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Abstract— Unsupervised domain adaptation (UDA) has suc-
cessfully addressed the domain shift problem for visual appli-
cations. Yet, these approaches may have limited performance
for time series data due to the following reasons. First, they
mainly rely on the large-scale dataset (i.e., ImageNet) for source
pretraining, which is not applicable for time series data. Second,
they ignore the temporal dimension on the feature space of the
source and target domains during the domain alignment step.
Finally, most of the prior UDA methods can only align the global
features without considering the fine-grained class distribution
of the target domain. To address these limitations, we propose a
SeLf-supervised AutoRegressive Domain Adaptation (SLARDA)
framework. In particular, we first design a self-supervised (SL)
learning module that uses forecasting as an auxiliary task to
improve the transferability of source features. Second, we propose
a novel autoregressive domain adaptation technique that incor-
porates temporal dependence of both source and target features
during domain alignment. Finally, we develop an ensemble
teacher model to align class-wise distribution in the target domain
via a confident pseudo labeling approach. Extensive experiments
have been conducted on three real-world time series applications
with 30 cross-domain scenarios. The results demonstrate that our
proposed SLARDA method significantly outperforms the state-of-
the-art approaches for time series domain adaptation. Our source
code is available at: https://github.com/mohamedr002/SLARDA.
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I. INTRODUCTION

T IME series classification (TSC) is a pivotal problem in
many real-world applications including healthcare ser-

vices and smart manufacturing [1], [2]. Several conventional
approaches tried to learn the dynamics of the time series data
for the classification task including dynamic time warping
(DTW), hidden Markov models (HMMs), and artificial neural
networks (ANNs) [3]. Yet, these approaches cannot cope
with evolving complexity of real-world applications. Deep
learning (DL) has shown notable success for time-series-based
applications [1], [4], [5]. However, its success comes at the
expense of laborious data annotation. Moreover, DL-based
approaches always assume that the training data (i.e., source
domain) and testing data (i.e., target domain) are drawn from
the same distribution. This may not hold for real applications
under dynamic environments, which is well-known as the
domain shift problem.

The unsupervised domain adaptation (UDA) methods have
achieved remarkable progress in mitigating the domain shift
problem for visual applications [6], [7]. To avoid extensive
data labeling, UDA is designed to leverage previously labeled
datasets (i.e., source domain) and transfer knowledge to an
unlabeled dataset of interest (i.e., target domain) in a transduc-
tive domain adaptation scenario [8]. One popular paradigm is
to reduce the distribution discrepancy between the source and
target domains via matching moments of distributions at differ-
ent orders. For instance, the most prevailing method is based
on the maximum mean discrepancy (MMD) as a distance,
which is calculated via the weighted sum of the distribution
moments [9]. Another paradigm for mitigating the distribution
shift is inspired by generative adversarial networks (GANs).
Particularly, it leverages adversarial learning between a feature
extractor and a domain discriminator to find domain-invariant
features [10], [11].

Nevertheless, applying UDA on time series data can be
challenging for the following reasons. First, most of the
existing approaches are specifically developed for visual data.
Extending these approaches to time series could be suboptimal
due to its temporal dynamics property. Second, most of the
existing DA approaches rely on ImageNet pretraining as the
initialization for the model, which is not applicable for time
series data.
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Fig. 1. Illustration of different domain alignment approaches. (a) Global
distributions of the source and target domains are aligned, but the classes are
misclassified between the source and the target. (b) In our proposed approach,
both global feature alignment and class-conditional alignment are considered
during the adaptation process to align the domains in feature and class levels.

Recently, few works have addressed domain adaptation for
time series data by finding domain-invariant features [12],
[13]. For instance, Purushotham et al. [12] used the vari-
ational recurrent networks to extract features and adver-
sarial adaptation to align the source and target domains.
Wilson et al. [13] leveraged information from multiple source
domains to improve the performance on the unlabeled target
domain. Both the approaches aim to find domain-invariant
features by adversarially training the feature extractor to
deceive the domain discriminator.

However, they ignore the temporal dimension when dis-
criminating between the source and target features. As a
result, the domain discriminator can be easily deceived without
reaching a satisfactory alignment state. Furthermore, previous
time series domain adaptation methods aim to only align the
global distribution between domains, without considering the
fine-grained class distributions within each domain as shown
in Fig. 1.

To address all the aforementioned limitations, we propose
a novel SeLf-supervised AutoRegressive Domain Adaptation
(SLARDA) framework to boost the performance of time series
UDA. First, unlike existing approaches that use self-supervised
(SL) learning for unsupervised representation learning [14],
[15], we design an SL pretraining approach to improve the
transferability and generalization of the learned features in the
source domain. With the lack of an ImageNet-like dataset for
time series pretraining, we are the first to propose SL pretrain-
ing as a strong alternative for time series domain adaptation.
Second, to incorporate temporal dependence of time series data
during feature alignment, we propose a novel autoregressive
domain adaptation approach. Particularly, an autoregressive
domain discriminator is developed to consider the temporal
dimension when classifying between the source and target
features, which helps the feature extractor to learn better
features.

Finally, to mitigate the class-conditional shift between
the source and target domains, we propose a teacher-based
approach with confident pseudo labels to guide the target
model and correctly align the fine-grained source and target
classes.

The main contributions of the proposed method can be
summarized as follows.

1) We develop an SL pretraining for the source domain
via a contrastive predictive loss to improve representa-
tion learning and transferability of the learned features.
To the best of our knowledge, we are the first to propose
SL pretraining for time series domain adaptation.

2) To consider temporal dependence among the source
and target features during domain alignment, we design
an autoregressive domain discriminator for time series,
which can boost the performance of feature learning and
domain alignment.

3) We propose an ensemble teacher model confident pseudo
labeling approach to generate reliable pseudo labels in
the target domain for domain alignment, which can
mitigate the class-conditional shift between the source
and target domains.

II. RELATED WORKS

In this section, we will present the recent literature of
general UDA and the existing techniques of time series domain
adaptation.

A. Unsupervised Domain Adaptation

UDA, which is a subset of transfer learning, attempts to
address the domain shift problem of labeled source and unla-
beled target domains. The existing approaches can be classified
into two major categories, namely, discrepancy-based methods
and adversarial learning-based methods. Discrepancy-based
approaches intend to align the two domains via minimiz-
ing statistical distances. For instance, some methods mini-
mized MMD [16] to find invariant features between the two
domains [17]–[19]. Chen et al. [20] presented a high-order
MMD to match high-order moments between the source and
target domains. Correlation alignment methods try to miti-
gate the domain shift by matching the second-order statistics
between the source and target domains [21], [22]. In [23],
central moment discrepancy (CMD) was proposed to align
high-order central moments to obtain transferable features
between the source and target domains.

Inspired by GANs, adversarial UDA methods optimize a
feature extraction network to produce invariant features of the
source and target domains such that a well-trained domain
classification network cannot distinguish between them. For
example, Ganin et al. [24] used a reverse gradient layer to
adversarially train the domain discriminator and the feature
extractor. While Tzeng et al. [25] proposed an adversar-
ial discriminative domain adaptation (ADDA) approach via
untying source and target networks and using GAN-based
inverted labels’ loss İn Wasserstein distance guided representa-
tion learning (WDGRL), a theoretically justified Wasserstein
distance was used to tackle the stability issue of the GAN-
based objective. Long et al. [27] proposed conditional adver-
sarial domain adaptation (CDAN) via incorporating the task
knowledge with features during the domain alignment step.
The decision boundary iterative refinement training (DIRT)
approach used virtual adversarial training and conditional
entropy to align the source and target domains [28]. How-
ever, most of these approaches adopt conventional adversarial
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Fig. 2. Overall framework of the proposed SLARDA.

training on a vectorized feature space of the source and target
domains, disregarding the temporal information during the
domain alignment step. Differently, our approach leverages
autoregressive domain discriminator to consider the temporal
information during alignment, leading to a better discrimina-
tive adaptation between the source and target domains.

On the other hand, another related line of research has lever-
aged self-ensemble techniques to provide pseudo labels for
the unlabeled target domain [29], [30]. Yet, these approaches
cannot predict high-quality pseudo labels at the early stage
of training due to lack of proper initializing. Differently, our
approach is initialized by an SL pretrained model on the source
domain, which can produce robust pseudo labels at both early
and late stages of the adaptation step.

B. Domain Adaptation for Time Series Data

Few studies have investigated UDA for time series data.
For instance, Purushotham et al. [12] used variational recur-
rent auto-encoder with adversarial training to mitigate the
domain shift problem. Wilson et al. [31] proposed multi-
source domain adaptation via a gradient reversal layer for
human activity recognition (HAR) tasks. Most of these
approaches directly adopted image-based UDA techniques
for time series, which may be suboptimal as they ignored
temporal dependence during domain alignment. Differently,
our approach explicitly addresses temporal dependence during
both feature learning and domain alignment steps by design-
ing a novel SL pretraining and an innovative autoregressive
domain discriminator, respectively. In addition to global fea-
ture alignment, our approach also adapts the fine-grained class
distributions between the source and target domains, as shown
in Fig. 1.

III. METHODOLOGY

A. Problem Formulation

In this work, we address the problem of UDA for time series
data. Given a labeled source domain DS = {Xi

S, yi
S}nS

i=1 with

nS samples, and an unlabeled target domain DT = {X j
T }nT

j=1,
with nT samples. The source and target domains are sampled
from different distributions PS(X) and PT (X), respectively,
where PS(X) �= PT (X). The samples of the source and target
domains can be either univariate or multivariate time series.
Formally, we have input source sample Xi

S ∈ R
M×K with

M channels and K time steps, and its corresponding label
yi

S ∈ R
C , where C is the number of classes. Our main goal

is to design a predictive model that can accurately predict the
label yi

T of the unlabeled target sample Xi
T ∈ R

M×K .

B. Overview of SLARDA

Fig. 2 shows the proposed SLARDA framework, which is
composed of three main components: 1) an SL pretraining
module to improve the transferability of the learned source
features; 2) an autoregressive discriminator model to explicitly
consider temporal dependence among the source and target
features during domain alignment; and 3) a class-conditional
alignment module to address the class-conditional shift and
adapt the fine-grained distribution of different categories for
the unlabeled target domain. We will elaborate on each com-
ponent in more detail in Sections III-C–III-E.

C. Self-Supervised Learning for Source Pretraining

Most of the existing UDA approaches initialize the target
domain model by a supervised pretrained model on the labeled
source domain. We argue that the learned representation from
supervised objectives tends to be more specific toward a
single domain and may have limited transferability to out-
of-distribution domains. Inspired by van den Oord et al. [14],
we propose a novel SL auxiliary task to improve the trans-
ferability of learned representations in the source domain.
Specifically, given the encoded latent features, we pick a time
step t and train the model to predict future time steps given
the past ones, as shown in Fig. 3. Thus, the model will learn
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Fig. 3. SL learning in the source domain.

more general features that encompass the shared information
among multiple time steps.

To map the input data into a latent space, we first design
a 1-dimensional convolutional neural network (1-D-CNN)
encoder model. Then, we leverage an autoregressive model to
summarize the latent features into a context vector. Formally,
given the output latent features from the encoder H≤t =
{h0, . . . , ht}, they are fed into an autoregressive model to
obtain the context vector rt . Subsequently, we pass the context
vector to a parameterized fully connected mapping layer FCk

to predict the future latent feature zt+k = FCk(rt).
To measure similarity between ht+k and zt+k, we leverage

a dot product similarity measure between the predicted vector
and the true latent future. The similarity matching function
can be formulated as follows:

φk(ht+k, zt+k) = exp
(
hᵀ

t+k zt+k
)

(1)

where φk is a log bilinear model. Here, we jointly optimize the
encoder model, the autoregressive model, and the log bilinear
model via the contrastive objective to maximize the similarity
between the predicted future zt+k and its corresponding true
future latent feature ht+k. While the true latent feature changes
during training, the predicted vector varies correspondingly to
preserve their relationship and stabilize the training process.

This auxiliary task of predicting the future time steps via
SL learning helps better model the temporal dependence of the
input samples and produce more transferable features from
the source domain. We formulate the problem as a binary
classification problem between positive and negative samples.
In our case, the future latent of the same sample is considered
as a positive pair, while the future latent of all other samples
in the mini-batch is considered as negative pairs. This can be
formalized as follows:

LSL = −E
Hb

[
log

φk(ht+k, FCk(rt))∑
h j∈Hb

φk
(
h j , FCk(rt)

)
]

(2)

where Hb represents a mini-batch of samples.
We design the aforementioned SL loss to optimize the

source encoder ES on the source domain data. Concurrently,
we train the encoder model ES to perform well on the main

Fig. 4. Autoregressive discriminator.

classification task via cross-entropy loss on the labeled source
domain data, shown as follows:

Lcls = −EX S∼PS

[
yᵀ

S log(CS(ES(X S)))
]
. (3)

Finally, we jointly train the source encoder ES with the
SL task along with the supervised objective to produce more
transferable features as follows:

min
ES

Lcls + LSL. (4)

D. Autoregressive Domain Adaptation

Adversarial domain adaptation has achieved remarkable
performance for visual applications. However, the design of
discriminator networks in the existing methods does not con-
sider temporal dependence in the feature space of the time
series data, resulting in a limited performance for domain
alignment.

To address this critical issue, we propose an autoregressive
domain discriminator to exhibit the temporal dynamic behavior
of time series data during domain alignment, as shown in
Fig. 4.

The autoregressive discriminator DAR consists of two main
components. First, an autoregressive network f AR that encodes
the temporal dependencies among both the source and target
features into vector representations, shown as follows:

f AR(h0, . . . , hK ) = p(hK | h<K ) (5)

where p(hK | h<K ) is the conditional distribution among
different time steps of the sequential features.

Second, a binary classification network fD is applied on
the summarized feature vectors to classify between the source
and target features. Thus, the autoregressive discriminator can
be represented as DAR = fD( f AR(·)). A detailed explanation
of the autoregressive discriminator and its architecture are
discussed in Section IV-B. To align the source and target
domains, we first freeze the SL pretrained source model and
transfer its weights to the target model. Then, we adversarially
train the autoregressive domain discriminator against the target
model to produce domain-invariant features. The autoregres-
sive discriminator is optimized to discern between the source
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Fig. 5. Class-conditional alignment via teacher model.

and target features, which can be formalized as

min
DAR

LD = −EX S∼PS

[
log DAR(HS)

]
−EXT∼PT

[
log(1− DAR(HT ))

]
(6)

where HS = ES(X S) and HT = ET (XT ) are the temporal
output features from the source and target encoders, respec-
tively, and DAR represents the autoregressive discriminator
network. Concurrently, we train the target encoder to confuse
the discriminator by mapping the target features to be similar
to the source ones. The target encoder loss can be formalized
as

min
ET

Ladv = EXT∼PT

[
log(1− DAR(HT ))

]
. (7)

E. Class-Conditional Alignment via Teacher Model

Autoregressive domain adaptation can successfully align the
marginal distribution of the source and target temporal fea-
tures. However, it can still misalign the different classes among
the source and target domains due to the class-conditional
shift. To overcome this issue, we develop a teacher-based
confident pseudo labeling approach to adapt the fine-grained
distribution of different categories among the source and target
domains.

1) Teacher Model: Inspired by the mean teacher for semi-
supervised learning [29], we design an ensemble teacher
model fψ to produce robust pseudo labels for the unlabeled
target domain, as shown in Fig. 5. We obtain the weights of
the teacher model Wψ by applying the exponential moving
average (EMA) over the target model parameters WθT across
successive training steps. The momentum updates of the
teacher model parameters can be represented as follows:

Wψ = αWψ + (1− α)WθT (8)

where α is a momentum parameter that controls the speed of
the weight updates of the teacher model. Given the teacher
model fψ , we obtain the output predictions as follows:

pψ = fψ(XT ) (9)

ŷψ = softmax
(

pψ
)

(10)

where pψ are the output predictions of the teacher model, and
ŷψ are the corresponding probabilities.

2) Confident Pseudo Labels: To further refine the predicted
labels of the teacher model, we only preserve the confident
labels that are above a predefined confidence threshold ζ . This
can be formalized as follows:

ŷps = ŷψ
[
max

(
pψ

)
> ζ

]
(11)

where ŷps are the retained confident pseudo labels. To align
the class-conditional distribution, we leverage the obtained
confident pseudo labels to train the target model by a cross-
entropy loss

Lca = −EXT∼PT

[
K∑

k=1

�[yps=k] log
(

ŷk
T

)]
(12)

where Lca is the class-conditional alignment loss, and ŷT =
CT (ET (XT )) are the predicted labels by the target classifier
CT .

Algorithm 1: Autoregressive Domain Adaptation

Input: Source domain: DS = {Xi
S, yi

S}nS
i=1

Target domain:DT = {Xi
T }nT

i=1
Output: Trained target encoder ET

ES ← Pretrained source encoder
ET ← Initialize with Es parameters
fψ ← Teacher model
DAR ← Autoregressive Domain Discriminator
for number of iterations do

1) Sample mini-batch of m source samples X S ∼ PS

2) Sample mini-batch of m target samples XT ∼ PT

3) Extract source features: HS = ES(X S)
4) Extract target features: HT = ET (XT )
5) Feed HS and HT to DAR

6) Assign labels of ones to HS and zeros to HT

7) Compute discriminator loss LD by Eq. 6
8) Update DAR by LD

9) Invert the labels of HT

10) Compute Ladv with the inverted labels by Eq. 7
11) Pass XT to the teacher model fψ
12) Obtain the confident pseudo labels by Eq. 11
13) Compute the class-conditional loss LC A by Eq. 12
14) Update ET using both Ladv and LC A via Eq. 13

end

F. Overall Objective Function

In our approach, we jointly optimize the target encoder ET

to minimize both the autoregressive domain adaptation loss
and class-conditional alignment loss in an end-to-end learning
manner. Our overall objective can be formalized as follows:

Loverall = Ladv + λLca

= min
ET

EXT∼PT

[
log(1− DAR(ET (XT )))

− λ ŷᵀ
ps log(CT (ET (XT )))

]
(13)

where λ is the weight of the class-conditional loss. Algo-
rithm 1 shows the detailed procedures of our autoregressive
adaptation approach.
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Fig. 6. Architecture of feature extraction network.

G. Testing on the Target Domain

In the testing phase, we only use the pretrained target
encoder ET and target classifier CT while ablating both the
transformer model and the autoregressive network, ensuring
consistency of the backbone network when evaluating against
other UDA algorithms. Given the test data from the target
domain, the encoder model ET will extract the target adapted
features. Subsequently, the target classifier CT will predict the
corresponding class predictions

p̂test = EX test∼Ptest [μ(CT (ET (X test)))] (14)

ŷtest = argmax
(
p̂test

)
(15)

where μ(a)i = (eai/
∑k

j=1 ea j ) represents the softmax func-
tion, p̂test is the output probability vector, and ŷtest is the
predicted label.

IV. EXPERIMENTS

A. Datasets

We evaluate our SLARDA on three real-world time series
applications including HAR, sleep stage classification (SSC),
and machine fault diagnosis (MFD). Table I shows the summa-
rized details about each dataset. To calculate the total number
of samples for each dataset, we summed all the training and
testing parts for all the domains. We will elaborate further
about each dataset in Sections IV-A1–IV-A3.

1) HAR Dataset: The Opportunity1 is a benchmark dataset
for HAR [32].

In our experiments, following the existing baselines in the
data challenge [33], we only selected 113 sensors. The data
annotations comprised of two main levels: 1) locomotion rep-
resents low-level tasks such as sitting, standing, walking, and
lying down and 2) gestures: high-level tasks which comprised
17 different actions. We only adopted low-level annotations,
and hence, we have four main classes (i.e., sitting, standing,
walking, and lying down). The missing values in the data have
been filled via the linear interpolation approach. Four users
have been involved in the experiments, where the data from
each user represent one domain. We aim to apply domain
adaptation across different users. To construct the training
samples for each user, we adopted sliding window approach
with a window size of 128 and overlapping of 50%, as in [33].

2) SSC Dataset: SSC includes classifying electroencephalo-
gram (EEG) signals into five stages: wake (W), nonrapid eye
movement (N1, N2, and N3), and rapid eye movement (REM).
In our experiments, we evaluate our domain adaptation method

1https://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+
Recognition

TABLE I

DATASET STATISTICS

TABLE II

PARAMETER SETTING FOR THE CNN ENCODER AND THE AUTOREGRES-
SIVE FEATURE EXTRACTOR

with cross-dataset scenarios. Therefore, we use three real-
world datasets, namely, Sleep-EDF,2 SHHS-1, and SHHS-2,3

with sampling rates of 100, 125, and 250 Hz, respectively. The
different sampling rates incur significant domain shifts among
datasets. Notably, we down-sampled the data from SHHS-1
and SHHS-2 such that their sequence lengths become the same
as Sleep-EDF (i.e., 3000 time steps).

3) MFD Dataset: The MFD4 dataset contains sensor read-
ings of bearing machine under four different operating con-
ditions, with each having three different classes, i.e., healthy,
inner bearing damage, and outer bearing damage. Each operat-
ing condition refers to different operating parameters, includ-
ing rotational speed, load torque, and radial force [34]. In our
experiments, each operating condition is considered as one
domain. Eventually, we can perform 12 cross-condition sce-
narios for domain adaptation. To construct the data samples
for each domain, we adopted a sliding window to segment the
data into small segments. We set the window size of 5120 and
shifting size of 4096, as in [35].

B. Model Architectures

Our algorithm has two main models, namely, the feature
extractor model and the autoregressive discriminator model.
We provide further details about the architecture of each model
in Sections IV-B1 and IV-B2.

2physionet.org/content/sleep-edf/1.0.0/
3https://sleepdata.org/datasets/shhs
4https://mb.uni-paderborn.de/en/kat/main-research/datacenter/bearing-

datacenter/data-sets-and-download
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Fig. 7. Architecture of autoregressive discriminator.

1) Feature Extractor: We adopt the 1-D-CNN architecture
to extract features for the three datasets, as shown in Fig. 6.
Due to the large variation among different applications, differ-
ent kernel sizes and different number layers are selected for
each dataset. Table II shows the detailed encoder parameters
for each dataset. We adopted the commonly used architecture
in the literature for each application. Particularly, for the MFD
dataset, we used a five-layer 1-D-CNN with a kernel size of
32, as in [35]. While for both SSC and HAR, we used a three-
layer 1-D-CNN with a kernel size of 25 and 8, respectively,
as in [36].

2) Autoregressive Discriminator: We use the transformer
model [38] to model the temporal dependence among time
steps for both the source and target domains. The transformer
model uses SL, which has an advantage over other sequential
model such as recurrent neural networks in terms of efficiency
and speed [39]. The model architecture is shown in Fig. 7.
First, a linear projection layer is used to map from the input
dimension to the hidden dimension of the transformer model.
Then, layer normalization is applied to the input features.
After that, a multihead SL is used to normalized features.
Table II shows the detailed parameters for the autoregressive
discriminator. As each dataset has different characteristics,
we adopt different parameters for each dataset.

3) Autoregressive Network (Pretraining): In our pretraining
step, we leverage gated recurrent network (GRU) to summarize
the latent features into a context vector. Particularly, we used a
single-layer GRU network for all the datasets, while input and
hidden dimensions vary according to each dataset. Table II
illustrates the detailed architectures of the GRU network on
each dataset.

C. Implementation Details

In our experiments, we use labeled data from the source
domain and unlabeled data from the target domain, following
the standard protocol of UDA [27], [28]. All the experiments
have been conducted using PyTorch 1.7 on NVIDIA GeForce
RTX 2080 Ti GPU. We use a batch size of 512 for MFD
and 128 for HAR and SSC. We adopt Adam optimizer with a
learning rate of 1e−3 for SSC and 1e−4 for HAR and MFD,
and a weight decay of 3e−4, as in [35], [36], and [39]. For
the teacher model, the conditional alignment weight λ is set
to 0.005, the momentum of updating the teacher model α
is set to 0.996, and the confidence threshold ζ for pseudo
labels is set to 0.9. For all the datasets, we randomly split the

data into 60% for training, 20% for validation, and 20% for
testing. We report the mean value of five consecutive runs
with different random seeds.

D. Results

1) Baselines: To evaluate the performance of the proposed
SLARDA, we have compared against some strong baselines.
As most of the state-of-the-art approaches are implemented for
image-related datasets, we reimplement nine state-of-the-art
methods to fit our time series datasets. In addition, to promote
fair evaluation, we adopt our backbone architecture which
works well on time series for all the baseline methods. In par-
ticular, we compare our SLARDA with the following state-
of-the-art methods: deep adaptation networks (DAN) [17],
WDGRL [26], Deep CORAL [22], minimum discrepancy
domain adaptation (MDDA) [37], HoMM [20], domain adver-
sarial neural networks (DANN) [24], CDAN [27], and vir-
tual adversarial domain adaptation (VADA) [28]. It is worth
noting that some baselines failed to outperform Source Only
on some datasets as they are not specifically designed for
time series data. Hence, we only reported the methods that
outperform Source Only for each dataset. In Tables III–V,
the best performance is bolded, while the second best is
underlined.

2) Results on the HAR Dataset: We first evaluate our
proposed SLARDA on the HAR dataset which contains data
from four subjects, namely, A, B, C, and D. Table III shows the
evaluation results on 12 cross-domain scenarios. Our proposed
approach achieves the best performance on six cross-domain
scenarios and the second best on five cross-domain scenarios.
Besides, the proposed SLARDA significantly outperforms the
benchmark methods in the overall performance with a 2.62%
improvement over the second best method, i.e., DIRT. It is
worth noting that the adaptation sometimes may deteriorate the
performance when the domain gap is small as in the B → A
scenario.

3) Results on the SSC Dataset: The SSC dataset contains
three domains, namely, EDF, SH1, and SH2, with sampling
rates of 100, 125, and 250 Hz, respectively. Table IV shows the
results on six cross-domain scenarios. Overall, our SLARDA
approach performs best on five out of six cross-domains
scenarios with 5% average improvement over the state-of-
the-art method. Notably, our approach performs best when
mapping from higher resolution to lower resolution datasets
(i.e., SH2 → SH1, SH2 → EDF, and SH1 → EDF). The
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TABLE III

RESULTS ON HAR DATASET AMONG 12 CROSS-DOMAIN SCENARIO (ACCURACY %)

TABLE IV

EXPERIMENTAL RESULTS ON SSC DATASET AMONG SIX CROSS-DOMAIN SCENARIO (ACCURACY %)

TABLE V

EXPERIMENTAL RESULTS ON FAULT DIAGNOSIS DATASET AMONG 12 CROSS-DOMAIN SCENARIO (ACCURACY %)

reason is that our SLARDA, in contrast to the baseline
approaches, better exploits the rich temporal information in
the feature space to improve the alignment between domains.
For example, in scenarios SH2 → SH1 and SH2 → EDF,
our approach significantly outperforms the second best method
with improvements of nearly 9% and 4%, respectively. On the
other hand, adapting from domains with lower sampling rates
to the ones with higher sampling rates can be quite challenging
due to the extrapolation effect. Yet, our SLARDA can still
perform best in EDF → SH1 and EDF → SH2 and second
best in SH1 → SH2.

4) Results on the MFD Dataset: The MFD dataset has
four different working conditions, denoted as H, I, J, and K.
Table V shows the results on the 12 cross-condition scenarios.
Similarly, our proposed approach outperforms baselines in
6 out of 12 cross-domain scenarios with an average improve-
ment of 17.34% over the second best method, i.e., VADA.
Clearly, SLARDA outperforms the benchmark methods on the
challenging transfer tasks with large domain shifts, e.g., H→
I, H → J, and H → K.

5) Statistical Significance: We performed a comparative
analysis on the statistical significance of our SLARDA
approach against all the other baselines. Specifically, we lever-
aged Wilcoxon signed-rank test to measure the P-value of our
SLARDA against other baseline methods [38]. Tables III–V
show the P-value of our SLARDA against other baselines
in the HAR, SSC, and MFD datasets, respectively. Clearly,
for all the baseline methods, our SLARDA achieves P-value
<0.05 and is significantly better than other approaches on all
the datasets with 95% confidence level.

E. Ablation Study and Sensitivity Analysis

1) Ablation Study: To show the contribution of each compo-
nent in our proposed method, we conduct an ablation study on
the MFD dataset. The model variants are defined as follows.

1) SLARDA (w/o SL): We replace SL pretraining with
conventional supervised pretraining.

2) SLARDA (w/o AR): We replace the autoregres-
sive domain discriminator with a conventional fully
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TABLE VI

TOTAL TRAINING TIME OF EACH APPROACH ON FAULT DIAGNOSIS DATASET (s)

Fig. 8. Ablation Study on the MFD dataset.

connected discriminator network trained with standard
GAN loss.

3) SLARDA (w/o Teacher): We remove the conditional
alignment component from the SLARDA model.

4) SLARDA (full): We include all the model’s components.

Fig. 8 shows the average results of different variants for the
12 cross-domain scenarios. It can be seen that removing SL
pretraining can be detrimental to the performance with more
than 8% degradation. This is because removing SL can reduce
the feature’s transferability between domains, which can also
affect the efficacy of our remaining modules (i.e., AR and
teacher). Similarly, removing the class-conditional alignment
(i.e., Teacher) also has a significant impact on the model
performance. Finally, adding the autoregressive component
by addressing the temporal features can improve the overall
performance by about 3%. To sum up, this ablation clearly
shows the effectiveness of each component in our SLARDA
model.

2) Sensitivity Analysis of the Class Conditional Loss:
There are some key parameters in the proposed approach,
which may have a significant impact on model performance.
One of the key parameters is λ in (12), which indicates the
contribution of the class-conditional loss. Here, we investigate
the impact of this key parameter on model performance.
We conduct experiments on the MFD dataset and report the
average performance of 12 cross-domain scenarios. We vary
the weight parameter λ from 0.0001 to 1. Fig. 9 shows the
results of our proposed SLARDA with different values of λ.
Clearly, gradually increasing λ improves the performance of
our SLARDA. Yet, over-weighting the class-conditional loss
deteriorates the performance as the predicted pseudo labels can
still be noisy. In a nutshell, our SLARDA approach performs
best with λ values between 0.001 and 0.005.

Fig. 9. Sensitivity analysis of class-conditional loss in (12).

Fig. 10. Sensitivity analysis of confidence threshold parameter ζ .

3) Sensitivity Analysis of the Confidence Threshold: We
conducted a sensitivity analysis experiment to measure the sen-
sitivity of our approach to the confidence threshold parameter.
Fig. 10 shows the evaluation performance on four randomly
selected cross-domain scenarios for the MFD dataset. We var-
ied the confidence threshold from 0.1 to 0.99 and reported
the corresponding performance. Clearly, lower values of the
confidence threshold can degrade the generalization perfor-
mance across domains as noisy pseudo labels can be used
to train the target model. In comparison, higher confidence
thresholds consistently yield better performance across the
four experimented cross-domain scenarios. However, a very
large confidence threshold, e.g., 0.99, can deteriorate the
performance on cross-domain scenarios, as we may not be
able to find sufficient amount of pseudo labels that satisfy this
large threshold.

F. Computational Complexity

To evaluate the time complexity of our proposed approach
against other baseline methods, we calculated the total running
time over all the cross-domain scenarios on the Fault Diagnosis
dataset, as shown in Table VI. Generally, discrepancy-based
approaches (i.e., DAN, Deep Coral, HoMM, and MMDA)
have lower computational complexity, when compared with
adversarial-based methods. Among all the adversarial-based
methods, our SLARDA approach has the second lowest com-
putational cost with a total computational time of 1765 s.
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V. CONCLUSION

In this article, we proposed a time series domain adapta-
tion method, which explicitly considers temporal dynamics
of data during both feature learning and domain alignment.
In particular, we showed that the proposed SL pretraining
of the source domain model can produce more transferable
features than supervised pretraining. Hence, we suggest adopt-
ing SL pretraining for time series domain adaptation methods.
Second, we proved that addressing the temporal dependence
during domain alignment can significantly boost performance.
Finally, we demonstrated that providing confident pseudo
labels can successfully address the class-conditional shift of
time series data. The efficacy of the proposed method has been
verified using three real-world time series datasets. We believe
that our approach can promote the direction of time series
domain adaptation. Our approach can still be limited as it
assumes the availability of rich-labeled source domain data,
which may be laborious. Hence, in our future works, we aim
to design SL learning [40] to learn representations with few
labeled data and a large amount of unlabeled in the source
domain.
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