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Short text classification has been widely explored in news tagging to provide more efficient search strategies

and more effective search results for information retrieval. However, most existing studies, concentrating on

long text classification, deliver unsatisfactory performance on short texts due to the sparsity issue and the

insufficiency of labeled data. In this article, we propose a novel heterogeneous graph neural network-based

method for semi-supervised short text classification, leveraging full advantage of limited labeled data and

large unlabeled data through information propagation along the graph. Specifically, we first present a flexi-

ble heterogeneous information network (HIN) framework for modeling short texts, which can integrate any

type of additional information and meanwhile capture their relations to address the semantic sparsity. Then,

we propose Heterogeneous Graph Attention networks (HGAT) to embed the HIN for short text classifica-

tion based on a dual-level attention mechanism, including node-level and type-level attentions. To efficiently

classify new coming texts that do not previously exist in the HIN, we extend our model HGAT for inductive

learning, avoiding re-training the model on the evolving HIN. Extensive experiments on single-/multi-label

classification demonstrates that our proposed model HGAT significantly outperforms state-of-the-art meth-

ods across the benchmark datasets under both transductive and inductive learning.
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1 INTRODUCTION

With the rapid development of online social media and e-commerce, short texts, such as online
news, queries, reviews, and tweets, are increasingly widespread on the Internet [35]. Short text
classification can be widely applied in many domains accordingly, including sentiment analysis,
psychometric measures, news tagging/categorization and query intent classification [1, 2, 23, 56],
which is one of the most important research fields in Information Retrieval (IR) [19, 24, 31,
50]. For example, short text classification can solve the mess of information, and it also provides
more efficient search strategies and more effective search results for information retrieval [19, 24].
However, in many practical scenarios, the labeled data is scarce, while manual labeling is time-
consuming and may require expert knowledge [1]. As a consequence, there is a pressing need
for studying semi-supervised short text classification with a relatively small number of labeled
training data.
Nevertheless, semi-supervised short text classification is nontrivial due to the following chal-

lenges. First, short texts are usually semantically sparse and ambiguous, lacking contexts [20, 26,
35, 48]. While some methods have been proposed to incorporate additional information such as
entities [42, 45], they fail to consider the relational data such as the semantic relations among en-
tities. Second, the labeled training data is limited, which leads to traditional and neural supervised
methods ineffective [16, 44, 54]. As such, how to make full use of the limited labeled data and the
large number of unlabeled data has become a key task for short text classification [1]. Third, we
need to capture the importance of different information that is incorporated to address sparsity at
multiple granularity levels and reduce the weights of noisy information to achieve more accurate
classification results.
In this work, we propose a novel heterogeneous graph neural network-based method for semi-

supervised short text classification, which makes full use of both limited labeled data and numer-
ous unlabeled data by allowing information propagation through our automatically constructed
graph. Particularly, we first present a flexible HIN framework for modeling the short texts1 as
shown in Figure 1, which is able to incorporate any additional information (e.g., entities and top-
ics) as well as capture the rich relations among the texts and the additional information. Since the
HIN for short texts is information-rich, traditional network embedding methods that only focus
on the network topology will lead to severe information loss, such as GNetMine [15], node2vec
[13], and metapath2vec [8]. Consequently, we propose Heterogeneous Graph Attention net-

works (HGAT) to embed the HIN for short text classification based on a new dual-level attention
mechanism including node-level and type-level attentions. Our HGAT method considers the het-
erogeneity of different node types. Additionally, the dual-level attention mechanism captures both
the importance of both different neighboring nodes (reducing the weights of noisy information)
and different node (information) types to a current node. To address the new coming texts that
do not previously exist in the HIN, we extend our model HGAT for inductive learning, which can
avoid re-training the model on the evolving HIN and address the new coming texts efficiently.
Specifically, we first construct an inductive graph for the new coming texts, which takes full ad-
vantage of the information from existing labeled and unlabeled data. Sampling strategies are also
explored to reduce the time complexity. Then, we apply the trained HGAT on the newly con-
structed inductive graph to predict the labels for the new coming texts. Furthermore, we improve
our HGAT by introducing orphan categories to match the non-text categories, thus reducing the
classification interference of the entity and topic categories in the HIN. The main contributions of
this article can be summarized as follows:

1For ease of expression, we will use the terms document and short text interchangeably.
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Fig. 1. Comparison between traditional and our method. Traditional methods usually directly merge the
representations of the additional information and text. Our method builds an HIN for short texts to flexibly
incorporate any additional information and capture the rich relations among the texts and the additional
information.

(1) To the best of our knowledge, this is the first attempt tomodel short texts aswell as additional
information with an HIN and adapt graph neural networks on the HIN for semi-supervised
classification.

(2) We propose novel HGAT for the HIN embedding based on a new dual-level attention mech-
anism, which can learn the importance of both different neighboring nodes and different
node (information) types to a current node.

(3) We propose an inductive learning approach with sampling strategy for our HGAT to handle
new coming texts efficiently, which fully leverages the information from not only the new
coming texts but also the existing labeled and unlabeled texts.

(4) Extensive experimental results have demonstrated that our proposed HGAT model signifi-
cantly outperforms seven state-of-the-art methods across benchmark datasets.

Please notice that the preliminary work has been accepted at the 2019 Conference on Empirical
Methods in Natural Language Processing [21]. Based on the conference paper, we substantially
extend the original work from the following aspects:

(1) To predict the labels of new coming texts that do not previously exist in the constructed
HIN for short texts, we propose a new inductive learning approach for HGAT in Section 3.4,
which avoids re-training themodel on the evolvingHIN and addresses the new coming texts
efficiently. Besides, sampling strategies are also explored to reduce the time complexity. It
fully leverages the information from both the new coming texts and the existing labeled
and unlabeled texts.

(2) Considering the requirements of multi-label classification in real applications, we extend
the original HGAT with new objective functions for multi-label classification in Section 3.5.

(3) We significantly enrich the experiments to demonstrate the superior performance of the
proposed methods. Specifically, we have added the experiments to validate the effective-
ness of the proposed inductive learning for HGAT (Sections 4.2.1, 4.2.4, and 4.2.5). We add
the state-of-the-art baseline models Bert and GraphSAGE to further validate our proposed
model. We further conduct experiments to test the effectiveness of our model on multi-label
classification (Section 4.2.2). In addition, we add experiment to justify the effectiveness of
our model under the setting where more labeled data are available (Section 4.2.6).

(4) A more comprehensive discussion of related work is provided. Besides, we carefully polish
our article and improve the language quality.
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The rest of the article is organized as follows. In Section 2, we discuss and summarize the related
work. Section 3 describes our proposed method including the construction of HIN for short texts
and HGAT model in detail as well as the proposed inductive learning approach. Extensive experi-
ments are conducted to validate the proposed models in Section 4. Finally, we conclude the article
in Section 5.

2 RELATEDWORK

In this section, we first introduce the related work on short text classification including traditional
methods, deep neural network methods and graph-based semi-supervised methods. Then, we dis-
cuss the recent work on graph neural networks.

2.1 Traditional Text Classification

Traditional text classification methods, such as SVM [9], require a feature engineering step for
text representation. The most commonly used manual features are BoW and TF-IDF vectors [3],
where each element is corresponding to the occurrence/weight of each term in theword dictionary.
Besides, features of bi-grams and tri-grams are included to capture the co-occurrence information
between words [33, 44]. Some recent studies [28, 41] model texts as graphs and extract path-based
features for classification. Despite their initial success on formal and well-edited texts, all these
methods usually fail to deliver satisfactory performance on short text classification, due to the
insufficient features incurred by short texts [10]. To address this problem, efforts have been made
to enrich the semantics of short texts [7, 43]. For example, Phan et al. [26] extracted the latent topics
of the short texts with the help of an external corpus. Wang et al. [45] introduced external entity
information from Knowledge Bases. Di Yao et al. [7] enriched short texts with word semantic
similarity information. However, these methods cannot obtain good performance easily as the
feature engineering step relies on domain knowledge.

2.2 Deep Neural Networks for Text Classification

Deep neural networks that automatically represent texts as embeddings have been widely used for
text classification. RNNs [22, 34] capture the sequential information of words, while CNNs [11, 16,
32] capture the N-gram information. The above two representative deep neural models have shown
their power in many NLP tasks, including text classification. To adapt them to short text classifica-
tion, several methods have been proposed. For example, Zhang et al. [54] designs a character-level
CNN that alleviates the sparsity by mining different levels of information within the texts. Wang
et al. [42] incorporates the entities and concepts from KBs to enrich the semantics of short texts.
Ghadery et al. [11] integrates multilingual n-gram information to enrich the text representation.
Recently, BERT [6] uses a multi-layer bidirectional Transformer encoder and trains with a masked
language model, leading to the state-of-the-art performance on several NLP tasks. However, these
methods cannot capture the semantic relations (e.g., entity relations) and rely heavily on the large
number of training data. Clearly, lacking training data is still a key bottleneck that prohibits them
from successful practical applications.

2.3 Graph-based Semi-supervised Text Classification

Since the manual labeling is very expensive and the unlabeled texts also contains valuable infor-
mation, a large number of semi-supervised methods have been proposed [23, 37, 52]. Here, we
will only introduce the topic relevant to our task scenario, i.e., graph-based semi-supervised text
classification. Generally, most graph-based methods construct an affinity graph for both labeled
and unlabeled texts based on local features, such as similarity between samples, shared words or
phrases, and so on. For example, Zhu et al. [57] defined the problem with a Gaussian random
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field model with respect to the graph. Zhou et al. [55] proposed to spread label information of
each point to neighbors to ensure both local and global consistency. However, these traditional
graph-based methods are based on homogeneous graphs, thus they cannot distinguish the differ-
ent semantic meaning of multi-typed nodes and edges. Then, some efforts extend the graph-based
learning framework for heterogeneous networked data. GNetMine [15] models the link structure
in information networks with arbitrary network schema. Rossi et al. [27] constructed a bipartite
heterogeneous network, containing documents and terms. Then label propagation is performed
from documents to terms and then from terms to documents iteratively. While PTE [36] models
the documents, words, and labels with graphs and learns text (node) embeddings for classifica-
tion. Recently, graph convolutional networks (GCN) have received wide attention for semi-
supervised classification [17]. Some researchers began to explore GCN for text classification. For
example, TextGCN [51] models the whole text corpus as a document-word graph with word co-
occurrence relations and applies GCN for classification. However, all these methods focus on long
texts. In addition, they fail to use attention mechanisms, leaving important information missed.

2.4 Graph Neural Networks

Graph neural networks (GNNs), first introduced by Gori et al. [12] and Scarselli et al. [30], ex-
tend the deep neural networks (especially convolutional network) from dealing with European
spatial data to arbitrary non-European spatial data, i.e., graph-structured data. The graph convo-
lutional neural networks can be generally divided into two categories, namely, spectral domain
and spatial domain. The former uses the Spectral Graph Theory to implement convolution opera-
tions on graphs. Bruna et al. [4] defined convolution on general graphs through the corresponding
Fourier basis. To avoid expensive computation, Defferrard et al. [5] approximated the convolution
operator with K-order Chebyshev polynomials. Finally, Kipf andWelling [17] designed a GCNwith
only first-order approximation of spectral graph convolutions, which inspired researchers’ enthu-
siasm for GNN. In terms of spatial approaches, convolutions are defined directly on the graph by
the adjacency. Hamilton et al. [14] performed a neural network-based aggregator over fixed-size
node neighbors, namely, GraphSAGE, which learns a function to generate embeddings by aggre-
gating features from local neighborhood. Then, attention mechanisms are introduced into graph
neural networks to automatically learn the importance of different neighbors, such as GraphAtten-
tion Network [39], HAN [46]. GNNs have been successfully applied in a wide range of applications
ranging from social networks [17], computer vision [47], to text classification [51].

Different from the above existing studies, in this article, we propose to construct anHIN for short
texts that can flexibly integrate any additional information, and develop a novel heterogeneous
graph attention network model considering both the heterogeneity and importance of different
nodes in the HIN for semi-supervised short text classification.

3 OUR PROPOSED METHOD

In this article, we propose a novel heterogeneous graph neural network-based method for semi-
supervised short text classification, which takes full advantage of both limited labeled data and
large unlabeled data by allowing information propagation along the graph. Our method includes
two steps. Particularly, to alleviate the sparsity of short texts, we first present a flexible HIN frame-
work for modeling the short texts, which can incorporate any additional information and capture
the rich relations among the short texts and the added information. Then, we propose a novel
model HGAT to embed the HIN for short text classification based on a new dual-level atten-
tion mechanism. HGAT considers the heterogeneity of different types of information. In addition,
the attention mechanism can learn the importance of both different nodes (reducing the weights
of noisy information) and different node (information) types. Furthermore, to address the new
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Fig. 2. (a) An example of HIN for short texts on AGNews. (b) Network schema of the HIN for short texts. (c)
Illustration of the construction of the HIN for short texts.

coming texts, we propose a new inductive learning approach for HGAT to leverage the informa-
tion from both the new coming texts and the existing labeled and unlabeled texts, where sampling
strategies are also explored to reduce the time complexity.

3.1 HIN for Short Texts

We first present the HIN framework for modeling the short texts, as shown in Figures 2(a) and
2(b), which enables the integration of any additional information and captures the rich relations
among the texts and the added information. In this way, the sparsity of the short texts is alleviated.
Previous studies have exploited latent topics [53] and external knowledge (e.g., entities) from

Knowledge Bases to enrich the semantics of the short texts [42, 45]. However, they fail to consider
the semantic relation information, such as entity relations. In contrast, our HIN framework for
short texts can flexibly integrate any additional information and model their rich relations.
Here, we consider two types of additional information i.e., topics and entities. As shown in

Figure 2(c), we construct the HIN G = (V,E) containing the short texts D = {d1, . . . ,dm }, topics
T = {t1, . . . , tK }, and entities E = {e1, . . . , en } as nodes, i.e., V = D ∪T ∪ E. The set of edges E
represents their relations. The details of constructing the network are described as follows.
First, LDA [3] is applied to mine the latent topics T for enriching the semantics of short texts.

Each topic ti = (θ1, . . . ,θw ) (w denotes the vocabulary size) is represented by a probability distri-
bution over the words. For reducing the noise in irrelevant topics, we assign each document to the
top P topics with the largest probabilities. Thus, the edge is built between a document and a topic
if the document is assigned to the topic.
Second, we recognize the entities E in the documents D and link them to Wikipedia with the

open entity linking tool TAGME.2 If a document contains an entity, then the edge between them
will be built. We take an entity as a whole word and run word2vec3 based on the Wikipedia
corpus to learn the entity embeddings. To further enrich the semantics of short texts and advance
the information propagation, we consider the relations between entities. Particularly, we first
calculate the similarity (cosine similarity) between all the entities based on the entity embeddings.
Then the edge between two entities will be built if their similarity score is larger than a predefined
threshold δ .

By incorporating the topics, entities and the relations, we enrich the semantics of the short
texts and thus greatly benefit the following classification task. For example, as shown in Figure 2,
the short text “the seed of Apple’s Innovation: In an era when most technology...” is semantically

2https://sobigdata.d4science.org/group/tagme/.
3https://code.google.com/archive/p/word2vec/.
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Fig. 3. Illustration of our model HGAT.

enriched by the relations with the entities “Apple Inc.” and “company,” as well as the topic “tech-
nology.” Thus, it can be correctly classified into the category of “business” with high confidence.

3.2 HGAT

We then propose HGAT model (shown in Figure 3) to embed the HIN for short text classification
based on a new dual-level attention mechanism including node level and type level. HGAT consid-
ers the heterogeneity of different types of information with heterogeneous graph convolution. In
addition, the dual-level attention mechanism captures the importance of both different neighbor-
ing nodes (reducing the weights of noisy information) and different node (information) types to a
specific node. Furthermore, we improve our HGAT by introducing orphan categories to match the
non-text categories, thus reducing the classification interference of the entity and topic categories
in the HIN. Finally, it predicts the labels of documents through a softmax/sigmoid layer.
To predict the labels of new coming texts that do not previously exist in the constructed HIN

for short texts, we propose a new inductive learning approach for HGAT, which avoids re-training
the model on the evolving HIN and addresses the new coming texts efficiently. It fully leverages
the information from both the new coming texts and the existing labeled and unlabeled texts.

3.2.1 Heterogeneous Graph Convolution. We first describe the heterogeneous graph convolu-
tion in HGAT, considering the heterogeneous types of nodes (information).
As known, GCN [17] is a multi-layer graph neural network that operates directly on a ho-

mogeneous graph and induces the hidden embeddings of nodes based on the relationships of
their neighborhoods. Formally, consider a graph G = (V,E) where V and E represent the set
of nodes and edges, respectively. Let X ∈ R |V |×q be a matrix containing the nodes with their fea-
tures xv ∈ Rq (each row xv is a feature vector for a node v). For the graph G, we introduce its
adjacency matrix A′ = A + I with self-connections added and its corresponding degree matrix M ,
whereMii =

∑
j A
′
i j . Then the layer-wise propagation rule can be summaried as follows:

H (l+1) = σ (Ã · H (l ) ·W (l ) ), (1)

where Ã = M−
1
2A′M−

1
2 denotes the symmetric normalized adjacencymatrix.W (l ) is a layer-specific

trainable transformation matrix. σ (·) denotes an activation function such as ReLU. H (l ) ∈ R |V |×q

denotes the hidden representations of nodes in the l th layer. Initially, H (0) = X .
Nevertheless, GCN cannot be directly applied to the HIN for short texts due to the node hetero-

geneity issue. Specifically, in the HIN, we have three types of nodes: documents, topics and entities
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with different feature spaces. For a documentd ∈ D, we take the TF-IDF vector as its feature vector
xd . For a topic t ∈ T , we take its the word distribution over the vocabulary to represent the topic
xt = {θi }i=[1,w]. For each entity, to make full use of relevant information, we represent the entity
xv by concatenating its embedding and TF-IDF vector of its Wikipedia description text.

A straightforward way to adapt GCN for the HIN containing different types of nodes T =
{τ1,τ2,τ3} is to construct a new large feature space by concatenating the feature spaces of dif-
ferent types of nodes. For example, each node is denoted as a feature vector with 0 values for
the irrelevant dimensions for other types, i.e., the feature spaces of the other types of nodes. We
name this basic method of adapting GCN to HIN as GCN-HIN. However, it suffers from reduced
performance, since it ignores the heterogeneity of different information types.
To address the issue, we propose the heterogeneous graph convolution, which considers the

difference of various types of information and projects them into an implicit common space with
their respective transformation matrices as

H (l+1) = σ �
�

∑

τ ∈T
Ãτ · H (l )

τ ·W (l )
τ

�
�
, (2)

where Ãτ ∈ R |V |×|Vτ | is the submatrix of Ã, whose rows represent all the nodes and columns rep-

resent their neighboring nodes with the type τ . The representation of the nodes H (l+1) is obtained

by aggregating information from the features of their neighboring nodes H (l )
τ with different types

τ via different transformation matrixW (l )
τ ∈ Rq (l )×q (l+1)

. The transformation matrixW (l )
τ considers

the difference of feature spaces and projects them into an implicit common space Rq (l+1)
. Initially,

H (0)
τ = Xτ .

3.2.2 Dual-level AttentionMechanism. Typically, given a specific node, different types of neigh-
boring nodes may have different impacts on it. For example, the neighboring nodes of the same
type as the current node may carry more useful information. Additionally, different neighboring
nodes of the same type could also have different importance. To capture the different importance
at both node level and type level, we design a new dual-level attention mechanism as shown in
Figure 3.

Type-level Attention. Given a specific node v , the type-level attention learns the weights of dif-
ferent types of neighboring nodes. Specifically, we first represent the embedding of the type τ as

hτ =
∑
v ′ Ãvv ′hv ′ , which is the sum of the neighboring node features hv ′ where the nodesv

′ ∈ Nv

and are with the type τ . Then, we calculate the type-level attention scores based on the current
node embedding hv and the type embedding hτ :

aτ = σ (μTτ · [hv | |hτ ]), (3)

where μτ is the attention vector for the type τ , | | means “concatenate,” and σ (·) denotes the acti-
vation function, such as Leaky ReLU.
Then, we normalize the attention scores across all the types with the softmax function and

obtain the type-level attention weights as

ατ =
exp(aτ )∑

τ ′ ∈T exp(aτ ′ )
. (4)

Node-level Attention. Node-level attention is designed to capture the importance of different
neighboring nodes and reduce the weights of noisy nodes. Formally, given a specific node v with
the type τ and its neighboring nodev ′ ∈ Nv with the type τ ′, we compute the node-level attention
scores based on the node embeddings hv and hv ′ with the type-level attention weight ατ ′ for the
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node v ′:
bvv ′ = σ (νT · ατ ′[hv | |hv ′]), (5)

where ν is the attention vector. Then, we obtain the node-level attention weights by normalizing
the node-level attention scores with the softmax function as

βvv ′ =
exp(bvv ′ )∑

i ∈Nv exp(bvi )
. (6)

Afterward, we incorporate the dual-level attention mechanism including type-level and node-
level attentions into the heterogeneous graph convolution by replacing Equation (2) with the fol-
lowing layer-wise propagation rule:

H (l+1) = σ �
�

∑

τ ∈T
Bτ · H (l )

τ ·W (l )
τ

�
�
, (7)

where Bτ represents the attention matrix, whose element in the vth row v ′th column is βvv ′ in
Equation (6).

3.2.3 Alleviation of Overfitting. Due to lack of information in semi-supervised short text classi-
fication, the attention mechanism is prone to overfitting. Considering that the prior knowledge of
the node importance can guide the attention mechanism, we make a trade-off for each node type

τ between the original graph convolution matrix Ãτ in GCN and the dual-level attention matrix
Bτ with a hyper-parameter λ to alleviate overfitting. Formally,

f (Ãτ ,Bτ ; λ) = (1 − λ) · Ãτ + λ · diag(Ãτ · 1) · Bτ , (8)

where 1 represents the vector with all elements equal to 1. Note that the sum of each row of the
matrixB equals to 1 because of the softmax normalization, while the sum of each row of thematrix

Ã does not because of the symmetric normalization. Therefore, we use the the term diag(Ãτ · 1)
for better fusion.
Finally, the layer-wise propagation rule of our proposed heterogeneous graph convolution can

be summarized as follows:

H (l+1) = σ �
�

∑

τ ∈T
f (Ãτ ,Bτ ; λ) · H (l )

τ ·W (l )
τ

�
�
. (9)

3.3 Orphan Categories

In our original HGAT model [21], the output of the model corresponds to the probabilities of the
short text belonging to each text category. Inspired by Sabour et al. [29] and Yang et al. [49], an
additional “orphan” category can capture the “background” information of the images or “stop
words” of the words that are unrelated to specific categories, helping improve the classification
accuracy. Therefore, to further improve our model performance for short text classification, we
introduce two “orphan” categories to match the non-text categories in the HIN including “entity”
and “topic.” They can be seen as the “background” information of the HIN for short texts, thus
helping HGAT better embed the HIN and reducing the classification interference caused by the
non-text categories in the HIN. For example, as shown in Figure 2, the short text “the seed of Ap-
ple’s Innovation: In an era when most technology...” is semantically enriched by an entity “Apple
Inc.” If there is no orphan category for entity, then the model may attempt to classify this entity
node “Apple Inc.” into the category of “business” that is the same category as the neighboring text.
However, “Apple Inc.” is also connected to the short text “iPod Rivals Square Off Against Apple
(Reuters). The next wave of iPod competitors is coming,” whose category is “entertainment.” This
phenomenon increases the difficulty of fitting the data. If there is an orphan category for entity,
then the model may attempt to classify “Apple Inc.” into this orphan category, namely, “entity.”

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 32. Publication date: May 2021.
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Fig. 4. Comparison among transductive learning, traditional inductive learning, and our inductive learning.

This forces the entity “Apple Inc.” to only provide its carried information without disturbing the
propagation of the label on the graph. It could reduce the impact of this confusion about categories.
Consequently, orphan categories providing placeholders for entity and topic nodes can effectively
help HGAT better embed the HIN. Formally, the dimension of the output probabilities of the model
increases by 2, indicating “entity” and “topic.”

3.4 Inductive Learning

In real applications, massive text data is generated every day. As shown in Figure 4, when a new
coming short text is to be classified, for our original HGAT model [21], we need to construct
a new HIN involving the new text and retrain the model to predict the label for the new text
in a transductive learning way. This is impractical for real applications due to time efficiency.
Therefore, we extend our model HGAT for inductive learning, which can address the new coming
texts efficiently. As shown in Figure 4, traditional inductivemethods deal with new coming texts by
applying the trainedmodel on the graph constructed only for the new coming texts. It significantly
improves efficiency at the expense of a small performance drop.
In this article, to take full advantage of not only the new coming texts but also the existing

labeled and unlabeled data, we propose a new inductive learning approach for our model HGAT
to better deal with the lack of information in semi-supervised short text classification. Specifically,
we first construct an inductive graph for the new coming texts, which is expanded by the existing
labeled and unlabeled data. Formally, given anHIN for the existing short textsG = {V,E} and a set
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of new coming texts Dnew , we fist construct a new HIN Gnew = {Vnew ,Enew } for the new coming
texts Dnew following the process described in Section 3.14. Afterward, as shown in Figure 4, we
can construct one-hop or two-hop expanded inductive graph G′ = {V′,E′} by expanding the new
text graph Gnew with neighbors from existing HIN G within one hop or two hops, respectively.
Moreover, the number of edges might be billion level in real-world applications, such as Twit-

ter, FaceBook, and so on. In practice, it is not necessary to aggregate all the neighboring nodes to
obtain an optimal performance, while a sub-optimal performance is absolutely acceptable if the
time consuming could be greatly reduced. Therefore, it is important to apply an efficient neigh-
borhood sampling strategy. Note that the time complexity without sampling strategy isO (#New ·
#Deдree#Hop ), while the time complexitywith sampling strategy isO (#New · #Sample#Hop ), where
#New , #Deдree , #Hop, and #Sample represent the number of new coming texts, average node de-
grees, hops and number of sampling neighbors, respectively. A simple way is to utilize uniform
random sampling over the whole neighbors, but some nodes of low-relevance may bring noise and
harm the performance. Another straight forward solution is to directly choose some TOP relevant
neighboring nodes, where the relevance can be measured by the attention mechanism. However,
high relevance usually means the information of each other is highly overlapped, thus leading to
limited access to complementary additional information. Therefore, weighted random sampling
is more appropriate, because it make a trade-off between the above, which not only ensures that
some complementary information can be introduced but also ensures that the noise is not intro-
duced too much. We can utilize the dual-level attention mechanism to calculate the weights of
each neighboring node. We will verify these analysis in Section 4.2.5.
The detailed expansion process is illustrated in Algorithm 1. Finally, we apply the trained HGAT

model on the inductive graph to predict the labels of new coming texts.

3.5 Model Training

After going through an L-layer HGAT, we can get the embeddings of nodes (including short text

embeddings H (L)) in the HIN. For single-label classification, the node embeddings are then fed to
a softmax layer for classification, while for multi-label classification, the node embeddings are fed
to a sigmoid layer. Formally,

Zsingle = softmax(H (L) ), (10)

Zmulti = sigmoid(H (L) ). (11)

Duringmodel training, we exploit the cross-entropy loss over training data with the L2-norm for
single-label classification while we use a separate margin loss [29, 49] for multi-label classification.
The margin loss allows independent training of each category and ensures the training does not
focus too much on the samples that have been correctly predicted with high confidence, thereby
alleviating overfitting. Formally,

Lsingle = −
∑

i ∈Dtrain

|C |∑

j=1

Yi j · logZi j + η ‖Θ‖2, (12)

Lmulti =
∑

i ∈Dtrain

|C |∑

j=1

(Yi j max(0,m+ − Zi j )2 + (1 − Yi j )max(0,Zi j −m−)2) + η ‖Θ‖2, (13)

4Note that for the construction of topic nodes in new graph Gnew , we use the LDA model pre-trained on the training data

to ensure that the original and the new topic feature spaces are consistent.
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ALGORITHM 1: Construction of the Expanded Inductive Graph

Input: New coming texts Dnew , HIN for existing short texts G = {V,E}, hops H
Output: H -hop expanded inductive graph G′ = {V′,E′}
1: Construct a new HIN Gnew = {Vnew ,Enew } for Dnew following the process described in

Section 3.1
2: Cross nodes Ncross ←V ∩Vnew

3: Queue q, Involved node set v
4: q.push(Ncross), v .add(Ncross)
5: for i = 1 to H do

6: Queue p
7: while not q.empty() do
8: n1 ← q.pop()
9: for (n1,n2) ∈ E do

10: if n2 � V and n2 is sampled then

11: V .add(n2), p.push(n2)
12: end if

13: end for

14: end while

15: q ← p
16: end for

17: Involved Edge Set
e ← {(n1,n2) |(n1,n2) ∈ E and n1,n2 ∈ V}

18: G′ ← {Vnew ∪v,Enew ∪ e}
19: return G′

where Dtrain is the set of short text indices for training, Y is the corresponding label indicator
matrix, Θ is model parameters, and η is regularization factor. m+ = 0.9 and m− = 0.1 discour-
age classifiers from overconfidence [49]. For model optimization, we adopt the gradient descent
algorithm.

4 EXPERIMENTS

In this section, we evaluate the empirical performance of different methods for semi-supervised
short text classification.

4.1 Experimental Setup

4.1.1 Datasets. For single-label classification, we conducted extensive experiments on 6 short
text benchmark datasets: AGNews, Snippets, Ohsumed, TagMyNews, MR, and Twitter.
AGNews: This dataset is adopted from Zhang et al. [54]. We randomly selected 6,000 pieces of

news from AGNews, evenly distributed into four categories.
Snippets: This dataset is released by Phan et al. [26]. It is composed of the snippets returned

by a web-search engine.
Ohsumed: We used the benchmark bibliographic classification dataset released by Yao et al.

[51], where the documents with multiple labels are removed. In this work, we used the titles for
short text classification.
TagMyNews:We applied the news titles as instances from the benchmark classification dataset

released by Vitale et al. [40], which contains English news from really simple syndication (RSS)

feeds of three newspapers. They are annotated with seven categories.
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Table 1. Statistics of the Datasets

#docs #tokens #entities docs with entities (%) #categories
AGNews 6,000 18.4 0.9 72% 4
Snippets 12,340 14.5 4.4 94% 8
Ohsumed 7,400 6.8 3.1 96% 23
TagMyNews 32,549 5.1 1.9 86% 7
MR 10,662 7.6 1.8 76% 2
Twitter 10,000 3.5 1.1 63% 2
Ohsumed-multi 13,929 7.2 1.4 100% 23

MR: It is a movie review dataset, in which each review only contains one sentence [25]. Each
sentence is annotated with positive or negative for binary sentiment classification. This corpus
contains 5,331 positive and 5,331 negative movie reviews.
Twitter:This dataset is provided byNLTK,5 a library of Python, which is also a binary sentiment

classification dataset. It has 5,000 positive tweets and 5,000 negative tweets.
Ohsumed-multi6: We used the whole standard dataset of Ohsumed for multi-label classifica-

tion. It is a mixture of 7,400 single-label samples and 6,529 multi-label samples. We only adopted
the titles for short text classification to categorize the 23 cardiovascular disease categories.
For each dataset, we randomly selected 40 labeled documents per class, half for training and

the other half for validation. For transductive learning, following Kipf and Welling [17], all the
left documents are taken as unlabeled documents in the HIN for model training. We tested the
models on these unlabeled documents. For inductive learning, except for the labeled documents,
we randomly selected 1,000 unlabeled documents that are also included in the HIN for model
training, and the left are taken as new coming texts. We tested the models on these new coming
texts.
We preprocessed all the datasets as follows. Specifically, we removed non-English characters,

stop words, and low-frequency words appearing less than five times. Table 1 shows the statistics
of the datasets, including the number of documents, the number of average tokens and entities,
the number of categories, and the proportion of documents containing entities in parentheses. In
our datasets, most of the texts (around 80%) contain entities.

4.1.2 Evaluation Metrics. We applied the following standard metrics to evaluate the perfor-
mance of all the methods.
For single-label classification, we use the well-known two metrics: Accuracy and F1-score

(Macro-F1).

• Accuracy is simply a ratio of correctly predicted observation to the total observations.

Accuracy =
Number of correct predictions

Total number of predictions
. (14)

• F1-score is the harmonic mean of Precision and Recall.

F1-score =
1

|C|
∑

c ∈C

2PcRc
Pc + Rc

, (15)

5https://www.nltk.org/.
6http://disi.unitn.it/moschitti/corpora.html.
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where Pc =
TPc

TPc + FPc
, Rc =

TPc
TPc + FNc

, (16)

whereTPc ,TNc , FPc , FNc denote the true positives, true negatives, false positives and false
negatives for the category c in label set C , respectively.

For multi-label classification, following Yang et al. [49], we adopted Exact Match Ratio (ER),
Micro-Precision, Micro-Recall, Micro-F1, Macro-Precision, Macro-Recall andMacro-F1 as the eval-
uation metrics.

• ER considers partially correct prediction as incorrect and only counts fully correct samples:

ER =
exactly correct instances

total instances
. (17)

• Micros calculate metrics globally by counting the total true positives, false negatives, and
false positives:

Micro-Precision =

∑
c ∈C TPc∑

c ∈C (TPc + FPc )
, (18)

Micro-Recall =

∑
c ∈C TPc∑

c ∈C (TPc + FNc )
, (19)

Micro-F1 =
2 ∗Micro-Precision ∗Micro-Recall

Micro-Precision +Micro-Recall
. (20)

• Macros calculate metrics for each label, and find their unweighted mean, where the labeled
imbalance is not considered:

Macro-Precision =
1

|C |
∑

c ∈C
Pc , (21)

Macro-Recall =
1

|C |
∑

c ∈C
Rc , (22)

Macro-F1 =
1

|C|
∑

c ∈C

2PcRc
Pc + Rc

. (23)

4.1.3 Baselines. To comprehensively evaluate our proposed method for semi-supervised short
text classification, we compared it with the following state-of-the-art methods:
SVM: SVM classifiers based on the classic manual features TF-IDF features, LDA features [3]

and Doc2Vec [18], are denoted as SVM+TFIDF, SVM+LDA, and SVM+Doc2Vec, respectively.
CNN: CNN [16] with 2 variants: CNN-rand, whose word embeddings are randomly initialized;

CNN-pretrain, whose word embeddings are pre-trained with Wikipedia Corpus.
LSTM: LSTM [22] with and without pre-trained word embeddings, named LSTM-rand and

LSTM-pretrain, respectively.
BERT: BERT [6] uses a multi-layer bidirectional Transformer encoder and trains with a masked

language model, leading to the state-of-the-art performance on several tasks. We applied the origi-
nal BERT-base and its 2 variants: BERT-CNNwith a CNN added to the task-specific layers of BERT
model; BERT-LSTM with an LSTM added. The models are fine-tuned. Note that we have not pre-
processed the datasets for BERT like other baselines, since the Tokenizer of BERT is designed for
the raw corpus.
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PTE: A semi-supervised representation learning method for text data [36]. It first learns word
embedding based on the heterogeneous text networks containing three bipartite networks of
words, documents and labels, then averages word embeddings as document embeddings for text
classification.
TextGCN: TextGCN [51] models the text corpus as a graph containing documents and words as

nodes with relations of document-word and word-word co-occurrence, and applies GCN for text
classification.
HAN:HAN [46] embeds HINs by first converting anHIN to several homogeneous sub-networks

through pre-defined meta-paths and then applying graph attention networks.
GCN-HIN: GCN [17] is a homogeneous graph embedding method for node classification. Here,

as mentioned in Section 3.2.1, we adapt GCN to HIN by concatenating the feature spaces of differ-
ent types of nodes. We name this basic method as GCN-HIN.
GAT-HIN:GAT [39] introduces attention mechanism into graph convolutional network to cap-

ture the node importance. Since GAT is also based on homogeneous graph, we similarly adjust
GAT to adapt to HIN, namely, GAT-HIN. Besides, the attention mechanism allows it to perform
inductive learning.
GraphSAGE: GraphSAGE [14] can be viewed as a stochastic generalization of homogeneous

graph convolutions for inductive learning. There are four popular variants: GraphSAGE-GCN
extends graph convolution network to the inductive setting; GraphSAGE-mean takes the
element-wise mean value of feature vectors; GraphSAGE-LSTM conductd aggregation by feeding
the neighborhood features into an LSTM; GraphSAGE-pool takes the element-wise max-pool of
feature vectors transformed by a shared MLP. We have did the same adjustment as above for HIN
and modified these models to run in the transductive mode, denoted with mark “ * .”
All of the above baselines have used entity information from Wikipedia. Specifically, for SVMs,

the mentions are replaced by the entity names. Deep neural models, including CNN and LSTM,
have used the same entity embeddings (which are trained usingWikipedia corpus) as our proposed
methods. Network embedding models, including GCN-HIN, GAT-HIN, HAN, and GraphSAGE, use
the same graph (HIN for short texts) as our HGAT.

4.1.4 Parameter Settings. We applied the same parameters in transductive learning and induc-
tive learning as follows.
We chose the parameter values of K , T , and δ that achieve the best results on the validation

set. To construct HIN for short texts, we set the number of topics K = 15 in LDA for the datasets
AGNews, TagMyNews, MR, and Twitter. We set K = 20 for Snippets and K = 40 for Ohsumed. For
all the datasets, each document is assigned to top P = 2 topics with the largest probabilities. The
similarity threshold δ between entities is set δ = 0.5.
Following previous studies [38], we set the hidden dimension of our model HGAT and other

neural models (Doc2Vec, LDA, CNN, LSTM, PTE, TexgGCN, HAN, GraphSAGE) to d = 512 and
the dimension of pre-trained word embeddings to 100 (CNN, LSTM) . We set the layer number L of
graph neural networks as 2 (i.e., HGAT, GCN-HIN, TextGCN, HAN, and GraphSAGE). The fusion
hyper-parameter λ is also chosen according to the results on the validation set: We set λ = 0.1 for
AGNews, Snippets and Twitter, λ = 0.2 for TagMyNews and MR, and λ = 0.4 for Ohsumed. For
model training, we set the learning rate as 0.005, dropout rate as 0.8 and the regularization factor
η = 5e-8. Early stopping is applied to avoid overfitting.

4.2 Experimental Results

4.2.1 Single-label Classification. Tables 2 and 3 report the results of our comparative perfor-
mance evaluation in transductive learning and inductive learning, respectively.
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Table 2. Transductive Learning: Test Accuracy (%) and F1-score (%) of Different
Models on Six Standard Datasets

Dataset Metrics AGNews Snippets Ohsumed TagMyNews MR Twitter

SVM+TFIDF
Accuracy 59.45 64.70 39.02 39.91 54.29 53.69

F1-score 59.79 59.17 24.78 32.05 48.13 52.45

SVM+LDA
Accuracy 65.16 62.54 38.61 40.40 54.40 54.34

F1-score 64.79 56.40 25.03 30.40 48.39 53.97

SVM+doc2vec
Accuracy 39.05 23.21 16.06 24.39 57.34 54.19

F1-score 38.11 10.26 2.69 13.36 54.60 49.98

CNN-rand
Accuracy 32.65 48.34 35.25 28.76 54.85 52.58

F1-score 32.00 42.12 13.95 15.82 51.23 51.91

CNN-pretrain
Accuracy 67.24 77.09 32.92 57.12 58.32 56.34

F1-score 66.72 69.28 12.06 45.37 57.99 55.86

LSTM-rand
Accuracy 34.97 30.74 23.30 25.89 53.13 54.81

F1-score 34.23 25.04 5.20 17.01 52.98 53.85

LSTM-pretrain
Accuracy 65.77 75.07 29.05 53.96 59.73 58.20

F1-score 63.53 67.31 5.09 42.14 59.19 58.16

BERT
Accuracy 69.45 81.53 21.76 58.17 53.48 52.00

F1-score 69.31 79.03 4.81 41.04 46.99 43.34

BERT+CNN
Accuracy 69.50 81.13 21.77 59.71 55.55 58.98

F1-score 69.37 78.36 3.36 50.82 54.33 57.95

BERT+LSTM
Accuracy 67.65 80.85 21.46 60.83 58.67 57.27

F1-score 63.48 74.69 3.27 45.34 57.70 56.77

PTE
Accuracy 36.00 63.10 36.63 40.32 54.74 54.24

F1-score 35.41 58.96 19.24 33.56 52.36 53.17

TextGCN
Accuracy 67.61 77.82 41.56 54.28 59.12 60.15

F1-score 67.12 71.95 27.43 46.01 58.98 59.82

GCN-HIN
Accuracy 70.87 76.69 40.25 56.33 60.81 61.59

F1-score 69.23 74.85 16.70 50.18 59.03 59.99

GAT-HIN
Accuracy 70.92 71.56 39.88 56.49 60.24 60.19

F1-score 69.43 70.37 16.95 50.31 59.11 59.82

*GraphSAGE-GCN
Accuracy 61.66 61.67 28.20 48.57 56.72 58.92

F1-score 60.38 60.07 11.18 41.59 56.46 58.73

*GraphSAGE-pool
Accuracy 63.83 65.22 36.41 48.47 58.80 59.79

F1-score 62.13 62.11 22.88 39.80 58.75 59.04

*GraphSAGE-mean
Accuracy 64.99 66.93 38.64 50.62 56.63 58.65

F1-score 63.55 64.94 23.65 43.09 56.06 58.42

*GraphSAGE-LSTM
Accuracy 58.08 55.70 36.53 40.23 55.17 54.18

F1-score 56.98 51.15 25.32 33.60 53.95 52.01

HAN-transductive
Accuracy 62.64 58.38 36.97 42.18 57.11 53.75

F1-score 61.23 55.80 26.88 35.05 56.46 53.09

HGAT-transductive
Accuracy 72.10∗ 82.36∗ 42.68∗ 61.72∗ 62.75∗ 63.21∗
F1-score 71.61∗ 74.44∗ 24.82∗ 53.81∗ 62.36∗ 62.48∗

The note ∗ means our model significantly outperforms the baselines based on t -test (p < 0.05).

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 32. Publication date: May 2021.



HGAT: Heterogeneous Graph Attention Networks 32:17

Table 3. Inductive Learning: Test Accuracy (%) and F1-score (%) of Different
Models on Six Standard Datasets

Dataset Metrics AGNews Snippets Ohsumed TagMyNews MR Twitter

GraphSAGE-GCN
Accuracy 63.92 62.94 29.43 48.15 58.64 57.72

F1-score 62.46 60.75 11.39 41.88 58.47 57.60

GraphSAGE-pool
Accuracy 63.75 65.93 31.93 48.34 58.59 60.43

F1-score 62.39 64.43 17.38 37.06 58.38 59.13

GraphSAGE-mean
Accuracy 63.33 65.40 31.24 50.25 57.88 59.33

F1-score 62.13 64.41 15.79 43.01 57.63 58.11

GraphSAGE-LSTM
Accuracy 56.19 63.47 35.23 39.89 55.03 54.42

F1-score 55.15 61.59 22.67 33.54 54.31 49.78

GAT-HIN-inductive
Accuracy 69.55 70.14 37.77 53.21 58.97 59.60

F1-score 68.03 68.87 24.66 44.46 58.83 58.98

HAN-inductive
Accuracy 61.58 56.83 35.12 40.84 55.51 53.27

F1-score 61.04 54.01 25.03 33.55 54.91 52.78

HGAT-inductive-0
Accuracy 61.85 62.82 39.58 37.19 56.26 52.67

F1-score 61.23 57.11 23.94 27.16 50.73 50.15

HGAT-inductive-1
Accuracy 69.03∗ 79.00∗ 40.90∗ 58.20∗ 59.80∗ 62.60∗

F1-score 67.64∗ 72.12∗ 24.37∗ 49.55∗ 59.31∗ 60.47∗

HGAT-inductive-2
Accuracy 70.23∗ 79.40∗ 42.08∗ 57.83∗ 61.18∗ 61.69∗

F1-score 68.43∗ 77.69∗ 25.71∗ 46.80∗ 59.77∗ 60.01∗

The note ∗ means our model significantly outperforms the baselines and traditional inductive learning based on t -test

(p < 0.05).

For transductive learning, Table 2 reports the classification accuracy and F1 score of different
methods on six benchmark datasets. We can see that our methods significantly outperform all
the baselines by a large margin, which shows the effectiveness of our proposed method on semi-
supervised short text classification. The traditional methods SVMs based on the human-designed
features, outperform the deep models with random initialization, i.e., CNN-rand and LSTM-rand
in most cases. But CNN-pretrain and LSTM-pretrain based on the pre-trained vectors achieve
significant improvements and outperform SVMs. The graph-based model PTE achieves inferior
performance compared to CNN-pretrain and LSTM-pretrain. The reason could be that the word-
occurrences are the key information for PTE to learn text embeddings, however, word-occurrences
are very sparse during short text classification. Graph neural network-basedmodels, i.e., TextGCN,
GCN-HIN, GAT-HIN, HAN, and GraphSAGE, achieve comparable results with the deep models
CNN-pretrain and LSTM-pretrain. Our model HGAT consistently outperforms all the state-of-
the-art models by a large margin, verifying the effectiveness of our proposed method. The reasons
are as follows: First, the constructed flexible HIN framework for modeling the short texts enables
integration of additional information to enrich the semantics; Second, the novel proposed model
HGAT embeds the HIN for short text classification based on a new dual-level attentionmechanism,
which not only captures the importance of different neighboring nodes (reducing the weights of
noisy information) but also the importance of different types of nodes.
For inductive learning, Table 3 shows the classification accuracy and F1 score of different meth-

ods on the six benchmark datasets. HGAT-inductive-0 represents HGAT using the traditional
inductive setting. HGAT-inductive-1, 2 represent HGAT with inductive learning based on our pro-
posed one-hop and two-hop expanded inductive graphs, respectively. Note that all the baseline
models are run on the same inductive graph as HGAT-inductive-2, since the two-hop expanded

ACM Transactions on Information Systems, Vol. 39, No. 3, Article 32. Publication date: May 2021.



32:18 T. Yang et al.

Table 4. Multi-label Classification Performance on Ohsumed-multi

Metrics ER Micro-P Micro-R Micro-F1 Macro-P Macro-R Macro-F1
CNN-pretrain 18.38 48.13 44.91 46.46 37.54 31.47 33.29
LSTM-pretrain 12.22 42.28 49.39 45.56 30.13 27.99 25.21
BERT 22.15 53.83 45.95 49.57 44.21 32.20 35.71
TextGCN 10.09 28.74 82.69 42.65 21.65 86.18 30.60
HAN-transductive 15.67 33.91 39.52 36.50 23.73 30.28 24.39
HGAT-transductive 24.34∗ 54.58∗ 46.46 50.19∗ 49.98∗ 37.73 42.41∗

GraphSAGE-GCN 19.04 47.49 29.29 36.23 48.99 15.88 19.53
GraphSAGE-pool 22.13 49.81 42.82 46.04 47.30 30.48 34.58
GraphSAGE-mean 22.15 50.32 41.83 45.68 57.20 28.27 34.10
GraphSAGE-LSTM 21.16 50.72 39.92 44.67 48.92 28.92 34.05
HAN-inductive 16.21 31.56 38.97 34.88 22.85 31.79 24.16
HGAT-inductive 23.90∗ 55.25∗ 46.41∗ 50.44∗ 51.93 38.68∗ 43.67∗

The note ∗ means our model significantly outperforms the baselines and traditional inductive learning based on t -test

(p < 0.01).

inductive graph is more informative. From Table 3, we obtained the following observations. First,
both HGAT-inductive-1 and HGAT-inductive-2 largely outperform all the baselines, verifying the
effectiveness of our proposed HGAT for inductive learning. Second, HGAT-inductive-1 outper-
forms HGAT-inductive-0 by a large margin, confirming the necessity of the proposed expanded in-
ductive graph for the new coming texts in semi-supervised short text classification. Third, HGAT-
inductive-2 achieves the best performance in most cases, which indicates that as the number of
hops increases, more information is introduced, thus better performance is achieved. However, if
the number of hop becomes too large (e.g., TagMyNews and Twitter), some irrelevant informa-
tion will be introduced, which may bring noise. A more detailed analysis about the impact of the
number of hops for the expanded inductive graph is presented in Section 4.2.4.

4.2.2 Multi-label Classification. We also extended our model HGAT and the baseline models
for multi-label classification and studied the performance of the models on a multi-label dataset,
i.e., Ohsumed-multi. For fair comparison, we use the same margin-loss for all the models for multi-
label classification. Table 4 presents the results of our model and baselines, in both transductive
learning and inductive learning. As shown in Table 4, our HGAT greatly outperforms all the base-
lines in both transductive and inductive learning settings, validating the effectiveness of HGAT for
multi-label classification. We also found that TextGCN performs very poorly on multi-label clas-
sification. This may be caused by the following two reasons: First, the nodes in TextGCN have no
features but only one-hot vectors; second, the edges are very dense, especially between documents
and words. These make it easy for TextGCN to predict more categories for the documents. The low
Precision and extremely high Recall also verify this speculation. Our method, based on the HIN in-
tegrating the additional topic and entity information, can better distinguish the difference between
the categories. Thus our model obtains superior performance for multi-label classification.

4.2.3 Comparison of Variants of HGAT. We further conduct several variants to compare with
our model HGAT to validate the effectiveness of our model under the setting of transductive learn-
ing. As shown in Table 5, seven variant models are compared with our HGAT. The basic model
GCN-HIN directly applies GCN on our constructed HIN for short texts by concatenating the fea-
ture spaces of different types of information. Another basic model GAT-HIN introduces attention
mechanism into graph convolution. The two models both do not consider the heterogeneity of
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Table 5. Test Accuracy (%) of Our Variants

Dataset AGNews Snippets Ohsumed TagMyNews MR Twitter
GCN-HIN 70.87 76.69 40.25 56.33 60.81 61.59
GAT-HIN 70.92 71.56 39.88 56.49 60.24 60.19
HGAT w/o ATT 70.97 80.42 41.31 59.41 62.13 62.35
HGAT-Type 71.54 81.68 41.95 60.78 62.27 62.95
HGAT-Node 71.76 81.93 42.17 61.29 62.31 62.45
HGAT w/o Orphan 71.79 82.01 42.23 61.27 62.40 62.03
HGAT 72.10 82.36 42.68 61.72 62.75 63.21

various information types. HGAT w/o ATT considers the heterogeneity through our proposed
heterogeneous graph convolution, which projects different types of information to an implicit
common space with respective transformation matrices. Based on HGAT w/o ATT, HGAT-Type,
and HGAT-Node further consider only the type-level attention and node-level attention, respec-
tively. HGAT w/o Orphan removes the module of orphan categories compared with the complete
model HGAT.
We can see from Table 2, GAT-HIN sometimes performs better than GCN-HIN due to the

attention mechanism, while sometime performs worse caused by overfitting. HGAT w/o ATT
consistently outperforms these two basic models on all datasets, demonstrating the necessity of
our proposed heterogeneous graph convolution, which considers the heterogeneity of various
information types. HGAT-Type and HGAT-Node further improve HGAT w/o ATT by capturing
the importance of different information (reducing the weights of noisy information). HGAT-Node
surpassed HGAT-Type, indicating that node-level attention is more important. Besides, HGAT
w/o Orphan is slightly inferior to the HGAT, which shows the effectiveness of the consideration
of non-text categories, i.e., “entity” and “topic.” Finally, HGAT significantly outperforms all the
variants by considering the heterogeneity and applying dual-level attention mechanism with
node-level and type-level attentions.

4.2.4 Impact of Number of Hops for Inductive Graph. In this subsection, we studied the impact
of the number of hops for the expanded inductive graph. Figure 5 illustrates the performance on
the six single-label datasets. We can see that HGAT-inductive-0 (i.e., when the number of hops is
0) achieves the worst performance. When the number of hops increases to 1, the performance is
substantially improved, which is caused by the use of the information from existing labeled and
unlabeled short texts instead of information from only new coming texts. Moreover, as the hop
increases, the accuracy and F1 score first go up, reach the optimal value when the hop is 1 or 2, and
then tend to moderate or decrease. The reason is that at the beginning, our model benefits from
the additional information from existing data. However, when the number of the hops becomes
too large, some noise may be introduced.

4.2.5 Impact of Sampling Strategy. In this subsection, we conduct a series of experiments on
the six datasets to evaluate the effects of three common sampling strategies (compared with no
sampling) and the number of sampling neighbors. Specifically, as illustrated in Figure 6, we vary the
number of samples from 1 to 20. Random, TopK andWeighted represent uniform random sampling,
top-K pruning and weighted random sampling, respectively. None means no sampling strategy is
applied.
As reported in Figure 6, as the number of sampling neighbors increases, the performance of all

sampling strategies consistently becomes better on all datasets, because more information from
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Fig. 5. The bars show the test accuracy (blue bars) and F1 score (red bars) with different numbers of hops
for the expanded inductive graph. Red lines show the proportion of the expanded nodes in the existing data.

neighboring nodes is integrated. Compared with no sampling, there is an obvious performance
drop in most cases, due to the information loss caused by sampling. However, note that apply-
ing a sampling strategy will greatly improve the efficiency, which is more suitable for real-world
applications.
Detailed discussions are as follows. Compared with TopK, the performance of Random is bet-

ter in most cases. It proves our assumption mentioned in Section 3.4 that TopK pruning directly
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Fig. 6. The test accuracy with different sampling strategies and various numbers of sample neighbors.
“None” means no sampling strategy is applied.

choosing the most similar neighbors (i.e., they have the biggest attention scores) will lose some rel-
evant but not similar information. ComparedwithWeighted, Random obtains inferior performance.
We analyze that this phenomenon is caused by a similar reason: Although Random involved more
relevant but not similar information, it also introduces too much noise. Therefore,Weighted mak-
ing a trade-off between noise and effective information can get better results. Therefore, a more
appropriate sampling strategy can be explored in the future to reduce complexity while ensuring
as good a performance as possible.

4.2.6 Impact of Training Set Ratios. We chose five representative methods with the best per-
formance: HGAT, SVM+TFIDF, CNN-pretrain, LSTM-pretrain, TextGCN, to study the impact of
the number of training set ratios. Particularly, we varied the ratios of training set and compared
their performance on four datasets7: Snippets, TagMyNews, MR, and Twitter. We ran each method
10 times and report the average performance. As shown in Figure 7, with the increase of train-
ing data, all the methods achieve better results in terms of accuracy. Generally, the graph-based
methods TextGCN and HGAT perform better, indicating that graph-based methods can make bet-
ter use of limited labeled data through information propagation. Our method outperforms all the
other methods consistently. When fewer labeled documents are provided, the baselines exhibit
obvious performance drop, especially the traditional method SVM+TFIDF, while our model still
achieves relatively high performance. It demonstrates that our method canmore effectively exploit
the limited labeled data for short text classification. Moreover, when the ratios of the training set
becomes normal, i.e., not under the extreme semi-supervised settings, one can observe our model

7The other two datasets have different settings compared with previous work. Specifically, for AGNews, we randomly

selected 6,000 pieces from the whole dataset due to its large scale. For Ohsumed, we remove the abstracts in the corpus for

short text classification.
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Fig. 7. The test accuracy with different ratios of training set. Note that the lines are started with the settings
in Section 4.2.1, rather than ratio = 0. Besides, the standard split ratios of the four datasets are 0.8, 0.8, 0.66,
0.8, respectively.

consistently keep superior. We believe our method benefits from the flexible HIN and the proposed
heterogeneous graph attention networks with dual-level attention.

4.2.7 Visualization of Document Embeddings. Figure 8 visualises the short text embeddings of
HGAT and TextGCN. We chose four datasets and visualized the embeddings of randomly-sampled
1,000 short texts from the test sets of the four datasets. From Figure 8, we observed that compared
to TextGCN, HGAT learns closer document embeddings of the same category, and it is easier to dis-
tinguish documents of different categories. Even for more difficult datasets such as Ohsumed and
TagMyNews, it is still more clear to observe the clustering phenomenon of document embeddings
for HGAT, compared to TextGCN.

4.2.8 Parameter Analysis. In this subsection, we study the impact of different numbers of topics
K and top relevant topics P assigned to a document, and different values of the hyper-parameter
λ. The accuracy of our model on the six single-label datasets is illustrated in Figure 9. It is clear
that for the number of topics, the test accuracy first increases with the increase of the number of
topics, reaching the highest value at 15 on most datasets; then it falls when the number is larger.
We also tried the different number of topics for the baselines, and observed that the best K is the
same as that in our model. This is consistent with the intuition that the number of topics should
fit the dataset, i.e., it should be model-free. For the number of top relevant topics P assigned to the
documents, the test accuracy first increases with the increase of P and then decreases when P is
larger than 2 on all the datasets. For the hyper-parameter λ, we find that our model is insensitive
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Fig. 8. Visualization of the short text embeddings on the test set of the four datasets where performance is
relatively significant.
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Fig. 9. The average accuracy with different number of topics K , top P relevant topics, and hyper-parameter
λ to alleviate overfitting on the six single-label datasets.
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Fig. 10. Visualization of the dual-level attention including node-level attention (shown in red) and type-level
attention (shown in blue). Each topic t is represented by top 10 words with highest probabilities.

to λ on most datasets. The best performance usually occurs when λ is 0.1 or 0.2. Note that when λ
is 1.0, it means the mechanism of the overfitting alleviation is completely removed, thus leading to
a performance drop especially for dataset snippets. In our experiments, the three parameters are
set based on the validation set of each dataset.

4.2.9 Case Study. As Figure 10 shows, we took a short text fromAGNews as an example (which
is classified to the category of sports correctly) to illustrate the dual-level attention of HGAT. The
type-level attention assigns high weight (0.7) to the short text itself, while lower weights (0.2 and
0.1) to entities and topics. It means that the text itself contributes more to the classification, than
the entities and topics. Besides, the node-level attention assigns different weights to neighboring
nodes, and the node-level weights of nodes belonging to a same type sum to 1. As we see, the
entities e3 (Atlanta Braves, a baseball team), e4 (Dodger Stadium, a baseball gym), e1 (Shawn Green,
a baseball player) have higher weights than e2 (Los Angeles, referring to a city at most time). The
topics t1 (game) and t2 (win) have almost the same importance in classifying the text to the category
of sports. The case study shows that our proposed dual-level attention can capture key information
at multiple granularities for classification and reduce the weights of noisy information.

5 CONCLUSION

In this article, we propose a novel heterogeneous graph neural network-based method for semi-
supervised short text classification, which takes full advantage of both limited labeled and large
unlabeled data by information propagation. Particularly, we first present a flexible HIN framework
for modeling the short texts, which can integrate any additional information and capture their rich
relations to address the semantic sparsity of short texts. Then, we propose a novel model HGAT
to embed the HIN based on a dual-level attention mechanism including node-level and type-level
attentions. HGAT considers the heterogeneity of various information types by projecting them
into an implicit common space. Additionally, the dual-level attention captures the key information
at multiple granularity levels and reduces the weights of noisy information. To deal with the new
coming texts not previously existing in theHIN,we extend ourmodel HGAT for inductive learning.
Moreover, we improve our HGAT by introducing orphan categories to reduce the classification
interference of the non-text categories in the HIN for short texts. Extensive experimental results on
single-/multi-label classification have demonstrated that our proposed model HGAT consistently
and significantly outperforms state-of-the-art methods across the benchmark datasets under both
transductive and inductive learning.
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For the future, since our model HGAT is a general HIN embedding approach, it would be in-
teresting to apply it to other tasks, e.g., HIN-based recommendation. Besides, a more effective
neighbor-sampling strategy is also worth exploring.
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