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Abstract. Sensor-based human activity recognition aims to automati-
cally identify human activities from a series of sensor observations, which
is a crucial task for supporting wide range applications. Typically, given
sufficient training examples for all activities (or activity classes), su-
pervised learning techniques have been applied to build a classification
model using sufficient training samples for differentiating various activ-
ities. However, it is often impractical to manually label large amounts
of training data for each individual activities. As such, semi-supervised
learning techniques sound promising alternatives as they have been de-
signed to utilize a small training set L, enhanced by a large unlabeled
set U. However, we observe that directly applying semi-supervised learn-
ing techniques may not produce accurate classification. In this paper,
we have designed a novel dynamic temporal extension technique to ex-
tend L into a bigger training set, and then build a final semi-supervised
learning model for more accurate classification. Extensive experiments
demonstrate that our proposed technique outperforms existing 7 state-
of-the-art supervised learning and semi-supervised learning techniques.

Keywords: Activity Recognition, Semi-Supervised Learning, Dynamic
Temporal Extension.

1 Introduction

Sensor-based human activity recognition has received considerable attention due
to its diverse applications such as healthcare systems [1], pervasive and mobile
computing [5], and smart homes [10] etc. For example, in the healthcare appli-
cations, understanding elderly people’s activities can not only provide real-time
useful information to caregivers, but also facilitate a monitoring system to take
proper actions (e.g. alert clinicians) in emergency cases (e.g. falling down).

While privacy and complexity are major issues in video-based activity recog-
nition [11], different supervised learning approaches have been applied to activity
recognition based on body-worn sensors. For example, Näıve Bayes (NB) [23],
Hidden Markov Model (HMM) [12, 27], Conditional Random Field (CRF) [27]
and Support Vector Machine (SVM) [23] etc. These approaches require suffi-
cient labeled samples to train accurate classifiers. However, sample labeling is
the most labor intensive and time consuming process in activity recognition [11]
as different classes of related activities could have nondeterministic natures —
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some steps of the activities can be performed in arbitrary order, and the starting
and ending points of activities are difficult to define due to the overlaps among
different activities, leading to activities could be concurrent or even interwoven
[11]. As such, it would be extremely hard to get sufficient training samples.

Semi-supervised learning approaches, on the other hand, have been designed
to build a classification model using a small training set L and a large unlabeled
set U. Particularly, an initial classifier can be built from L by using NB, SVM
or another classifier. Then the classifier can be used to classify U to assign a
(probabilistic) class label to each sample in U [14, 15], which can be in turn
used to refine the classifier, using Expectation-Maximization (EM) [22] or other
classifiers (like SVM) iteratively [13, 16–19]. The combination of NB and EM,
and transductive Support Vector Machine (TSVM) [8] are two well known semi-
supervised learning methods. In addition, Guan et al [7] designed En-Co-training
algorithm for activity recognition based on co-training algorithm [2] which trains
two independent classifiers based on two views of data. Stikic et al [26] compared
two semi-supervised techniques, namely self-training [4] and co-training, and
showed co-training can be applied to activity recognition by using sensors with
different modalities, i.e. accelerometers and infra-red sensors. While a few semi-
supervised learning algorithms have been proposed, they still need sizable labeled
samples for training to achieve accurate results. The reason is that these methods
will encounter a cold-start issue when very few labeled samples are present for
learning a decent initial classifier. Its poor performance subsequently affects the
iterative model refinement process. As such, directly applying semi-supervised
learning techniques may not always produce accurate prediction results.

In this paper, we address the challenging issue by proposing a novel Dynamic
Temporal Extension (DTE) algorithm. Particularly, based on a few labeled sam-
ples, we automatically infer some reliable labeled samples from U in temporal
space [21]. For each labeled sample, we extend it to include its near neighbors
along its time axis, if these neighbors are predicted mostly to have a same label
with the labeled sample. In effect, our DTE algorithm tries to fill the gap be-
tween the limited available labeled samples and sizable labeled samples required
for semi-supervised learning. With our inferred reliable labeled samples, we can
thus build a more robust and accurate semi-supervised learning model. Exten-
sive experiments demonstrate that our proposed technique outperforms existing
7 state-of-the-art supervised learning and semi-supervised learning techniques.

2 The Proposed Technique

In this section, we present our proposed technique. First, section 2.1 provides our
overall algorithm. Then, we introduce how to build a classifier using our designed
semi-supervised learning approach in section 2.2. Finally, section 2.3 elaborates
how to extend limited labeled samples using our proposed DTE technique.

2.1 Overall Algorithm

Fig. 1 shows an overall algorithm of our proposed technique. Step 1 is a prepro-
cessing that deals with missing value problem as well as faulty sensors. Missing
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Input: L,U � Set of Initial Labeled Samples and Unlabeled Samples respectively
Output: M � Classification Model

1: Handle missing values and faulty sensors in a given activity recognition data set
2: Build an initial semi-supervised classifier IC using L and U
3: Apply IC to predict the labels of samples in U and perform smoothing
4: Compute continuous same-label segment size SS of activities using predicted labels in Step 3
5: Extend labeled samples into set E using DTE with the estimated segment size SS
6: Build a final semi-supervised learning model M based on initial labeled set L, the inferred

labeled set E, as well as the remaining unlabeled set U − E
7: Classify the test samples using the model M

Fig. 1. Overall DTE algorithm for activity recognition using few labeled samples

value problem can be caused by some faulty sensors or unreliable communica-
tion channels. We first eliminate sensors which have more than 30% missing
values as they can not provide useful and sufficient information for accurate ac-
tivity recognition. We then apply cubical spline interpolation for replacing those
missing values in our data sets [3] and eliminate samples with no activity label.

In order to prepare for labeled sample extension, we want to estimate the
median size of continuous same-label activity sequences in L + U , as this is
useful information that indicates how far we should extend each labeled sample.
Since we do not have the label information for all the samples in U , we first
design a semi-supervised learning method to build an initial classifier IC in step
2 — we provide its detailed description in section 2.2. Then, we apply IC to
classify the unlabeled samples in U in step 3. Given that sensor sampling rates
are usually significantly higher than the rates of change between different human
activities, we thus perform smoothing step to improve the prediction accuracy
by removing impulse noises. Our smoothing process moves a sliding window on
predicted labels of U and chooses the labels with majority as the label of all
the samples in that window. Step 4 computes the median continuous same-label
segment size SS of activities based on the predicted labels in U. Step 5 extends
all the labeled samples into the inferred reliable labeled set E based on our
designed DTE techniques using the prediction results from IC as well as the
estimated segment size SS. We have provided the details of step 5 in section 2.3.

Finally, we build the final classification model M using our semi-supervised
learning method, based on labeled set L, the extended set E, and the remaining
unlabeled set U −E in step 6, and perform final classification in step 7. Note the
same method is used for both initial classifier IC and final classifier although
the final one is more accurate due to additional reliable labeled sample E.

2.2 Classifier Building Based on Semi-supervised Learning

First, labeled set L and unlabeled set U are defined as follows:

L = {(Ak, Ck)|k = 1, 2, . . . , |L|} (1)

U = {Ak|k = 1, 2, . . . , |U |} (2)
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Ak = (ak1, ak2, ..., akn) is a n-dimensional feature vector where aki(i = 1, 2,
. . . , n) is the i ’th feature of Ak and Ck ∈ C(C = {C1, C2, ..., C|C|}) is the
associated activity/class label of Ak. The objective of this research is to learn a
classification model M that can be used to classify any test sample.

We adopt a mixture model to generate each activity Ak as mixture models
are very useful to characterize heterogeneous data or multiple types of activities.

P (Ak|θ) =
|C|∑

j=1

P (Cj |θ)P (Ak|Cj ; θ) (3)

Where θ parameterized a mixture model. Given any class Cj , assuming that
the probabilities of the features are independent as well as normal distribution
(based on the central limit theorem) for each attribute in Cj , we have

P (Ak|Cj ; θ) = P (Ak|Cj ;μj , σj) =
n∏

i=1

P (aki|Cj ;μij , σij) (4)

and

P (aki|Cj ;μij , σij) =
1√

2πσij

e
− (aki−μij )2

σij
2

(5)

Note μj =(μ1j , μ2j , ..., μnj) and σj =(σ1j , σ2j , ..., σnj) where μij and σij are
the mean and standard deviation of feature i in class j respectively.

In order to perform classification, we compute the posterior probability of
class Cj for a given example Ak:

P (Cj |Ak;μ, σ) =
P (Cj |μ, σ)∏n

i=1 P (aki|Cj ;μij , σij)

P (Ak|μ, σ) (6)

Where μ =[μ1, μ2, ..., μ|C|] and σ =[σ1, σ2, ..., σ|C|]. The class Ck with k =
arg
j

maxP (Cj |Ak;μ, σ)(j = 1, . . . , |C|) will be assigned to the example Ak as

its predicted class label.Note in formula (6), the denominator P (Ak|μ, σ) is a
constant, i.e. same for all classes. We now elaborate how to calculate P (Cj |μ, σ).
Based on formula (3), the probability of both labeled and unlabeled training set
(S = L ∪ U) can be written as:

P (S|μ, σ) =
∏

Ak∈U

|C|∑

j=1

P (Cj |μ, σ)P (Ak|Cj ;μ, σ)×
∏

(Ak,Ck)∈L

P (Ck|μ, σ)P (Ak|Ck;μ, σ) (7)

Local maximum of log likelihood indicated by (7) can be found using Expected
Maximization (EM) in an iterative manner [6]. It can be shown that parameters
in M-step of EM algorithm can be computed as follow:

μt+1
ij =

∑
k akiP (Cj |Ak;μ

t, σt)
∑

k P (Cj |Ak;μt, σt)
(8)

σ2
ij

t+1
=

∑
k (aki − μt

ij)
2P (Cj |Ak;μ

t, σt)
∑

k P (Cj |Ak;μt, σt)
(9)
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Input: L,U � Set of Initial Labeled Samples and Unlabeled Samples respectively
Output: E � Set of Extended Samples

1: E ← ∅
2: CfTable[ ][ ] ← 0
3: for all s ∈ L do
4: Cj = label(s)
5: ExtS ← ExtendSample(s, Cj)
6: for all p ∈ ExtS do
7: if p /∈ E then
8: E ← E ∪ {p}
9: Add p into CfTable
10: CfTable[p][Cj ] ← 1
11: else
12: CfTable[p][Cj ] ← CfTable[p][Cj ] + 1
13: end if
14: end for
15: end for
16: for all p ∈ E do
17: label(p) ← arg

j
maxCfTable[p][j]

18: end for

Fig. 2. DTE algorithm on labeled example extension

Finally, the class prior probability can be calculated:

P (Cj |μt+1, σt+1) =

∑
k P (Cj |Ak;μ

t+1, σt+1)

|L|+ |U | (10)

Note that we have modified the original EM algorithm by setting the posterior
class probabilities of initially labeled samples in L as their original labels, at the
start of each iteration. This guarantees our classification model is built using
correct labeled examples during its iterative training process.

2.3 Dynamic Temporal Extension for Labeled Samples

In section 2.2, we have proposed a semi-supervised method to learn a classifi-
cation model from a small labeled set L and a large unlabeled set U . In our
case, since L is very small, say a few training examples for each class, the semi-
supervised learning method will not capture the characteristics for each class.
As such, we have proposed a novel dynamic temporal extension algorithm DTE
to extend the initial labeled samples into an extended reliable labeled set E by
exploring the dependencies between samples in time domain to effectively boost
the performance of semi-supervised learning.

The proposed DTE algorithm for labeled example extension is shown in Fig. 2.
After we initialize the extended set E into an empty set in step 1, a confidence
table CfTable[ ][ ] is created and initialized in step 2 which records the support
of an unlabeled example to a given class, e.g. CfTable[p][Cj] indicates how
likely and the degree of confidence that an example p belongs to a class Cj .
From steps 3–15, we extend each labeled sample one by one and compute the
confidence table correspondingly. Particularly, for each seed labeled sample s
with class label Cj , we extend it to include its neighbor samples to form ExtS
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along a time line (left/ right hand sides of s) if we judge these samples in ExtS
belong to the same class, i.e. Cj , by calling a function ExtendSample() that
will be described in Fig 4 later.

Steps 6 to 14 is a loop, which computes the support for each extended sample
in ExtS by updating the confidence table CfTable[p][Cj]. When selected sample
p does not exist in the table, it is inserted to the set E (step 8) and CfTable with
the initial value 1 (steps 9 to 10); otherwise our algorithm increases its respective
support value by 1. Finally, steps 16 to 18 assign each sample in E with a label
with a maximal class support score wrt to its associated classes in CfTable.

Now, we are ready to introduce the function ExtendSample() that is used
in Fig. 2. We first illustrate the key intuition behind it in Fig. 3. As the sampling
frequency of sensors is much higher than the change frequency between different
human activities, given an initial labeled sample s at time point t0, the neighbor
samples at its near left time points and at its near right time points are highly
likely to share the same label with s, as long as these left/right time points are
not too far away from t0. However, one challenging problem is how long/far we
should extend s to its left/right hand side.

In this paper, we use a sliding window to estimate right and left label-
consistent neighbor samples of s. Two base sliding windows (left/right sliding
window LBaseWin/RBaseWin) are moved forward from both sides of s indi-
vidually and our algorithm decides whether the extension should be continued
or stopped based on the analysis of the neighbor samples’ labels inside both
sliding windows (Fig. 3). Two important information sources have been used as
a stop criteria, namely, 1) neighbor label consistency with s where the labels
of s’s neighbors are predicted by our initial classification model IC, and 2) the
distance of neighbor samples to s. We design a membership function MF based
on a distance measure to s as follows:

MF (x, s, SS) =
1

1 + | x−s
0.5∗SS

|SS
(11)

where x is a current neighbor sample inside in a left/right window; s and SS are
the center and width of membership function respectively (Fig 3) where SS is
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estimated in our overall algorithm by computing the median size of continuous
same-label activity sequences. The membership function defined in (11) is a bell
shaped fuzzy membership function. As sliding windows move forward from s
to left/right side, membership value decreases corrspondingly. The bigger this
distance x − s, the less likely the neighbor sample x should be included. We
also take the label-consistency into consideration by computing a support score
Support ScoreCj for all the predicted class labels Cj ∈ C in current base window
(LBaseWin/RBaseWin):

Support ScoreCj =
∑

x∈RBaseWin
label(x)=Cj

MF (x, s, SS) (12)

Score Support ScoreCj defined in (12) basically calculates the label support
inside current (right) base window based two information sources mentioned.
We will continue our extending process if these labels in the base window are
consistent with s’s label and they are not too far away from s. Depending on the
two factors, we extend s dynamically, and the numbers of extended examples are
different for each initial labeled sample as well as for the left and right extension.

The detailed description of function ExtendSample() is shown in Fig 4. Note
we only show how to extend right samples from s as extending left samples is the
same except the extension direction. After initializing the extended sample set
ExtS as empty set in step 2, we perform a loop from steps 3 to 18. Particularly,
steps 5 to 9 sum up all the class membership scores for each example in the
current base window. Steps 10 to 11 get the Winner score and Winner Label
from all the classes. Steps 12 to 17 decide if we want to repeat our loop. If
the Winner Label is consistent with s and the Winner score>=50%, then the
samples inside the current window are reliable, and we thus add them into ExtS
and shift the right window to continue our extension process; Otherwise, we stop
the loop from here. Finally, step 19 returns our extension results.

3 Empirical Evaluation

In this section, we evaluate our proposed DTE technique. We compare it with 7
existing state-of-the-art techniques, including 3 supervised learning techniques,
namely, 1NN (which performs best for time series data) [9], SVM [23], NB (Näıve
Bayes) [23], as well as 4 semi-supervised learning techniques, namely, Transduc-
tive Support Vector Machine (TSVM) [8], NB+EM (NB+Expected Maximiza-
tion) [22], Self-training [20] and En-Co-training [7] etc.

3.1 Datasets

For evaluation, we used 3 datasets from Opportunity Challenge [24, 25]. Each
dataset represents 1 subject/person who performed various activities with at-
tached on-body sensors. Particularly, each subject performed one Drill session
which is 20 predefined atomic activities and 5 Activities Daily Life (ADLs) ses-
sions where the subject performed high level activities with more freedom on
sequence of atomic activities. Datasets contain 4 locomotion activities/classes,
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Input: s, Cj � s and Cj are a labeled sample to extend and its associated class respectively
Output: ExtS � A set of extended samples for the labeled sample s

1: function ExtendSample(s, Cj)
2: ExtS ← ∅
3: Acceptable ← true
4: repeat � Extension towards right
5: for i ← 1 to |C| do
6: for all x located inside right based window RBaseWin do
7: Support Scorei ← ∑

label(x)==i MF (x, s, SS)

8: end for
9: end for
10: WinnerScore ← max Support Scorei(i = 1, 2, . . . , |C|)
11: WinnerLabel ← arg

k
maxSupport Scorei(i = 1, 2, . . . , |C|)

12: if WinnerLabel==Cj and WinnerScore ≥ 50% then
13: ExtS ← ExtS∪ {the samples inside RBaseWin}
14: RBaseWin ← ShiftRight(RBaseWin)
15: else
16: Acceptable ← false
17: end if
18: until Acceptable == false
19: Return ExtS
20: end function

Fig. 4. EXTENDSAMPLE procedure of DTE algorithm

namely, stand, walk, sit, and lie. All the experiments are performed across 3
different datasets. Drill and first 3 ADLs (ADL 1, ADL2, ADL3) are used for
training while the last 2 ADLs (ADL4, ADL5) are used for testing.

Table 1. Opportunity Challenge Data Sets After Preprocessing

Dataset 1 Dataset 2 Dataset 3

Number of Features 107 110 110
Training Set 139427 126595 141263
Test Set 47291 48486 45774

Table 1 shows the details of the 3 datasets that we used in our experiments
after the preprocessing step introduced in section 2.1. To simulate the challenging
scenario of learning from limited training samples, for each dataset we randomly
select only 3 samples from Training Set for each of the 4 classes, i.e. 12 (3× 4)
samples to serve as the labeled set L. We then randomly select 1000 training
samples as unlabeled set U which are used by all the semi-supervised learning
methods after ignoring their labels. We have also tested how the sizes of U
affect the final classification performance. In addition, the base window size
(RBaseWin) is set to 10 (Fig 4) and we will report its sensitivity study results.
Finally, to make the evaluation reliable, all the experiments are repeated for 10
times and the performances of all the 8 techniques are evaluated on the same
test sets in terms of average Accuracy and F-measure, which are typically used
for evaluating the performance of classification models. Note that locomotion
activities/classes is moderately imbalanced [3] so we use Accuracy and F-measure
as performance measurements.
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Table 2. Comparison of different supervised and semi-supervised learning methods

Methods
Dataset 1 Dataset 2 Dataset 3

Accuracy F-Measure Accuracy F-Measure Accuracy F-Measure

1NN 75.5 78.8 58.0 65.1 59.9 67.7
SVM 9.1 24.0 16.0 27.9 15.5 26.7
NB 64.3 76.9 66.0 71.8 50.5 58.2

TSVM 61.4 69.8 54.6 57.4 40.4 49.0
NB+EM 77.7 82.9 75.9 77.6 57.0 56.1
Self-Training 41.8 16.8 36.8 13.5 42.5 14.9
En-Co-Training 59.1 65.8 47.4 64.5 56.6 64.3

DTE 79.2 83.6 77.0 78.4 68.2 68.6
DTE+smoothing 80.2 84.3 77.6 78.9 68.8 69.0

3.2 Experimental Results

The experimental results are shown in Table 2. The first 3 rows show the per-
formance of 3 supervised classification models, i.e. 1NN, SVM, NB, where only
initial labeled set (L) is used for training. We observe that SVM performs badly
compared to 1NN and NB as SVM can not build accurate hyperplanes based on
12 labeled samples for 4-class classification problem.

The next 4 rows illustrate the experimental results of 4 semi-supervised meth-
ods, which have used unlabeled setU to boost their performance. Compared with
supervised learning methods, we observe that TSVM is much better than SVM
for all datasets, and NB+EM outperforms NB for datasets 1 and 2, while it is
slightly worse in dataset 3 according to F-measure only. In general, NB+EM
works better than TSVM, Self-training and En-Co-Training most of times.

The last two rows in Table 2 show the performance of DTE method and
the effect of smoothing for test results. We observe DTE method consistently
works better than all the other 7 techniques across all the datasets. Especially
for dataset 3, DTE method achieves 11.2% and 12.5% better results than the
second best technique NB+EM in terms of average Accuracy and F-measure
respectively. We also perform the post-processing by applying smoothing (choose
majority labels inside a sliding window) on our predicted test results to remove
the impulse prediction errors, which further improve our method in all cases.

Recall that our proposed DTE method has dynamically extended initial la-
beled samples to left/right windows to include those neighbor samples that have
consistent-label and are not too far away from the labeled samples. For com-
parison, we have also used a fixed extension size (FES) which is obtained by
averaging the segments sizes of activities based on the actual labels in U. We
observe that our proposed DTE perform much better than those semi-supervised
methods (e.g. TSVM and NB+EM) that use the FES to include neighbor sam-
ples, indicating our method is very effective to automatically extend initial la-
beled samples dynamically to include those reliable labeled samples so that it
can boost the performance of semi-supervised learning significantly.
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(a) Sample extension performance (b) Number of exteneded samples

Fig. 5. No/Performance of different sample extension methods

(a) Accuracy (b) F-measure

Fig. 6. Performance of DTE using diffrent unlabeled samples

(a) Accuracy (b) F-measure

Fig. 7. Performance of DTE using diffrent base window size

Fig. 5 shows the comparison between the performance of proposed DTE sam-
ple extension and FES sample extension. From Fig. 5(a), the proposed DTE
algorithm can produce much more accurate labeled samples than FES, i.e. more
than 15% better in terms of both Accuracy and Precision. While FES produces
more samples (Fig. 5(b)), they are not accurate and thus bring noisy labels for
the subsequent training process, leading to inferior classification results.

Fig. 6 illustrates the performance of proposed DTE method for different
datasets in terms of the number of unlabeled samples used. From Fig. 6, with
the increase of unlabeled samples, the performance of classification increases
in the beginning and it becomes stable, with at least 1000 unlabelled samples,
indicating our method is not sensitive to the number of unlabelled samples used.

Finally, Fig. 7 shows the effect of changing base window size on DTE approach
performance (Accuracy/F-measure). As we can be observed, by increasing the
base window size, the performance of our approach only changes slightly across
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all the datasets in terms of both average Accuracy and F-measure, indicating
that our method is not sensitive to the base window size.

4 Conclusions

Learning from a few labeled samples becomes crucial for real-world activity
recognition applications as it is labor-intensive and time-consuming to manu-
ally label large numbers of training examples. While semi-supervised learning
techniques have been proposed to enhance supervised learning by incorporat-
ing the unlabelled samples into classifier building, it still can not perform very
well. In this paper, we propose a novel dynamic temporal extension technique
to extend the limited training examples into a larger training set which can fur-
ther boost the performance of semi-supervised learning. Extensive experimen-
tal results show that our proposed technique significantly outperforms existing
7 state-of-the-art supervised learning and semi-supervised learning techniques.
For our future work, we will investigate how to select the initial labeled samples
intelligently so that they can benefit our classification models more effectively.
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