models and embeddings. In order to adapt discrete
topics to the continuous embedding representation, the dis-
crete distribution assumption of topic models has been re-
placed with continuous distributions formed by embedding
vectors [14], [15], [16]. However, this disables the topics re-
flecting global correlation of words and only words with big
geometrical similarities between their embedding vectors
will be grouped into the same topics, resulting in worse top-
ic quality. Moreover, some models actually produce corpus-
level topic embeddings or document embeddings rather
than assign an embedding to each topic of a document [16],
[17], [18], [19], [20]. With these models, we can not tell the
meaning of each topic in a document, because they actually
get no embedding vector, especially in tasks that rely on
specific aspects of a document such assumption leading to
worse veracity of topics. For instance, in sentiment analysis
task, only small parts of topics highly related to positive or
negative expressions are key text elements. Besides, some
frameworks directly use the results of one model as the in-
puts of the other one [21], [22]. Such strategy, however, fails
to explain the differences between topics and embeddings,
and lacks theoretical foundations.

Specifically in this paper, we investigate the consistency
of topics and word embeddings in expressing the same
content of documents. We intend to make few modifications
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to the original model assumptions, thus retaining their
own unique structural and functional advantages as much
as possible. Additionally, we propose a novel integration
framework to combine topic modeling with semantic em-
bedding, for the proposed framework is an effective way
to merge information from heterogeneous sources with d-
ifferent conceptual and contextual representations, that can
thus make topics and embedding vectors share their high
level semantic information sufficiently. The hybrid model
is named as Embedding Enhanced Topic Model, which could
assign an embedding vector to each topic and produce a
topic embedding matrix for each document, rather than the
corpus-level topic embeddings or document embeddings.
Thus, EETM is a real topic-level representation model.

The major contribution of this work is that we find a
novel way to map the topic-word’s structure information
of topic model into the corresponding embedding structure
to generate topic-level semantic embeddings for more accu-
rate semantic representation of topics, which is intrinsically
different from researches that utilize topic information to
produce high-quality word embedding or document em-
bedding. EETM is able to describe the semantic difference
of the same topic expressed in different documents, which
thus can bring benefits tasks that rely on specific details or
aspects of documents.

2 RELATED WORK

In this section, we will briefly review topic models, word
embedding methods, and their combinations.

Topic Models. Topic models employ hierarchical topic-
word structures to explain the generative process of topics
and words in text content. Particularly, hierarchical struc-
tures in topic models are usually regulated with probability
distributions. Each document is assigned to the topics with
different weights/probabilities, which specifies both the de-
gree of memberships in the different topic clusters, as well
as the document coordinates in the low-dimension topic
space. LDA [8], known as a typical topic model, regards the
mixtures of related words that are frequently used in similar
text content as topics. To model the special meanings and
usages of topics, categorization labels, language labels, and
other semantic information are introduced into topic model
models [23], [24], [25], [26], [27], [28], where words in topics
are also conditioned on these labels, thus leading to better
distinction of topics.

Embedding Methods. Embedding methods have been
successfully applied in language models and many NLP
tasks [29], [30], [31], [32]. Word embeddings are very useful
because they not only can encode various text structures of
syntactic and semantic information into continuous vectors,
but also enable similar words locate closely in Euclidian
space. Early word embedding models are time consuming
due to high computational complexity, until two efficient
models, namely Skip-Gram and continuous bag-of-words
model (CBOW) [12], have been proposed. Semantic infor-
mation at multiple levels, such as sentiment labels [33],
paragraphs or sentences information [34], [35], [36], dis-
course structures [37], and rating information [38], can be
introduced into word embeddings by forming necessary
supervised structures.

Combinations of Topics and Embeddings. Recently, a
couple of methods have been presented to combine topic
models and word embeddings. For example, Nguyen et
al. [15] proposed Latent Feature Topic Modeling (LFTM),
which extends LDA to a mixture of conventional multino-
mial distribution and an embedding link function. How-
ever, it does not explain the differences between topic and
word embeddings. Then, researchers proposed global topic
embedding vectors. For instance, topical Word Embedding
(TWE) [17] and Latent Topical Skip-Gram (LTSG) [18] av-
erage the embeddings of words in the same topic to get
the corpus-level embedding vector of the topic. Das et al.
[19] presented Gaussian LDA, which assumes that words in
a topic are random samples from a multivariate Gaussian
distribution with the topic embedding as the mean. In these
methods, topics are modeled as global vectors for given
whole data set, which ignores the real situation that topics
in different documents of the data set may focus on different
specific aspects and word semantics.

Some models produce overall document embedding vec-
tors by using topic-word structures. Neural Topic Model
(NTM) [14] explains the standard topic model from the
perspective of a neural network, where the document is
parameterized with a vector, but the vector is not directly
associated to latent topics. Based on the PSDVec [9], genera-
tive topic embedding model [16] takes a document descrip-
tion vector as topic embedding to form link function. The
efficient Correlated Topic Modeling [39] uses both global
topic embeddings and document embeddings to regulate
the topic weights.

Topic-based Skip-gram [21] is a semantic word embed-
dings architecture, which first puts the whole text corpus
into topic models to capture semantic relationship between
words and subsequently takes it as the input for word rep-
resentation learning stage. Bidirectional Hierarchical Skip-
Gram [22] is a combination of the skip-gram and topic
representations, which produces overall topic embeddings
based on results of the skip-gram.

3 EMBEDDING ENHANCED TOPIC MODEL

Embedding Enhanced Topic Model (EETM) is hybrid model
consisted of LDA and semantic embeddings, which is im-
plemented by applying an integration framework.

The main idea of our integration framework origins from
a common cognition process in learning that one can enrich
his information and knowledge by exchanging his views
and opinions with others. The core of topic models and
semantic embeddings is to express the content of text based
on document-level word collocation and local context col-
location patterns. Both of them reflect the internal semantic
structure of text content, but represent this structure with
topic-word distribution and linear relations of embedding
vectors respectively, resulting in two perspectives of text
semantics. The integration of these two methods essentially
is to discover and maximize their structure consistency
in expressing the same text content, with an objective to
improve the text representation.

3.1 Models to be Integrated
Standard LDA [8] is the topic model integrated in EETM. It
defines that text data set consists of documents, denoted as
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D = {d1, d2, ..., dM}. The length of document di ∈D is rep-
resented asNdi , and the j-th word in document di is notated
as wij , where j ∈ [1, Ndi ]. The vocabulary of D is denoted
as U = {u1, u2, ..., uW }. Given a document di, each word
wij ∈ di is assigned to a topic indexed by zij ∈ {1, 2, ...,K},
where K is the number of topics. Each topic assignment
zij has a document-specific prior probability, denoted as
θik = P (k|di). The vector θi = (θi1, θi2, ..., θiK) is referred
to as the topic distribution for document di. Thus, the
likelihood of standard LDA given a document set D is
commonly formulated as

P (D|α, β)=p(φ|β)

×
∫ M∏
i=1

p(θi|α)
Ndi∏
j=1

∑
z
p(zij |θi)p(wij |zij , φ)dθi,

(1)

where α and β is the Dirichlet prior parameters. The con-
ditional probability p(wij |zij = k, φ) estimates the habitual
usage rate of word wij for expressing topic k in document
di, which can thus be used as the correlation measurement
of word wij and topic k.

Traditional LDA groups words into topics according to
the collocation patterns of words, ignoring the context back-
grounds with other semantic structures, such as phrases,
syntax rules, and sentential forms, which makes the topics
unable to discriminate words with various linguistic func-
tions. Thus, we introduce context information of word em-
beddings into topic model and increase the discriminability
of topic representation.

We assume each word ui ∈ U gets a pre-trained N -
dimensional embedding vector vui , and all word embed-
ding vectors form a word embedding matrix, denoted as
V = {vu1 ,vu2 , ...,vuW

}. During the iterative process of
our method, word embeddings remain fixed. Each topic in
a document di has a topic embedding vector, denoted as
tik. Thus each document has K topic embeddings, denoted
as a topic embedding matrix Ti = (ti1, ti2, ..., tiK). Topic
embeddings reside in the same N -dimensional space as
word embeddings.

Given the j-th word wij and topic embedding matrix
Ti in document di, the spatial relationship between word
embedding vwij and topic embedding tik can be defined by
means of softmax function, which is formulated as

p(tik|vwij
) = Softmax(tik,vwij

) =
exp(tTikvwij )
K∑
l=1

exp(tTilvwij )

. (2)

Actually, Eq.2 calculates the intensity that word wij
belongs to topic k based the semantic relevance of context
information represented in the spatial space. The likelihood
of topic embeddings needs a well designed model to for-
mulate, which is not discussed in this work. For the sake
of simplification, we take full connections between each
word and topic in a document, and take product of Eq.2 for
single topic-word pair as the likelihood. Thus, given word
embeddings, the likelihood of topic embeddings is

P (T |V ) =
M∏
i=1

Ndi∏
j=1

K∏
k=1

p(tik|vwij
). (3)

3.2 Integration Framework
The conditional probabilities p(wij |zij = k, φ) and
p(tik|vwij ) provide two ways to describe semantic relations
between words and topics. The information integration
framework effectively connects these two types of topic-
word relation measurements from topic models and embed-
dings by making them share consistent internal semantic
structure of the text content. Note the semantic structure
information acquired by topic models and embedding meth-
ods is not exactly the same. Hence they only share part of
their semantic structure information, and we call it mutual
semantic information. When a model takes in structure infor-
mation from the other model, the amount of their mutual se-
mantic information will naturally be increased. Thus, we can
build up a framework to integrate topics with embedding
methods by maximizing their mutual semantic information
measured on their topic-word relation structure.

We first define a measurement to indicate the mutual
semantic information of two text representations. The union
of every topic-word pair in all documents is taken as a
semantic set S, which is formulated as

S =
M⋃
i=1

{(wij , tik)|wij ∈ di, tik ∈ di}. (4)

For the sake of expressing our strategy clearly, we
denote a simplified form of semantic set, which is S =
{s1, s2, ..., sN }, thus sn represents a certain topic-word pair
(wij , tik), and N = |S|. For a certain element sn ∈ S
(1 ≤ n ≤ N ), it gets two types of semantic measurements,
notated as τ(sn) = p(tik|vwij

) and κ(sn) = p(wij |zij =
k, φ), where τ(sn) ∈ (0, 1), and κ(sn) ∈ (0, 1). Based on
the idea of the Standard Cross Entropy Loss [40], we formu-
late the measurement of the mutual semantic information
G(τ(sn), κ(sn)) as the exponential form of binomial cross
entropy loss, that is shown as follows.
Definition 1. Mutual semantic information measurement.

G(τ(sn), κ(sn)) = τ(sn)
κ(sn)(1− τ(sn))

1−κ(sn) (5)

In Definition 1, G(τ(sn), κ(sn)) varies in the interval
(0, 1). The maximum condition of G(τ(sn), κ(sn)) with re-
gards to τ(sn) and κ(sn), is essential property of the mutual
semantic information measurement, where G(τ(sn), κ(sn))
reaches its maximum value with following condition:
Property 1. Maximum condition of G(τ(sn), κ(sn)) w.r.t.

τ(sn).
τ(sn) = κ(sn) (6)

Proof. The gradient of logG(τ(sn), κ(sn)) w.r.t. τ(sn) is

∂ logG(τ(sn), κ(sn))

∂τ(sn)
=

κ(sn)− τ(sn)

τ(sn)(1− τ(sn))
. (7)

Setting the above Eq.7 to 0 yields the optimal solution at

τ(sn) = κ(sn). (8)

�

Property 1 shows that τ(sn) tends to share the same
semantic intensity as κ(sn) on sn, and the explanation of
sn learnt by measurement τ(.) tends to be consistent with
κ(.). Thus,G(τ(sn), κ(sn)) could transmit semantic of κ(sn)
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into τ(sn). On the other hand, the maximum condition of
G(τ(sn), κ(sn)) w.r.t. κ(sn), is defined as follows.
Property 2. Maximum condition of G(τ(sn), κ(si)) w.r.t.

κ(sn).

∂ logG(τ(sn), κ(sn))

∂κ(sn)

= log
τ(sn)

1− τ(sn)


> 0, if τ(sn) > 0.5
= 0, if τ(sn) = 0.5
< 0, if τ(sn) < 0.5

(9)

Property 2 shows that G(τ(sn), κ(sn)) w.r.t. κ(sn) in-
creases if τ(sn) > 0.5; it decreases if τ(sn) < 0.5. In other
words, in the optimization process, the discriminability of
κ(sn) could be enhanced, depending on the odds values of
τ(sn). Practically, property 2 implies the function improves
the discriminability of κ(.) by utilizing the odds of τ(.).

For the whole semantic set S, we take the product of
G(τ(sn), κ(sn)) on each item sn ∈ S as the overall integra-
tion likelihood w.r.t. τ(S) and κ(S), which is formulated as
follows.

G(τ(S), κ(S)) =
N∏
n=1

τ(sn)
κ(sn)(1− τ(sn))

1−κ(sn) (10)

The semantic measurements τ(sn) and κ(sn) are global
or local semantic measurements with a certain granularity.
The semantic set S connects these two measurements and
provides a joint explanation of the data. During learning
process, the maximization of integration likelihood has to
be coordinated with the optimization of topic model and se-
mantic embedding vectors. For a data set D and a semantic
set S, the likelihood of the whole integration framework is
formulated as follows.

L(D,V ) = P (D|α, β)P (T |V )G(τ(S), κ(S)), (11)

where P (D|α, β) and P (T |V ) are likelihoods of topic
model and semantic embeddings. Take logarithm of both
sides in Eq.11, we obtain the logarithmic likelihood of whole
framework.

logL(D,V )

= logP (D|α, β) + logP (T |V ) + log G(τ(S), κ(S))
(12)

Eq.12 can be interpreted as the logarithmic likelihood of
data set D collaboratively described by topics and semantic
embeddings. The consistency of these two text representa-
tions is measured on semantic set S. By maximizing Eq.12,
semantic information can be transmitted across represen-
tations through the mutual semantic information function
G(., .). The topics and embeddings could acquire additional
information from each other and produce better representa-
tion of data.

3.3 Generative Process
The key idea of a topic model is to explain the generative
process of each word in documents. When word and topic
embeddings are included in the topic model, the genera-
tive process also involves the probability structure of word
embeddings. In EETM, the generative process of words in
documents can be regarded as a hybrid of LDA and the
semantic embeddings together with integration framework.

Fig. 1. Plate notation of EETM. EETM involves the generative process
of standard LDA and additional semantic embeddings. Topics and words
are assigned with corresponding topic embedding and word embedding
vectors (dot line). Thus, each document gets a topic embedding matrix
including K topic embedding vectors. Word embeddings are pre-trained
and fixed during the learning process of EETM. A certain word wij is
generated according to p(wij |zij , φ,Ti,V ).

As the word embedding vsi is produced by a certain word
embedding method, we ignore its producing process here
and focus on the generative process of words along with
topic embeddings in documents. Based on Eq.11, the gener-
ative process of document di is as follows:
1. Draw Ndi ∼ Poisson(ξ);
2. Draw θi ∼ Dir(α);
3. For the k-th topic, draw a topic embedding uniformly

from a hyper-ball of radius µ, i.e. p(tik) = 3
4πµ3 if

||tik||2 ≤ µ, 0 otherwise;
4. For each word wij in document di:

(a) Draw a topic zij ∼Multinomial(θi);
(b) Draw word wij from U according to

p(wij |zij , φ,Ti,V ).
The conditional probability p(wij |zij , φ,Ti,V ) repre-

sents the distribution of wij . It can be determined by our
proposed integration framework, which will be described
in following subsections. Above generative process is pre-
sented in plate notation in Figure 1.

3.4 Explanation
As shown in Eq.12, the likelihood of EETM includes like-
lihood of LDA and topic embeddings, while integration
likelihood connects them. The original motivation of our
strategy is to maximize the mutual semantic information of
two models and make them share most of their knowledge
on the data set. Thus, the mutual semantic information
has to be optimized with the two models simultaneously.
Furthermore, the mutual semantic information itself can
also be interpreted in a conditional probabilistic way, which
could explain the relationship between the two models.

The integration framework includes two ways of topic-
word relation modeling: the topic distribution of LDA and
the spatial intensity of embeddings. Eq.3 formulates the
probability of topic with condition on word embeddings.
When focusing on the topic intensity measured by topic
and word embeddings, p(tik|vwij

) and 1− p(tik|vwij
) form

up a binomial distribution of the topic assignment to a
word. For each topic-word pair in S, the mutual semantic
information function (Eq.5) can be regarded as a prior of
the binomial distribution, and the prior information comes
from LDA. Specifically, the prior information is topic-word
distribution p(wij |zij = k, φ), which is a part of document
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modeling in LDA, and the likelihood P (D|α, β) involves
p(wij |zij = k, φ) as a component. Hence we can hold
the prior information from P (D|α, β), and the integration
likelihood G(κ(S), τ(S)) can be interpreted as a conditional
probability w.r.t. T .

G(κ(S), τ(S)) = P (T |D) (13)

Eq.13 contains prior terms for every p(tik|vwij
) in Eq.3.

Thus, P (T |D) can be regarded as prior for P (T |V ), and
we obtain

P (T |D,V ) = P (T |D)P (T |V ), (14)

where D and V are independent variables. Plugging Eq.14
into Eq.11, the likelihood of EETM can also be interpreted
as

L(D,V ) = P (D|α, β)P (T |V )G(κ(S), τ(S))

= P (D|α, β)P (T |D,V )

= P (D,T |α, β,V ),

(15)

where topic embeddings T and topic-word distribution of
data set D are learning objectives of EETM.

As for each word wij in document di, there is a cor-
responding topic assignment zij . When focusing on the
topic-word distribution, it depends on the global topic-word
distribution and topic intensity of embeddings. For each
topic-word pair in S, it has a corresponding topic intensity
measurement from the mutual semantic information func-
tion. Thus, given a certain topic assignment zij = k, the
word distribution p(wij |zij , φ,Ti,V ) can be formulated as

p(wij |zij = k, φ,Ti,V ) = p(wij |zij = k, φ)

×p(tik|vwij
)
p(wij |zij=k,φ)

×(1− p(tik|vwij ))
1−p(wij |zij=k,φ).

(16)

Eq.16 can be interpreted as the generative distribution of
word wij in the generative process of EETM.

4 LEARNING ALGORITHM

EETM is a hybrid model consisting of LDA and semantic
embeddings, and it contains two kinds of parameters: dis-
tribution parameters and embedding vectors. Our proposed
learning process for EETM includes two parts: maximum
optimization of the corpus probability, and the approxi-
mation of the topic embeddings. We adapt the Generalized
Expectation Maximization (GEM) algorithm to optimize the
likelihood of EETM (Eq.12).

Specifically, during the optimization of topic-word dis-
tributions, the topic embeddings are assumed to be known
and constant. During the approximation of topic embed-
dings, however, the topic-word distributions are utilized as
conditions. These above two parts are repeated until con-
vergence. Finally, the learning algorithm outputs topic-word
distributions and topic embeddings for each document.

4.1 Variational Inference
EETM contains latent variables θ and z, which can not
be estimated directly. In this paper, we utilize Variational
Inference [41] to seek the optimal L(D,T ). As stated in
Eq.15, we treat P (D,T |α, β,V ) equally as L(D,T ) in the
following equations.

For an arbitrary variational distribution q(θ, z), the fol-
lowing equalities hold

Eq[log
P (D,T , θ, z|α, β,V )

q(θ, z)
]

=Eq[logP (D,T , θ, z|α, β,V )] +H[q]

= logP (D,T |α, β,V )−KL(q||p),

(17)

where p = p(θ, z|α, β,V ), H[q] is the entropy of q, and
KL(q||p) is the Kullback-Leibler divergence of p and q. This
implies

KL(q||p)
= logP (D,T |α, β,V )

− (Eq[logP (D,T , θ, z|α, β,V )] +H[q])

= logP (D,T |α, β,V )− L(q,T ).

(18)

In Eq.18, Eq[logP (D,T , θ, z|α, β,V )] + H[q] is usually
referred to as the variational free energy L(q,T ), which is
a lower bound of logP (D,T |α, β,V ). It is intractable to
directly maximizing logP (D,T |α, β,V ) due to the hidden
variables θ and z. So we maximize its lower bound L(q,T )
instead. We adopt a mean-field approximation of the true
posterior as the variational distribution, and use a varia-
tional algorithm to find q∗ maximizing L(q,T ).

The mean-field assumption of variational distribution is
formulated as

q(θ, z; γ, ϕ) = q(θ; γ)q(z;ϕ)

=
M∏
i=1
{Dir(θi; γi)

Ndi∏
j=1

Multinomial(zij ;ϕij)}.
(19)

Bringing Eq.19 into the variational free energy, we can
obtain the objective function with respect to q and T .

L(q,T )

=Eq[logP (D,T , θ, z|α, β,V )] +H[q]

=Eq[log p(φ|β)] +
M∑
i=1

{Eq[log p(θi|α)]

+

Ndi∑
j=1

Eq

[
log

∑
z

p(zij |θi)p(wij |zij , φ)

]

+

Ndi∑
j=1

K∑
k=1

{Eq[logG(tik,vwij )]

+ Eq[log τ(tik,vwij
)]}}+H(q)

(20)

Introducing the Jensen Inequation to Eq.20, we obtain the
lower bound of L(q,T ).

L(q,T )

≥Eq[log p(φ|β)] +
M∑
i=1

{Eq[log p(θi|α)]

+

Ndi∑
j=1

∑
z

{Eq[log p(zij |θi)]

+ Eq[log p(wij |zij , φ)]}

+

Ndi∑
j=1

K∑
k=1

{Eq[log G(tik,vwij )]

+ Eq[log τ(tik,vwij
)]}}+H(q)

(21)
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The further details on derivation of Eq.21 are introduced
in Appendix A, where Eq.31 formulates the expansion of
each item in Eq.21.

We proceed to optimize Eq.21 with a Generalized Ex-
pectation Maximization (GEM) algorithm. The update e-
quations of the GEM algorithm will be introduced in the
following subsection.

4.2 Update Equations
The GEM algorithm includes E-Step and M-Step. Particular-
ly, in E-Step, for the l-th iteration, both T = T (l−1) and
φ = φ(l−1) are treated as constants. By maximizing the
objective function L(q,T ) w.r.t. γi and ϕij respectively, as
described in Appendix B, we obtain the optimal solutions:

ϕijk ∝
τ(tik,vwij )

1− τ(tik,vwij
)
φkwij exp{ψ(γik)}, (22)

γik = α+

Ndi∑
j=1

ϕijk, (23)

where ψ(.) is the digamma function.
In M-Step, on the other hand, for the l-th iteration,

both γ = γ(l−1) and ϕ = ϕ(l−1) are treated as constants.
By maximizing the objective function L(q,T ) w.r.t. φ, as
introduced in Appendix C, we obtain the optimal solution:

φkun
∝ β +

M∑
i=1

Ndi∑
j=1

wun
ij ϕijk, (24)

where wun
ij = 1 only if wij = un; 0 otherwise.

To update T , we first take the derivative of Eq.21 w.r.t.
tik, and then employ the Gradient Descent Method to opti-
mize the learning objective. As elaborated in Appendix C,
the gradient of L(q,T ) w.r.t. tik is obtained as

∂L(q,T )

∂tik
=

Ndi∑
j=1

(1 + ϕijk − 2τ(tik,vwij
))vwij

. (25)

Then the iterative formulation of tik is defined as

t
(l+1)
ik = t

(l)
ik + δ

∂L(q,T )

∂tik
, (26)

where δ is the learning rate. To satisfy the constraint that
||tik||2 ≤ µ, when ||tik||2 > µ, we normalize tik by
µ/||tik||2.

4.3 GEM Algorithm
The Generalized Expectation Maximization (GEM) algorithm
utilized in the optimization of EETM is illustrated as Algo-
rithm 1. The GEM algorithm is a combination of Variational
EM algorithm and Gradient Descent Method. In E-Step of GEM
algorithm, the posterior distribution of latent topics in each
document is estimated, during which other parameters and
embedding vectors are fixed. Then in the M-Step, word dis-
tribution parameters and topic embeddings are optimized.

We put some additional termination conditions to the
iterative steps and the overall procedure for GEM algorithm.
The maximum number of iterative steps is set to Titv , which
controls the convergence process (Line 11 in E-Step) and
gradient descent process (Line 3 in M-Step). Moreover, the

Algorithm 1 GEM algorithm for EETM.
E-Step: For each document di, compute the variational pa-
rameters {γ∗i , ϕ∗i }.

1: Initialize ϕ(0)
ijk := 1/K, j ∈ [1, Ndi ], k ∈ [1,K];

2: Initialize γ(0)ik := α+Ndi/K, k ∈ [1,K];
3: repeat
4: for j = 1 to Ndi do
5: for k = 1 to K do
6: ϕ

(l+1)
ijk :=

τ(tik,vwij
)

1−τ(tik,vwij
)φkwij exp{ψ(γ

(l)
ik )};

7: end for
8: Normalize ϕ(l+1)

ij to sum to 1;
9: end for

10: γ
(l+1)
ik := α+

Ndi∑
j=1

ϕ
(l+1)
ijk ;

11: until convergence.
M-Step: Update model parameters φ, and topic embedding
matrix Ti.

1: Update φkun
:= β +

M∑
i=1

Ndi∑
j=1

wun
ij ϕijk;

2: Normalize φk to sum to 1;
3: Update each topic embedding tik in document di with

Gradient Descent Method.

maximum iterative number of overall procedure is set to
Tall. Thus, the iterative number of E-Step is no more than
(M ×Tall×Titv × N̄d×K), and the iterative number of M-
Step is less than or equal to (M ×Tall×Titv×K), where N̄d
is the average length of documents. As Tall, Titv , and K are
fixed parameters, the running complexity of GEM algorithm
is O(M × N̄d).

For E-Step and Gradient Descent Method (Line 3 in
M-Step), documents are independent of each other, which
makes it possible for applying parallel computing against
documents. For topic-word distribution updating steps
(Line 1 and Line 2 in M-Step), topics are independent of each
other as well. Therefore, by utilizing parallel programming
and acceleration techniques in numerical calculation, the
GEM algorithm could work efficiently.

5 EXPERIMENTAL RESULTS

In our proposed EETM, each topic in a given document
di receives an embedding vector tik and a conditional
probability θik = P (k|di), which can be used to build up
the text representation in several text analysis tasks.

In our experiments, we have studied the performance of
EETM by setting up three different text representations, i.e.
θi, ti, and the combination of θi and ti. Particularly, we first
select optimal parameters for EETM. Then, to demonstrate
the topic coherence of EETM, we present the top words
in topics by comparing with conventional topic models.
Finally, we investigate the document representation quality
of EETM by testing it on several common text analysis tasks.

5.1 Experimental Setup
Data Sets We employed three corpora for evaluation:
the 20Newsgroups1 (20NG) and the Reuters-21578 corpus2

1. http://qwone.com/˜jason/20Newsgroups/
2. http://www.nltk.org/book/ch02.html
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(Reuters), and Hotel Reviews3 (Hotel). For Reuters, we re-
moved the documents appearing in two or more categories,
and selected the largest 10 categories that contain to 8,025
documents, following [16]. Hotel Reviews corpus contains
4,000 English hotel reviews with sentiment labels, i.e. 2,000
positive documents, and 2,000 negative documents. Hotel
Reviews is a short text corpus whose averaged length is 42
words. Note the same preprocessing steps are applied to all
data sets, e.g. convert all words into lower cases, remove
stop words4 and those words out of the word embedding
vocabulary.
Compared methods While the above three data sets have
class labels, our proposed EETM, as an unsupervised text
representation method, does not use the class labels in
our learning process. Instead, we only utilize the labels for
evaluation purpose. Three text representations built up by
utilizing the results of EETM are evaluated, including:

• TR: the topic representation with optimized γ∗i
learned by EETM;

• TE: the topic embeddings learned by EETM, which
are produced by the concatenation of all topic em-
beddings in a document;

• TR+TE: the concatenation of the TR and TE.

Baseline Methods We compare our proposed EETM against
seven unsupervised state-of-the-art text modeling meth-
ods, including three topic modeling methods, three text
representation methods and one conventional method. In
particular, three topic models compared in our experiments
are:

• LDA: the LDA [8] implemented in gensim library5;
• GaussianLDA: Gaussian LDA6 [19], whose posterior

topic distribution is utilized as document representa-
tion;

• LFTM: Latent Feature Topic Modeling7 [15], which
provides topic distribution in a document as the
representation.

Three text representation methods are:

• Doc2Vec: Paragraph Vector [42] in gensim library8;
• TWE: Topical Word Embedding9 [17], and the aver-

aged topic embedding is used as document represen-
tation;

• WE: the mean word embedding of the document.

For further comparison, concatenations of LDA and
word embedding (LDA+WE) are included in our ex-
periment. In addition, conventional bag-of-word (BOW)
method is included in our baselines, where each element
in a vector is a binary value, indicating whether it has the
word or not.
Experimental Settings We leveraged three pre-trained
word embeddings in our experiments, namely, GloVe10,

3. http://www.liip.cn/ccir2014/pc.html
4. http://www.nltk.org/book/ch02.html
5. http://radimrehurek.com/gensim/models/ldamulticore.html
6. https://github.com/rajarshd/Gaussian LDA
7. https://github.com/datquocnguyen/LFTM/
8. http://radimrehurek.com/gensim/models/doc2vec.html
9. https://github.com/largelymfs/topical word embeddings/
10. https://nlp.stanford.edu/projects/glove/

Word2Vec11 with Skip-Gram (Skip), and CBOW (CBOW)
model, respectively. The pre-trained word embeddings were
learnt on a March 2017 Wikipedia snapshot12. They contain
the most frequent 224,500 words. The dimensionalities of
word embeddings and topic embeddings are set to 50 and
100, following [17].

The hyperparameters of topic model, including EETM
and baselines, are set as α = 50/K, β = 200/|U |. The
radius of topic embeddings µ is set to 7 [16]. Thresholds
of iterative number are set as Titv = 100, Tall = 300.
During the experiments, we find the learning rate δ has little
influence on the performance of EETM. Thus, the learning
rate δ is set to 0.5 for faster convergence. Samples in each
data set are represented by EETM, ignoring their category
labels. After about 200 GEM iterations on each data set, topic
distributions and topic embeddings are obtained.

5.2 Topic Coherence
To evaluate topic coherence of EETM, we employ the NPMI
[43] as our metric. The number of topics is set to 20 initially,
and increased by 20 until 100. For each topic, top 10 words
are used to calculate NPMI value, after which the averaged
NPMI value of all topics are employed for evaluation. A-
mong baselines, only LDA could provide overall topic-word
distribution, thus we compared EETM with LDA. Results
of standard LDA and EETM with three pre-trained word
embedding methods (whose dimensionalities are 50 and 100
respectively) are listed in Table 1, where best performance is
in bold face.

Higher value of NPMI reflects that the top words within
topics are more strongly related to each other, which means
better quality of topics. As we can see in Table 1, EETM
presents much better quality of topic coherence than LDA
especially when the number of topic is set to lower value.
As EETM calculates a topic semantic embedding matrix
for every document, lower number of topic can effectively
reduce the computation cost. In the learning process of
EETM, topic embeddings are fixed during E-Step, thus the
computation cost of E-Step is generally close to standard
LDA. While in M-Step of GEM algorithm, topic embeddings
are updated by Gradient Descent Method (GDM). Based on
our experiment, we find that the iterative precision of topic
embeddings in the early iterations of GEM algorithm is not
crucial to the final result. When the topic distribution is close
to convergence state, topic embeddings can more easily
reach the convergence state. Even topic embeddings of the
longest document from 20NG can reach the convergence
state (precision threshold is 0.0001) within 200 GDM iter-
ations. Thus, in our experiment, maximum GDM iterative
times is limited to 200. After optimization, overall time cost
of EETM is acceptable.

Another phenomenon presented in Table 1 is that three
pre-trained word embedding methods generally produce
similar results and lower dimensionality of word embed-
dings can show competitive or best topic coherence. This
makes clear that EETM is not sensitive to the dimensionality
of semantic embedding vectors, which is intrinsically dif-
ferent from other embedding-learning methods. Thus, any

11. http://radimrehurek.com/gensim/models/word2vec.html
12. https://dumps.wikimedia.org/
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TABLE 1
NPMI comparison of EETM and LDA.

Method 20NG Reuters Hotel

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

EETM(CBOW50) 1.089 1.124 1.477 1.485 1.649 1.143 1.362 1.614 1.738 1.832 0.450 0.724 1.008 1.171 1.323
EETM(Skip50) 0.978 1.167 1.469 1.597 1.701 1.214 1.396 1.392 1.633 1.628 0.472 0.927 1.003 1.061 1.373
EETM(Glove50) 0.728 1.076 1.226 1.453 1.632 1.109 1.175 1.244 1.488 1.559 0.540 0.883 0.948 1.052 1.177
EETM(CBOW100) 0.993 1.320 1.397 1.541 1.776 1.216 1.419 1.693 1.665 1.811 0.431 0.846 0.987 1.103 1.212
EETM(Skip100) 0.996 1.355 1.495 1.726 1.791 1.204 1.446 1.545 1.634 1.751 0.460 0.716 0.906 1.077 1.134
EETM(Glove100) 0.874 1.128 1.090 1.432 1.666 0.905 1.089 1.300 1.354 1.611 0.524 0.783 0.972 1.045 1.143
LDA 0.178 0.290 0.392 1.209 1.783 0.761 0.798 0.859 1.304 1.645 0.484 0.532 0.507 0.425 0.320

TABLE 2
Top words in most representative topics of EETM and LDA.

Data Set EETM (CBOW) EETM (Skip)

20NG

edu president graphics key medical edu president graphics key medical
technology clinton edu clipper harvard posting clinton edu des pitt

institute stephanopoulos 3d chip medicine host stephanopoulos 3d pgp disease
columbia myers ray encryption health nntp going ray public gordon
insurance george bbs keys treatment organization myers pub bit cancer

Reuters

oil foreign coffee dollar billion oil bank coffee west billion
gas government export west pct gas banks export exchange january
tax exchange brazil exchange dlrs crude loan quotas dollar february
pct debt quotas rates year texas loans brazil paris year

production banks meeting policy january barrel interest ico baker rose

Hotel

very room location good not very room nice good not
poor bathroom helpful nice bed staff bed location friendly too

all big hotel friendly work breakfast bathroom also great even
fantastic use staff well cleaned helpful there little comfortable poor

center enough near excellent smoking excellent small walking location no

Data Set EETM (Glove) LDA

20NG

edu president graphics key medical make dean dean organization answers
posting will edu number health image organization worshipped dean dean

host clinton ray bit disease dean bible covenant whether group
nntp stephanopoulos 3d chip cancer correct answers quiz com god

organization press art bits patients organization timmbake mexico suggesting only

Reuters

oil bank coffee exchange billion recovery quick recovery bank merger
crude banks export west yen merger sumitomo quick merger bank

gas loans quotas dollar assets bank bank sumitomo quick sumitomo
barrels interest ico baker loans financial recovery bank recovery quick

ecuador credit brazil paris deposits japan sumi small sumitomo recovery

Hotel

very room location polite not people good reach sized value
staff bathroom great staff room location great easily people hotel

helpful shower hotel helpful night great really tourist very sized
friendly small other friendly reception sized without locations location problems

well water near well air good area heart easily good

word embedding of high quality can make EETM work
well. In order to illustrate the effect of pre-trained word
embeddings, we lists top words in most representative
topics learned by EETM and LDA, shown in Table 2, where
each column presents topic words within one topic.

20NG is a data set containing emails from 20 different
news groups. As shown in Table 2, related words are clus-
tered into same topics, and these topics can be clearly recog-
nized as technology, education, politics, and medicine. Similar
results can be observed in Reuters and Hotel. Particularly,
Reuters covers topics of economics, trade, and financial policy.
Thus, EETM can discover topics effectively, indicating the
original functions of LDA have been retained well in EETM.
Interestingly, words with specific syntactic functions were
also clustered into individual topics, e.g. quantifiers and
months, which are contained in the Reuters news, can be
assigned into the same topic, i.e. the fifth column of Reuters,
as they have similar syntactic or structural functions in

sentences, indicating EETM is capable to capture additional
structure information from pre-trained word embeddings.

Hotel is a review data set that contains sentiment terms
and expressions. Topics learned from Hotel data include
aspects of reviews, such as service, location, and room. In
those topics focusing on different aspects of hotels, words
frequently used to describe the same aspect of a topic are
clustered together. As for sentiments of reviews, words
expressing positive and negative opinions are split into
individual topics. Interestingly, the fourth topic (the fourth
column) is associated to positive words, while negative
words are clustered in the fifth topic (the fifth column).
These sentiment topics tend to cover adjectives and adverbs
with high probabilities, indicating that EETM can coordi-
nate topics and word embeddings to leverage both topic
information and syntactic/structural information.

Comparing the words from three pre-trained word em-
beddings, we observe EETM performs similarly and consis-
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tently. In other words, corresponding topics learned from
three word embeddings share a large portion of their top
words, with small differences in the order of words. In most
cases, the first several words are the same. The results show
EETM is stable and reliable no matter which word embed-
ding methods are selected. By integrating the semantic in-
formation of word embeddings with topics, EETM benefits
from both of them to select similar top words expressing a
certain opinion to form a topic.

Conventional topic models typically need a large data set
of documents with various content to extract the coherent
topic space. However, when the given data set is not big e-
nough or lacks of content diversity, conventional topic mod-
els will suffer. The three data sets used in our experiments
are comparatively small data sets. In addition, categories
of Reuters are imbalanced, and Hotel is a domain-specified
data set. Nevertheless, EETM could acquire enough seman-
tic information from pre-trained word embeddings, and it
is thus able to extract effective topics even with small or
domain-specified data sets. However, traditional LDA mod-
el suffers from smaller data set and produces inferior results.
Specifically, we observe many words expressing different
aspects are mixed in the same topics, while different topics
identified express same or similar content.

5.3 Parameter Selection

Following evaluations in our experiment include classifica-
tion task and clustering task. Thus, we perform 5-fold cross
validation (5FCV) on each data set to find the optimal K
value. To evaluate the performance of different K values,
we train `-1 regularized linear SVM classifier in one-vs-
all fashion 13 and employ the average accuracy on the test
sets in 5FCV as the evaluation metric.In order to test the
overall performance of our proposed EETM method, during
the parameter selection process, TR+TE has been used for
evaluation. This is because TR+TE, leveraging both topic
models and word embeddings, is able to perform better than
TR or TE individually.

Table 3 lists the optimal parameters on three data sets
with three word embedding methods, in terms of topic
number K and the dimensionality of word embedding N .

TABLE 3
Optimal parameters for EETM.

Data Sets w2v(CBOW) w2v(Skip) GloVe

K N K N K N

20NG 80 100 100 100 80 100
Reuters 40 50 60 50 80 50
Hotel 40 50 20 50 20 50

In the following qualitative assessment, all EETM meth-
ods will use the parameters in Table 3. For fair comparison
with our baseline topic modeling methods, the number of
topics is set to the maximum value of EETM on three pre-
trained word embedding methods in order to get lower
perplexity for baseline methods, that is 100, 80 and 40 for
20NG, Reuters and Hotel, respectively. Other parameters in

13. http://scikit-learn.org/stable/modules/svm.html

our baselines are set to their default values that generally
lead to better results.

5.4 Evaluation on Text Analysis Tasks

We are now ready to evaluate the performance of EETM on
three common text analysis tasks, including text categoriza-
tion, sentiment classification, and text clustering.

Both text categorization and sentiment classification are
classification tasks. In particular, 20NG and Reuters are
multi-class data sets consisting of 20 and 10 classes respec-
tively, and we use them in the text categorization task. Hotel
is a review data set with binary sentiment labels, which is
used in the binary sentiment classification task. All of the
three data sets have also been used in the clustering task by
ignoring their class labels.

5.4.1 Classification Task Evaluation
We perform 5-fold cross validation for each data set. The
standard macro-averaged precision (Prec), recall (Rec), F1
measurement (F1), and accuracy (Acc) [8], [17], [24], which
are widely used for comparing the performance among
different classifiers, are employed as the evaluation metrics.
The performance of different methods is listed in Table 4.
We include our proposed EETM results with three con-
figurations, i.e. TR, TE, and TR+TE. Best performance in
Table 4 are listed in bold. We observe that EETM achieves
the best performance, comparing with other state-of-the-art
methods.

TR with three pre-trained word embedding methods
outperforms LDA across three data sets, indicating that
the proposed information integration strategy works well
on transmitting semantics of word embeddings into topics.
The reason that TR outperforms LDA is it can balance the
word collocation patterns and context patterns, and topic
distribution can thus express context information as well.

GaussianLDA also uses word embeddings to enhance
topics. However, it changes LDA’s topic-word distribution
assumptions. Thus, it fails to extract effective word colloca-
tion patterns, leading to its inferior performance. In compar-
ison, our EETM can retain the original assumptions of LDA
and thus inherit advantages of LDA naturally. Furthermore,
GaussianLDA takes the mean of word embeddings as the
corresponding topic embedding, in which Euclidean dis-
tance is used as semantic measurement of word embeddings
and topic embeddings, leading to the result that similar em-
bedding vectors will be grouped into same topics. However,
high similarities of embedding vectors only indicate these
words have highly similar syntax functions and context
backgrounds, which does not mean they are frequently used
to express the same topic. Thus, GaussianLDA is not able to
discover coherent topics.

Topic embeddings of EETM are constructed by the em-
beddings of related words in corresponding topics, where
important word embeddings get higher weights. Thus, they
focus on the specific content of each topic in a document. In
Table 4, TE with three pre-trained word embedding methods
outperforms WE with the same word embedding methods
as well as Doc2Vec, for WE and Doc2Vec mix the words of
different topics into an overall embedding vector, leading to
its failure to distinguish the content from different topics.
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TABLE 4
Classification performance comparison on SVM.

Method 20NG Reuters Hotel

Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1 Acc

BOW 0.736 0.734 0.735 0.731 0.876 0.857 0.866 0.936 0.899 0.932 0.916 0.914
LDA 0.754 0.777 0.765 0.756 0.859 0.830 0.844 0.928 0.866 0.887 0.877 0.875
GaussianLDA 0.398 0.424 0.411 0.413 0.448 0.266 0.334 0.721 0.806 0.510 0.625 0.694
LFTM 0.778 0.798 0.788 0.778 0.863 0.845 0.854 0.935 0.907 0.913 0.910 0.909
Doc2Vec 0.408 0.417 0.412 0.410 0.613 0.334 0.433 0.660 0.772 0.814 0.792 0.787
TWE 0.759 0.782 0.770 0.761 0.862 0.831 0.846 0.927 0.852 0.878 0.865 0.862
WE(CBOW) 0.606 0.627 0.616 0.611 0.817 0.551 0.658 0.846 0.902 0.903 0.903 0.902
WE(Skip) 0.615 0.639 0.627 0.623 0.810 0.573 0.671 0.852 0.894 0.896 0.895 0.895
WE(GloVe) 0.608 0.630 0.619 0.614 0.796 0.545 0.647 0.842 0.888 0.886 0.887 0.887
LDA+WE(CBOW) 0.775 0.765 0.770 0.779 0.877 0.847 0.862 0.936 0.926 0.926 0.926 0.926
LDA+WE(Skip) 0.774 0.766 0.770 0.779 0.881 0.852 0.866 0.937 0.926 0.925 0.925 0.925
LDA+WE(Glove) 0.775 0.763 0.769 0.776 0.882 0.850 0.866 0.937 0.916 0.916 0.916 0.916

TR(CBOW) 0.744 0.754 0.749 0.741 0.854 0.798 0.825 0.916 0.911 0.933 0.922 0.921
TR(Skip) 0.754 0.762 0.758 0.748 0.884 0.809 0.845 0.923 0.923 0.944 0.933 0.932
TR(GloVe) 0.764 0.772 0.768 0.757 0.872 0.840 0.856 0.932 0.918 0.940 0.929 0.928
TE(CBOW) 0.736 0.744 0.740 0.734 0.846 0.797 0.821 0.891 0.951 0.948 0.950 0.950
TE(Skip) 0.737 0.747 0.742 0.735 0.852 0.788 0.819 0.887 0.893 0.900 0.896 0.896
TE(GloVe) 0.721 0.729 0.725 0.719 0.841 0.776 0.807 0.884 0.869 0.879 0.874 0.874
TR+TE(CBOW) 0.788 0.793 0.791 0.785 0.881 0.854 0.867 0.933 0.954 0.958 0.956 0.956
TR+TE(Skip) 0.787 0.794 0.791 0.784 0.887 0.857 0.871 0.936 0.942 0.953 0.947 0.947
TR+TE(GloVe) 0.789 0.794 0.791 0.785 0.877 0.857 0.867 0.937 0.936 0.938 0.937 0.937

In contrast, EETM acquires content semantics based on the
word co-occurrence patterns and transforms word embed-
dings to topic embeddings by utilizing topic distribution.
Thus, it is able to filter trivial context patterns of word
embeddings and to produce effective topic embeddings.

We observe from Table 4 that TR+TE performs better
than TR and TE individually. Note text representations of
topics and word embeddings are based on different but
complementary text patterns. EETM can not only retain
the original characteristics of topics and embeddings, but
also make them share their semantic information as much
as possible, leading to a better text representation method.
While LFTM and TWE perform well in combining topics
and embeddings, evidenced by good performance in our
experiments, they fail to take the difference between topics
and embeddings into consideration, limiting the further
improvement of their performance.

LDA+WE outperforms LDA or WE individually, which
also indicates that topics and embeddings are complemen-
tary. For 20NG and Reuters, their category labels are highly
related to topic information of the corpus, thus LDA+WE
produces similar results that are closer to LDA. In Hotel, the
sentiment labels rely more on the details of content, which
makes LDA+WE closer to WE. However, the concatenation
of LDA and WE does not deal with their relationship, which
limits the further improvement of the performance.

Finally, another phenomenon can be seen from Table 4 is
that F1 values of all compared methods on 20NG and Hotel
are close to their accuracy values, although on Reuters, F1
is apparently lower than accuracy. This is because the cate-
gories of 20NG and Hotel are balanced, while the categories
of Reuters are imbalanced. The results show our EETM can
work well on both balanced and imbalanced data sets.

5.4.2 Clustering Task Evaluation
We now evaluate EETM on text clustering task, one of
important applications in text analysis domain. We adopt

state-of-the-art spectral clustering14 implemented in scikit-
learn library as our clustering method for EETM, as it is
suitable to non-flat geometry case, which is suitable for
text contents. Widely used cosine similarity is utilized to
measure the semantic relationship between two documents,
and it is applied to all the EETM methods and baselines in
our experiments. Furthermore, EETM could acquire more
abundant information of documents to measure the seman-
tic between two documents. By making use of the topic
distribution and topic embeddings of a document, we define
an additional topic embedding similarity measurement (denoted
as TES in Table 5) between document di and dj for EETM,
which is formulated as follows.

TES(di, dj) =
K∑
k=1

2θikθjk
θik + θjk

Cosine(tik, tjk) (27)

The value of TES(di, dj) varies in the closed interval
[−1, 1]. When i = j, TES(di, dj) reaches the maximum
value 1. TES(di, dj) can be regarded as weighted-averaged
cosine similarity of topic embeddings, which simultaneous-
ly takes the topic distribution and topic embeddings into
consideration. Clearly, documents that have similar topic
distribution and context patterns will get higher similarities.

To evaluate the performance of clusters, we employ
the averaged entropy of categories in each cluster as the
evaluation metric [44]. Lower value of the averaged entropy
indicates that the cluster covers documents from fewer
and consistent categories, which means better performance.
Especially, when a cluster only covers documents from one
category, its entropy is 0, i.e. the best quality. The number of
clusters is set to 40 initially, and increase 40 each time until
200. The detailed results of clustering evaluation are listed
in Table 6 (Appendix D), where best performance is listed in

14. http://scikit-learn.org/stable/modules/generated/
sklearn.cluster.SpectralClustering.html
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TABLE 5
Best performance of clustering task.

Method 20NG Reuters Hotel

BOW 3.308 0.888 0.793
LDA 2.427 0.640 0.550
GaussianLDA 3.165 1.115 0.950
LFTM 2.607 0.792 0.570
Doc2Vec 3.438 1.297 0.696
TWE 2.242 0.627 0.462
WE(CBOW) 2.342 0.761 0.537
WE(Skip) 2.269 0.682 0.525
WE(GloVe) 2.298 0.687 0.578
LDA+WE(CBOW) 2.050 0.550 0.657
LDA+WE(Skip) 2.029 0.557 0.616
LDA+WE(Glove) 2.042 0.574 0.657

TR(CBOW) 2.179 0.525 0.683
TR(Skip) 2.419 0.593 0.452
TR(GloVe) 2.341 0.624 0.462
TE(CBOW) 3.334 1.222 0.545
TE(Skip) 3.361 1.219 0.718
TE(GloVe) 3.363 1.231 0.747
TR+TE(CBOW) 2.263 0.603 0.529
TR+TE(Skip) 2.481 0.614 0.417
TR+TE(GloVe) 2.330 0.701 0.452
TES(CBOW) 2.222 0.628 0.631
TES(Skip) 2.215 0.658 0.519
TES(GloVe) 2.211 0.711 0.520

bold font. For the sake of clarity, we listed best performance
of each method in table 5, and compared the best results
of TR, TR+TE, and TES with LDA and TWE in Figure 2, as
they are generally better than other compared methods and
baselines.

From Figure 2, it can be confirmed that the increasing
number of clusters will generally reduce the averaged en-
tropy of categories in each cluster. The TES(Glove) works
generally better on 20NG, while TR(CBOW) works better on
Ruters, and TR+TE(Skip) gets the best performance on Ho-
tel, as shown in Figure 2. The content complexity of 20NG
is higher than Reuters and much higher than Hotel. Thus,
20NG is more difficult to be clustered properly. Our defined
TSE measurement can leverage more semantic information
of documents to distinguish complicated content, leading to
better performance in 20NG.

LFTM also utilizes word embeddings to enhance the
topic representation. However, it fails to make use of the
difference between embeddings and topic-word relations,
leading to its worse performance than LDA. TWE uses the
topic-word distributions to form refined topic embeddings,
so it outperforms LDA. TR is the topic distribution learned
by EETM, which benefits from both topic-word distributions
and embeddings by utilizing the proposed information in-
tegration strategy. As 20NG and Reuters are topic category
data sets, their contents are highly depend on the quality of
topic distribution. Thus, TR outperforms LDA and LFTM.
TR also works better than TWE on 20NG and Reuters data,
and obtains similar good results with TWE on Hotel data.

Topic embeddings learned by EETM focuses on the
semantic details of documents, which are filtered by the
topic-word distribution. Semantics of text are complex, and
the performance of different data set is closely related to
the content of documents. TE focuses on the specific topical
contents of each document, leading to less similarity of

embedding vectors from different documents. TR also takes
in context information carried by word embeddings, which
may weaken the topic information. Thus, for data set whose
labels strongly rely on topic information and overall context
information, such as 20NG, LDA+WE would provide the
best performance. In task such as the sentiment clustering
task on Hotel data, the sentiment clusters are highly asso-
ciated with the details of each topic, and especially topics
with sentiment information are essential. Thus TR experi-
ences performance improvements by combining with TE, to
achieve the best performance on TR+TE(Skip). As LDA+WE
fails to discover sentiment topics, its performance is surely
limited in the sentiment clustering task. With EETM, multi-
perspective text representation can be obtained to deal with
different text analysis tasks.

BOW model produces competitive results in classifica-
tion tasks, but it suffers from data sparsity in clustering
tasks. We observe that GaussianLDA and Doc2Vec are not
suitable for clustering tasks too and their results are worse
than BOW.

In summary, the results of text and sentiment clustering
tasks on three data sets demonstrate that EETM produces
the best representation to encode the text semantics in doc-
uments, and our proposed information integration strategy
can take advantages of both topics and word embeddings.

5.5 Discussion

In our experiments, we have compared EETM with base-
lines on two common text analysis tasks. During the param-
eters selection and classification tasks, 5-fold cross valida-
tion is used to verify the results. In the qualitative assess-
ment of topic coherence, EETM could assign proper key-
words into related topics even on small or domain-specified
data sets. In the clustering tasks, topic distribution and
topic embedding can be combined for different data sets.
Furthermore, our topic embedding similarity measurement
based on EETM is suitable for 20NG. The results of our
experiments demonstrated that the proposed information
integration strategy and EETM could work well in both
supervised and unsupervised text representation tasks.

The motivation of our integration framework is to map
the semantic information of topics into corresponding se-
mantic embedding structure. Both topic embeddings and
topic distributions can receive improvements from this s-
trategy. The different aspects of a document are described
by topic distribution and embeddings together, by using
which we can design more accurate measurements for
representing the text content. Besides, it also allows topics
and topic embeddings to maintain their own characteristics.
The final text representation of EETM can be established
by combining these two parts systematically. Thus, EETM
could build comprehensive text representation that contains
both topic information and structure information learned by
word embeddings. The topic embedding matrix and topic
distributions for a single document can further be used to
construct refined semantic measurements.

EETM is a hybrid model, and the model setting of its
components is essential to EETM. There are two major
settings for EETM, namely the topic number K , and the pre-
trained word embeddings. The topic number K of EETM
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(a) 20NG (b) Reuters (c) Hotel

Fig. 2. Performance comparison on text clustering task. Best performance of TR, TR+RE, and TES on three pre-trained word embedding methods
are compared with LDA and TWE.

has the same function to traditional topic models. Thus,
it can be determined by conventional tricks such as cross-
validation or empirical values. The quality of the pre-trained
word embeddings is essential to EETM as well. EETM does
not update the word embeddings during the learning pro-
cedure. The meaning of a topic particularly depends on the
content of the document, which can be treated as weighted
average of its related word embeddings. Updating word
embeddings with the topic embeddings tends to average the
word embeddings as well. Thus, word embeddings are not
being updated in EETM. The pre-trained word embeddings
can be selected by testing on certain data sets and tasks.

Based on our experiments, similar improvements have
been observed on EETM with three pre-trained word em-
bedding methods. EETM is not sensitive to the dimension-
ality of pre-trained word embeddings. For different data
sets and tasks, the performance of EETM with different
pre-trained word embeddings has witnessed marginal dif-
ferences, i.e. EETM works quite stably with different pre-
trained word embeddings.

6 CONCLUSIONS

In this paper, we have proposed a novel integration strategy
to construct an Embedding Enhanced Topic Model (EETM),
facilitating two different perspectives of text patterns, from
topic models and word embeddings, can be integrated ef-
fectively.

Our experimental results have demonstrated that EETM
works very well on three major text analysis tasks, namely
text classification, sentiment classification, text clustering,
across three different benchmark data sets, indicating EETM
is able to produce high quality text representations. In
addition, original characteristics of topic models and word
embeddings can be retained to maintain their individual
unique structure and functional advantages for better text
comprehension. Moving forward, we believe EETM can
potentially be used in other tasks, such as information
retrieval, similarity analysis etc. Furthermore, the proposed
information integration framework has potential applica-
tions in various scenarios, such as combining different types
of machine learning models, integrating different represen-
tation methods etc.
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