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Multiprotein complexes play central roles in many cellular pathways. Although many high-throughput experimental
techniques have already enabled systematic screening of pairwise protein-protein interactions en masse, the amount
of experimentally determined protein complex data has remained relatively lacking. As such, researchers have begun
to exploit the vast amount of pairwise interaction data to help discover new protein complexes. However, mining for
protein complexes in interaction networks is not an easy task because there are many data artefacts in the underlying
protein-protein interaction data due to the limitations in the current high-throughput screening methods. We propose
a novel DECAFF (Dense-neighborhood Extraction using Connectivity and conFidence Features) algorithm to mine for
dense and reliable subgraphs in protein interaction networks. Our method is devised to address two major limitations
in current high throughout protein interaction data, namely, incompleteness and high data noise. Experimental results
with yeast protein interaction data show that the interaction subgraphs discovered by DECAFF matched significantly
better with actual protein complexes than other existing approaches. Our results demonstrate that pairwise protein
interaction networks can be effectively mined to discover new protein complexes, provided that the data artefacts in
the underlying interaction data are taken into account adequately.

1. INTRODUCTION

Multiprotein complexes play central roles in many
cellular pathways. Common examples include the
ribosomes for protein biosynthesis, the proteasomes
for breaking down proteins, and the nuclear pore
complexes for regulating proteins passing through
the nuclear membrane. Searching for protein com-
plexes is therefore an important research focus in
molecular and cell biology. However, while tens
of thousands of pairwise protein-protein interactions
have been detected by high throughput experimen-
tal techniques (e.g. yeast-two-hybrid), only a small
subset of the many possible protein complexes has
been experimentally determined 1.

Given that the protein complexes are molecu-
lar aggregations of proteins assembled from multi-

ple stable protein-protein interactions, researchers
have recently begun to explore the possibility of ex-
ploiting the current abundant datasets of pairwise
protein-protein interactions to help discover new pro-
tein complexes (see Section 2). In fact, it has been
observed that densely connected regions in the pro-
tein interaction graphs often correspond to actual
protein complexes 2, suggesting the identities of
protein complexes can be revealed as tight-knitted
subcommunities in protein-protein interaction maps.
This has led to previous works that looked into the
mining of cliques 3 or other dense graphical subcom-
ponents 4–7 in the interaction graphs for putative
complexes.

However, the protein interaction networks de-
rived from current high throughput screening meth-
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ods are not an easy source for mining as there are
still many data artefacts in the underlying interac-
tion data due to inherent experimental limitations.
In fact, it has been repeatedly shown that the cur-
rent protein interaction data is still incomplete and
noisy 8, 9 and it is important to take this into account
when devising algorithms to mine the protein inter-
action networks. For example, the use of cliques for
detecting complexes would be too constraining and
cannot provide satisfactory coverage.

In this work, we propose a novel DECAFF
(Dense-neighborhood Extraction using Connectivity
and conFidence Features) algorithm that is devised
to address two major limitations in current high
throughout protein interaction data, namely, incom-
pleteness and high data noise. Unlike conventional
methods, our DECAFF method specifically mines
for maximal dense local neighborhoods (instead of
cliques) and filters the unreliable protein complexes
by estimating the reliability of each protein interac-
tion in the network. Experimental results with yeast
protein interaction data show that the interaction
subgraphs discovered by DECAFF matched signif-
icantly better with actual protein complexes than
other existing approaches. Our results confirm that
there are indeed dense graphical subcomponents in
the pairwise protein interaction networks that cor-
respond to actual multiprotein complexes, and we
could exploit the interactome to help map the pro-
tein complexome more effectively by taking in ac-
count of the data artefacts in the underlying protein
interaction data.

2. RELATED WORKS

By modeling protein interaction data as a large undi-
rected graph where the vertices represent unique pro-
teins and edges denote interactions between two pro-
teins, Ref. 2 was one of the first to reveal that protein
complexes generally corresponded to dense regions
(highly interconnected subgraphs) in the protein in-
teraction graphs. Ref. 3 then exploited this finding
and used cliques (fully connected subgraphs) as a ba-
sis to detect protein complexes and functional mod-
ules in protein interaction networks. However, the
use of cliques was too constraining given that the
incompleteness in the currently available interaction
data; as a result, the method could only detect fewer
protein complexes.

Bader then proposed a novel MCODE algorithm

that discovered protein complexes based on the pro-
teins’ connectivity values in a protein interaction
graph 4. The algorithm first computes the ver-
tex weighting from its neighbor density and then
traverses outward from a seed protein with a high
weighting value to recursively include neighboring
vertices whose weights are above a given threshold.
As the highly weighted vertices may not be highly
connected to one another, this approach does not
guarantee that the discovered regions are dense. As
a result, not all the detected regions correspond to
protein complexes. In fact, in the post preprocess-
ing step of the MCODE algorithm, there was a need
to filter for the so-called “2-core”s as an attempt to
eliminate some obvious non-dense region detected by
the algorithm.

Clustering algorithms have also been proposed
to identify dense regions in a given graph by parti-
tioning it into disjoint clusters 10–12. However, these
general graph clustering algorithms cluster each ver-
tex (protein) into one specific group which made
them inappropriate for this biological application as
a protein is often involved in multiple complexes (i.e.
clusters) 8, 13. Another clustering approach was pro-
posed by Ref. 5, which used a restricted neighbor-
hoods search clustering algorithm (RNSC) to pre-
dict protein complexes by partitioning the protein-
protein interaction network using a cost function.
However, like many clustering algorithms, their re-
sults depended on the quality of the initial random
seeds. In addition, there were relatively fewer com-
plexes predicted by this algorithm, reflecting another
limitation of clustering approaches.

In our recent work 6, we proposed the LCMA
algorithm (Local Clique Merging Algorithm) to mine
the dense subgraphs for protein complexes. Instead
of adopting the over-constraining cliques as the basis
for protein complexes, LCMA adopted a local clique
merging method as an attempt to address the current
incompleteness limitation of protein interaction data.
Evaluation results showed that LCMA was better
in detecting complexes than full clique 3, MCODE
4 and RNSC algorithm 5. However, LCMA also
shared the same drawback as MCODE in that the
graphical components detected by the algorithm are
not guaranteed to be dense subgraphs.

Most recently, Ref. 7 proposed an algorithm
based on the assumption that two nodes that be-
long to the same cluster have more common neigh-
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bors than two nodes that are not in the same clus-
ter. Besides ensuring the high density (≥ 0.7) of a
graph, their algorithm also keeps track of its cluster
property, a numerical measure for measuring whether
a dense graph contains more than one dense com-
ponent. If a graph has a low value for the clus-
ter property, then it will be separated into multiple
subgraphs. However, given the higher proportion of
noisy protein interactions (up to 50%) in current pro-
tein interaction networks 9, the formations of clusters
will be greatly affected when the algorithm computes
the cluster property.

In this paper, we propose the DECAFF algo-
rithm which first mines local dense neighborhoods
(in addition to local cliques) for each vertex (protein)
and then merges these local neighborhoods according
to their affinity to form maximal dense regions that
correspond to possible protein complexes. In addi-
tion, given the potentially high false positive rate in
the protein interaction data, DECAFF also filters
away possible false protein complexes that have low
reliability scores, ensuring that the proteins in the
predicted protein complexes are connected by high
confidence protein interactions in the underlying net-
work. The overall DECAFF algorithm is described
in Section 3.3.

3. THE PROPOSED TECHNIQUES

Mathematically, a protein-protein interaction (PPI)
network can be represented as a graph GPPI =
(VPPI, EPPI), where VPPI represents the set of the
interacting proteins and EPPI denotes all the de-
tected pairwise interactions between proteins from
VPPI. Our objective is to detect a set of subgraphs
C = {g = (V, E) | |V | ≥ 3, V ⊆ VPPI, E ⊆ EPPI},
where each g is a dense subgraph (possibly overlap-
ping) in GPPI that may correspond to an actual multi-
protein complex. Additionally, since many false pos-
itive protein interactions in GPPI may be assembled
into false protein complexes, we also require that
each detected dense graph g has a high reliability
score.

3.1. Mining for dense subgraphs

Let us first introduce the notion of the local neigh-
borhood graph for each vertex:

Definition 3.1. The local neighborhood graph of a
vertex vi ∈ V in G = (V, E) is defined as Gvi =

(Vvi
, Evi

), where

Vvi
= {vi} ∪ {v | v ∈ V, {v, vi} ∈ E}, and

Evi = {{vj , vk} | {vj , vk} ∈ E, vj , vk ∈ Vvi} (1)

In other words, vertex vi’s local neighborhood
graph is the subgraph formed by vi and all its imme-
diate neighbors with the corresponding interactions
in G. In this work, we have devised our algorithm to
focus first on each vertex’s local neighborhood graph
in a bottom-up fashion, as it is impractical to di-
rectly detect dense subgraphs in a top-down fashion
from GPPI, which is usually a very large graph with
thousands of vertices and tens of thousands of edges.

Let us now define the notion of the density of a
graph :

Definition 3.2. The density of a graph g = (V,E)
is defined as its clustering coefficient (cc) 12:

cc(g) =
|E|

|V | ∗ (|V | − 1|)/2
=

2 ∗ |E|
|V | ∗ (|V | − 1|) (2)

Note that 0 ≤ cc(g) ≤ 1 since the maximum
number of edges in an undirected graph g = (V,E)
is |V |∗(|V |−1)/2. If g is a clique, then cc(g) = 1 as it
has the maximum number of edges. In this work, we
detect putative protein complexes from dense sub-
graphs of GPPI instead of the conventional require-
ment for cliques. We define a dense graph as one in
which its density is at least max(δ, 0.5), where δ is
a user-defined threshold to provide for more strin-
gent conditions. The results reported in this paper
are based on setting δ as 0.7, which is also the same
setting used in the recent work by Ref. 7.

The following theorem indicates that we can
adopt a bottom-up approach to discover dense sub-
graphs from protein interaction network:

Theorem 1. Every dense neighborhood g in GPPI

can be assembled using only the dense neighborhoods
of its inner vertices.

The formal proof for Theorem 1 can be found in
Appendix A of the Supplementary Materials (which
is available at http://www1.i2r.a-star.edu.sg/
∼xlli/csb supp.pdf). Theorem 1 suggests a strat-
egy of first finding the local dense neighborhoods for
each vertex, and then obtaining larger dense neigh-
borhoods by merging these dense sub-regions. As
such, DECAFF algorithm mines for dense subgraphs
in two steps:
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(1) First, we compute the local dense neighborhoods
for all the vertices in the given interaction graph
GPPI. We use a local clique mining method to
locate the local cliques, and then deploy a novel
hub-removal technique to heuristically detect lo-
cal dense subgraphs in each vertex’s local neigh-
borhood graph. Such systematic scanning of the
local dense neighborhoods in the entire interac-
tion graph will allow DECAFF to discover most
of the local dense regions, resulting in signifi-
cantly higher recall than other algorithms (see
Section 4).

(2) Then, we merge the extracted local dense neigh-
borhoods to obtain maximal dense neighbor-
hoods that correspond to larger complexes.

3.1.1. Mining for local dense subgraphs

Given that we already have an efficient method for
discovering local cliques 6, we first mine for each
vertex’s local cliques, and then expand the collection
of other local dense subgraphs using a hub-removal
procedure which we will describe shortly. In this way,
we can ensure that both cliques and non-clique dense
subgraphs are detected effectively.

Fig. 1. A local clique obtained from YBR112C’s local neigh-
borhood graph

To detect local cliques, we adapt the method
from the LCMA algorithm 6 which is basically an
elimination process in which the neighborhood ver-
tices of a given vertex are iteratively removed, start-
ing from the least connected vertex (vertex with
lowest degree), to increase the overall density of
the local neighborhood graph. The details of this

step can be found in Appendix B of Supplemen-
tary Materials. Here, we show an example (Fig-
ure 1) of mining a local clique from a local neigh-
borhood graph for the vertex (protein) YBR112C
to illustrate how it works. In this case, the neigh-
bors YIL061C, YDR043C, YGL035C, YMR240C,
YCL067C, YLR176C, YCR084C were sequentially
removed. This results in the final local dense neigh-
borhood shown in the circled area of Figure 1 which
is a clique d = (V,E), V = {YBR112C, YDL005C,
YOR174W, YGL025C} and density cc (d) = 1 (|V | =
4, and |E| = 6).

Although the LCMA algorithm can obtain the
local cliques, an actual protein complex may not be
presented as a fully connected subgraph in a protein
interaction network for various reasons as previously
discussed (e.g. incompleteness of current protein in-
teraction data). There are thus possibly many other
dense but non-clique subgraphs for each vertex that
could form parts of a target complex. In DECAFF,
we devise a Hub Removal algorithm to efficiently de-
tect multiple dense subgraphs with densities larger
than the given threshold δ.

In the hierarchical network model proposed by
Ref. 14, a biological network is constructed from a
small cluster of highly connected nodes by generat-
ing replicas of the network at each step and link-
ing the external nodes of the replicated clusters to
the central node of the old cluster. This construc-
tion procedure suggests a heuristic for recovering the
smaller dense clusters in the network by reversing the
process, which forms the basis for the Hub Removal
algorithm. Basically, we start by removing the most
highly connected node (the hub) and its correspond-
ing edges from the network, and then recursively re-
peating this procedure on its connected components,
until a dense cluster is recovered and the removed
hub is re-inserted back into the cluster. A more de-
tailed description of this algorithm can be found in
Appendix B of Supplementary Materials.

Figure 2 shows the results of applying the
Hub Removal algorithm to further discover dense
subgraphs in the local neighborhoods of the pro-
tein YBR112C. While the previous LCMA al-
gorithm could only discover a single fully con-
nected graph {YBR112C, YDL005C, YOR174W,
YGL025C} in this neighborhood graph, our recur-
sive Hub Removal Algorithm is able to detect an ad-
ditional 4 dense subgraphs: {YBR112C, YGL035C,
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YMR240C}, {YBR112C, YCR084C, YLR176C},
{YBR112C, YCR084C, YCL067C} and {YBR112C,
YDL005C, YOR174W, YGL025C, YCR084C}. Note
that as this approach allows the discovery of multi-
ple, possibly overlapping, dense neighborhoods for
each vertex, it also allows the possibility of a vertex
(protein) participating in multiple complexes.

Fig. 2. Multiple dense subgraphs obtained from YBR112C’s
local neighborhood graph

3.1.2. Merging for maximal dense neighborhoods

In an interaction graph with potentially incomplete
interaction data, it is likely that a large protein com-
plex is presented in the PPI graph as a composite
of multiple overlapping dense neighborhoods. In ad-
dition, there is also biological evidence that many
complexes are formed by multiple substructures such
as subcomplexes 8, 15 . We therefore adopt an addi-
tional step to merge the individual local dense neigh-
borhoods (that have been detected in section 3.1.1)
using a heuristic that assigns overlapping neighbor-
hoods with comparable sizes a high affinity to be
merged.

Definition 3.3. Neighborhood Affinity. Given two
neighborhoods (subgraphs) A and B, we define the
Neighborhood Affinity NA between them as

NA(A,B) =
|A ∩B|2
|A| ∗ |B| (3)

Equation 3 quantifies the degree of similarity be-
tween neighborhoods. Note that if one neighbor-
hood’s size, e.g. |B|, is much bigger than |A|, then
NA(A,B) will be small since |A ∩B|/|A| < 1 and
|A ∩B| ¿ |B|. Our heuristic is based on the hy-

pothesis that if two neighborhoods have larger in-
tersection sets and similar sizes, then they are more
similar and have a larger affinity.

The merging step takes the set of local dense
neighborhoods LDN (comprising local cliques out-
put by the LCMA algorithm and the dense neighbor-
hoods obtained from the Hub Removal Algorithm)
and tries to merge neighborhoods that have affin-
ity values greater than a threshold ω. The merg-
ing process is performed iteratively until the average
density of the subgraphs in LDN starts to fall. The
details of the algorithm are provided in Appendix B
of Supplementary Materials, which also contains a
further illustrative example in Appendix C.

3.2. Filtering for reliable subgraphs

In the previous section, we have taken into considera-
tion the presence of possible incompleteness (missing
interactions) in the protein interaction datasets by
mining for only dense subgraphs and using a merg-
ing process to build up larger complexes. However,
as it is also well known that many high through-
put protein interaction datasets contain a high rate
of false positives (noisy interactions), our algorithm
could also be susceptible to the presence of false posi-
tive interactions especially since we have employed a
relatively relaxed graphical constraint to infer pro-
tein complexes. To minimize the false detection
of complexes assembled with false positive interac-
tions, we perform an additional filtering process on
the detected subgraphs (i.e. complexes) by modeling
the protein interaction network as a weighted graph
where each protein interaction or edge is assigned a
weight that corresponds to its reliability, and then
filtering those detected dense subgraphs that consist
of protein interactions with low reliability.

3.2.1. Computing reliability of protein

interactions

We begin by assigning a prior reliability to each
protein interaction using the approach proposed by
Ref. 16. The method first computes a reliability
score for each experimental source, since protein in-
teractions discovered through different experimental
sources may have different quality. This score is com-
puted using additional biological information on the
proteins, and it is defined to be the fraction of inter-
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action pairs from each source that shared at least one
function. Then, using the reliability score for each
experimental source, the method estimates the prior
reliability ru,v for each individual protein-protein in-
teraction (u, v) as follows 17, 18:

Definition 3.4. The prior reliability of a protein-
protein interaction pair ru,v is defined as

ru,v = 1−
∏

i∈ESu,v

(1− ri)ni,u,v (4)

where ri is the reliability score of experimental source
i, ESu,v is the set of experimental sources from which
the interaction (u, v) was observed, and ni,u,v is the
number of times that (u, v) was detected in experi-
mental source i. The rule of thumb is that protein
interactions discovered through multiple experiments
tend to be more reliable.

Note that the reliability score ru,v in Definition 4
computes the confidence of a particular data source.
To determine whether a specific interaction detected
between a pair of proteins (u, v) is a reliable one,
we also need to check whether the proteins u and v

shared a function (in this work we use the MIPS
functional catalog http://mips.gsf.de/desc/yeast/).
Therefore, we compute a posterior reliability Ru,v for
each protein interaction based on the following three
cases. We use R to denote the event that the given
interaction is a true interaction (i.e. it is reliable),
S to denote the event that the proteins in the given
interaction share a common function, D to denote
the event that the proteins in the given interaction
do not share a common function, and U to denote
the event that either protein (or both proteins) have
unknown functions.

Case 1: The two proteins share a common function.
In this case, P (R|S), the probability that the

interaction is true given that the proteins share a
common function can be written as:

P (R|S) =
P (S|R) ∗ P (R)

P (S)
(5)

Note that P (R) is the prior reliability, i.e.,
P (R) = ru,v. P (S), the probability that the two
proteins have a common function, can be formulated
as

P (S) = P (S|R) ∗ P (R) + P (S|¬R) ∗ P (¬R) (6)

Together, the above equations give the poste-
rior reliability P (R|S) as long as we can estimate
P (S|R) and P (S|¬R). In this paper, we estimate
P (S|R) using a small-scale experimental data set ss

from the DIP protein interaction set (http://dip.doe-
mbi.ucla.edu/):

P (S|R)=
|{(p1, p2)|share(p1, p2), (p1, p2) ∈ ss}|

|{(p1, p2)|(p1, p2) ∈ ss}| (7)

where share(p1, p2) denotes that proteins p1 and
p2 share at least one function.

To estimate P (S|¬R), we randomly selected 1
million protein pairs that were not present in current
protein interaction datasets to form a non-reliable
protein interaction set ns. Then, P (S|¬R) is esti-
mated as follows:

P (S|¬R)=
|{(p1, p2)|share(p1, p2), (p1, p2)∈ns}|

|{(p1, p2)|(p1, p2) ∈ ns}| (8)

Case 2: The two proteins do not share a common
function.

In this case, P (R|D) can be computed as:

P (R|D) =
P (D|R) ∗ P (R)

P (D)
(9)

where P (D) and P (D|R) are computed using
Equations 10 and 11 respectively:

P (D) = 1− P (S) (10)

P (D|R) = 1− P (S|R) (11)

Note that both P (S) in Equation 10 and P (S|R)
in Equation 11 have already been computed previ-
ously in Equations 6 and 7 respectively.

Case 3: Either protein’s function is unknown.
In this case, we compute the posterior reliabil-

ity P (R|U) given that either u or v (or both) has
unknown function:

P (R|U) = P (S) ∗ P (R|S) + P (D) ∗ P (R|D) (12)

Again, all the terms on the right hand side of
Equation 12 have already been computed in the pre-
vious cases.

Given a protein interaction (u, v), its posterior
reliability Ru,v can be obtained through the compu-
tation of P (R|S), P (R|D) or P (R|U), depending on
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the available information of the functions of proteins
u and v. Note for those proteins with unknown func-
tion, it is also possible to predict their functions by
utilizing the topological information of PPI networks
and gene expression data 16, 19.

3.2.2.Computing reliability of detected complexes

In this work, we detect a putative multiprotein com-
plex as a subgraph g = (V,E). We define its reliabil-
ity as the average reliability score of all the protein
interactions in E:

Definition 3.5. The reliability of a graph g =
(V, E) is defined as:

reliability(g) =
1
|E|

∑

u,v∈V,(u,v)∈E

Ru,v (13)

Suppose the mean and standard deviation of
reliability distribution are µ and σ respectively.
A subgraph g of GPPI is regarded as a reliable if
(reliability(g) − µ ≥ max(0.5, γ) ∗ σ). γ is a user-
defined threshold to provide for more stringent relia-
bility requirement if necessary—the bigger the value
of γ, the more reliable the predicted complexes are
since their constituent protein interactions are more
reliable.

3.3. The overall DECAFF algorithm

The overall DECAFF algorithm is shown in algo-
rithm 1 as follows:

Overall DECAFF algorithm

(1) Run LCMA algorithm to detect the local cliques
(stored in set LC) for each protein;

(2) Run Hub Removal algorithm to detect the local
dense subgraphs (stored in set DS);

(3) LDN = DS
⋃

LC;
(4) Run merging algorithm to merge for maxi-

mal dense neighborhoods from LDN , which are
stored in set C;

(5) FOR each graph c ∈ C

(6) IF (reliability(c)− µ < max(0.5, γ) ∗ σ)
(7) C = C − {c};
(8) ENDIF
(9) ENDFOR

In algorithm 1, we first compute the local dense
neighborhoods for all the vertices in the given inter-

action graph GPPI. Particularly, step 1 employs a lo-
cal clique mining method to locate the local cliques,
and step 2 then deploys a novel hub-removal tech-
nique to detect local dense subgraphs in each vertex’s
local neighborhood graph. Such systematic scanning
of the local dense neighborhoods in the entire inter-
action graph will allow DECAFF to discover most
of the local dense regions (store in LDN in step 3),
resulting in significantly higher recall than other al-
gorithms. Then, step 4 merges the extracted local
dense neighborhoods in the first two steps to ob-
tain maximal dense neighborhoods that correspond
to larger complexes. Finally, from steps 5 to 9, we
filter away possible false protein complexes from set
C that have low reliability scores, ensuring that the
proteins in the predicted protein complexes are con-
nected by high confidence protein interactions in the
underlying network. The protein complexes in set C

are output as the final predicted complexes.

4. EXPERIMENTS

For evaluation, we applied our DECAFF algorithm
on three experimental protein-protein interaction
data sets for yeast to facilitate comparisons with var-
ious current techniques.

The first dataset was collected by Ref. 4. It
was used by both the MCODE algorithm 4 and the
LCMA algorithm 6 to mine protein complexes. The
dataset was assembled from all machine-readable re-
sources in 2003: Uetz 20, Ito 21, Drees 22, Fromont-
Racine 23, Ho 24, Gavin 8, Tong 2, Mewes(MIPS) 25,
Costanzo(YPD) 26. In total, it consists of 15,143 ex-
perimentally determined protein-protein interactions
among 4,825 yeast proteins.

The second protein interaction dataset was col-
lected from the MIPS database, which consists of
15,456 interactions (of which 12,526 are unique pro-
tein interactions) among 4,554 proteins. The data
was publicly available from ftp://ftpmips.gsf.

de/yeast/PPI/PPI 18052006.tab . It was used by
Ref. 7 to mine for protein complexes.

The third dataset was collected from the BI-
OGRID, which consists of 82,633 interactions (of
which 51,105 are unique) among 5,299 proteins.
The dataset was downloaded from http://www.

thebiogrid.org 27. BIOGRID is the most compre-
hensive data set compared to the two protein inter-
action datasets above.
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4.1. Reference complexes and evaluation

metric

We evaluated the experimental results against a ref-
erence dataset of known yeast protein complexes re-
trieved from the MIPS (ftp://ftpmips.gsf.de/yeast/).
The protein complexes in this dataset had been
curated from the biomedical literature. While it
is probably one of the most comprehensive public
datasets of yeast complexes available, it is by no
means a complete dataset — there are still many
yeast complexes that remained to be discovered
(hence the motivation for this work). After filtering
the predicted protein complexes from the dataset,
we obtained a final set of 215 yeast complexes as our
benchmark for evaluation. The biggest protein com-
plex, cytoplasmic ribosomes, contains 81 proteins
while the average number of proteins in a complex is
6.38.

For assessment, we used the same evaluation
metric that was adopted by previous authors for eval-
uating the MCODE algorithm 4, LCMA algorithm
6, and Md Altaf algorithm 7, whereby neighbor-
hood affinity NA (Definition 3) was used to deter-
mine matching between a predicted complex p ∈ P

and a complex m ∈ MIPS. We consider the two com-
plexes to be matching if NA(p,m) ≥ 0.2, which was
the same threshold used in MCODE, LCMA and Md
Altaf algorithm. The set of true positives (TP ) is
therefore defined as TP = {p|NA(p,m) ≥ 0.2, p ∈
P, m ∈MIPS }, while the set of false negatives (FN)
is defined as FN = {m | ∀p(NA(p,m) < 0.2), p ∈
P, m ∈ MIPS}. The set of false positives (FP ) is
FP = P − TP , while the recall and precision are:

R = |TP |/(|TP |+ |FN |) (14)

P = |TP |/(|TP |+ |FP |) (15)

We use the F-measure, which is the harmonic
mean of precision and recall, to evaluate the overall
performance of the different techniques:

F −measure = 2 ∗ P ∗R/(P + R) (16)

Note that it is possible that multiple predicted
complexes may correspond to a single reference com-
plex, using the evaluation metric defined above (see
definition of TP ). Recent work by Gavin et al. 28

has shown that protein complexes have a modular
structure, consisting of core proteins that are present
in multiple complexes, and attachment proteins that
are present in only some of them. This modularity

of complexes may help to explain why multiple pre-
dicted complexes match a single benchmark complex,
since the same core proteins may be present in the
complexes, albeit with different attachment proteins.

It is also important to note that as our reference
complex set MIPS is by no means complete, some
predicted complexes which probably are true com-
plexes will be falsely regarded as false positives (FP ).
As such, the F-measure of the algorithms should be
taken for comparative purpose instead of at their ab-
solute values.

4.2. Comparative results

We compared the performance of DECAFF al-
gorithm with current computational techniques,
namely, MCODE 4, LCMA 6 and Md Altaf algo-
rithm 7. Note that the results of MCODE algorithm
were only available on their own Bader protein inter-
action data while the results of Md Altaf algorithm
were only available on the MIPS protein interaction
data. For fair comparison, we also ran the LCMA
and DECAFF algorithms on all the three protein in-
teraction data. Note that all the existing algorithms
use the same MIPS complexes as a reference set.

Table 1. Overall performance of MCODE, LCMA, Md
Altaf algorithm and DECAFF algorithm.

Method Dataset Recall Precision F-measure

MCODE Bader 0.258 0.271 0.264
LCMA Bader 0.787 0.275 0.408
DECAFF Bader 0.883 0.392 0.543

Md Altaf MIPS 0.601 0.111 0.188
LCMA MIPS 0.725 0.301 0.425
DECAFF MIPS 0.806 0.416 0.549

LCMA BIOGRID 0.921 0.214 0.347
DECAFF BIOGRID 0.955 0.435 0.597

aThe comparison experiments are performed on the Bader and
Hogue, MIPS, and BIOGRID protein interaction data. For all
the three protein interaction data, ω = 0.30 and γ = 0.95 are
used in DECAFF algorithm. ω = 0.30 is also used in LCMA
algorithm.

Table 1 shows the overall comparison results
of the different computational algorithms. Using
the same Bader protein interaction data, DECAFF
was able to predict 1,736 complexes, of which 681
matched 125 benchmark complexes. Overall, the F-
measure of DECAFF on this dataset is 54.3%, which
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is 27.9% and 13.5% higher than MCODE and LCMA
respectively. Using MIPS protein interaction data,
DECAFF predicted 1,220 complexes, of which 508
matched 93 benchmark complexes. On this dataset,
DECAFF obtained 54.9% as its F-measure, which
is 36.1% and 12.4% higher than Md Altaf algorithm
and LCMA algorithm respectively.

On applying our DECAFF algorithm on the
most comprehensive protein interaction data BI-
OGRID, we managed to predict 2,840 complexes, of
which 1,235 complexes matched with 157 MIPS com-
plexes. On this comprehensive dataset, DECAFF
obtained 59.7% as its F-measure, which is 25.0%
higher than the LCMA algorithm. In short, our DE-
CAFF algorithm performed with precision and recall
values that are significantly higher than all the other
computational techniques in all the three evaluation
datasets.

4.3. Effect of the hub removal routine

First, recall that our algorithm detects dense sub-
graphs in addition to the local cliques for merg-
ing, and we devised a novel hub removal routine
to heuristically detect multiple dense subgraphs. To
investigate the effect of using local dense neighbor-
hoods instead of local cliques as a basis for com-
plex mining, we re-ran our experiments with a ver-
sion of DECAFF without the hub-removal routine.
Interestingly, the precisions of the DECAFF with-
out the hub-removal routine were similar or only
slightly worse, whereas the recall decreased signifi-
cantly at 18.9%, 25.7%, and 22.1% in Bader, MIPS,
and BIOGRID interaction data respectively. This
shows that in addition to the local cliques, the less
graphically-stringent dense local neighborhoods in
DECAFF are essential for the effective mining of
many more true protein complexes than clique-based
methods.

4.4. Effect of parameters ω and γ

Next, note that DECAFF algorithm employs two
user-defined parameters ω and γ to control the merg-
ing process and to filter unreliable protein complexes
respectively. We first investigated how the merging
threshold ω affected the performance of the algo-
rithm by running it with values of ω ranging from
-1.0 to +1.0 in steps of 0.1, while keeping the filter-
ing threshold fixed at γ = 0.95.

In all three protein interaction datasets, the ef-
fect of varying ω was similar. As ω initially increased,
the resulting F-measure increased. However, increas-
ing ω beyond 0.6 resulted in a decreased F-measure.
A possible explanation for this is that more merging
of the local dense neighborhoods takes place when
the ω < 0.6. When ω is increased beyond 0.6,
the threshold becomes so strict that merging seldom
takes place. However, when ω is set too low (i.e.
ω < 0.15), any two local dense neighborhoods will be
merged as long as they have at least one common pro-
tein. Such indiscriminate merging will result in an
increased number of false positives, which explains
the lower F-measure values for DECAFF algorithm
with low ω values. We found that the optimal values
of ω for DECAFF with γ = 0.95 can be found within
a large range of 0.15 < ω < 0.55. As such, selecting
a suitable value for ω for good performance is not a
problem.

To study the effect of the other user-defined con-
straint γ, which is used to filter unreliable protein
complexes detected by DECAFF, we ran DECAFF
with γ from -1.0 to +1.0 with ω = 0.3. Generally,
increasing γ increased the performance of DECAFF
in all the three protein interaction networks, suggest-
ing that the complexes predicted with reliable pro-
tein interactions are more likely to be true complexes.
When DECAFF is used with an extremely small γ

such as -1.0, the filtering step is practically nonexis-
tent. DECAFF performed worst without filtering as
the noisy protein interaction data will significantly
affect the accuracy of DECAFF. This indicates that
the filtering step in DECAFF is also an essential one
to ensure good performance.

When compared with γ = −1.0, DECAFF’s pre-
cisions with a high γ = 0.95 (used in this paper) were
increased by 9.0%, 6.6%, 19.2% while making a mar-
ginal sacrifice on the recall by 3.7%, 3.2% and 3.5%
on the Bader, MIPS, and BIOGRID protein inter-
action datasets respectively. This means that our
filtering strategy of reliability is very successful since
it can keep most of the true protein complexes (or
protein interactions) while filtering away most of the
false protein complexes.

More detailed analyses of the effect of these para-
meters on the performance of DECAFF can be found
in Appendix E of Supplementary Materials.
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4.5. Analysis of the predicted complexes

We also evaluated the statistical significance of the
protein complexes predicted by DECAFF using p-
values. Given a predicted complex with n proteins,
the p-value computes the probability of observing k
or more proteins from the complex by chance in a
biological function shared by C proteins from a total
genome size of G proteins:

Definition 4.1. The p-value of a predicted complex
is defined as:

P = 1−
k−1∑

i=0

(
C
i

)(
G−C
n−i

)
(
G
n

) (17)

In other words, the above p-value measures
whether a predicted complex is enriched with pro-
teins from a particular function more than what
would be expected by chance. Given that proteins
in a protein complex are assembled to perform com-
mon biological functions, they are expected to share
common functions. As such, true protein complexes
should have low p-values, indicating that their col-
lective occurrence within the graphical subcompo-
nents detected by DECAFF did not happen merely
by chance.

We evaluated the p-values for all the predicted
complexes by incorporating a Bonferroni correction,
and we found that majority of our predicted com-
plexes are statistically significant at the 0.01 sig-
nificance level (Typically, a cut-off α level 0.01 for
Bonferroni corrected p-values is chosen such that
p-values below the α level are deemed significant).
Specifically, 1,729 out of the 1,737 predicted com-
plexes (or 99.5%) detected in the Bader data, 1,205
out of the 1,221 predicted complexes (or 98.7%) de-
tected in the MIPS data, and 2,828 out of the 2,841
predicted complexes detected in the BIOGRID data
were deemed significant in terms of the above p-
value.

Table 2 shows ten predicted complexes which
have very small p-values (thus highly likely to be
true protein complexes).

In one of these predicted complexes (ID=4), we
found that 9 out of 10 proteins in this predicted com-
plex matched exactly with a 9-protein complex in
our MIPS protein complex benchmark. On further
analysis, we found that the additional unmatched
protein “YKL138C-A” in our predicted complex has
actually been recently annotated as part of a DASH

complex 29. This indicates that our method was ca-
pable to detect the novel biological knowledge which
were absent in the reference data.

In fact, as there were seven out of these ten
predicted complexes that can be matched with our
MIPS protein complex benchmark, we performed
further analysis on the remaining three unmatched
complexes (ID=2, 9, 10) to see if they are ac-
tual novel protein complexes. Our literature search
showed that for one of these unmatched predicted
complexes (ID=2), 19 out of its 20 protein members
were actually part of the “U4/U6 x U5 tri-snRNP
complex” (32 proteins) published by Ref. 30. The
other predicted 5-protein complex (ID=9) that was
not matched with any of our benchmark complexes
was found to match 5 out of the 6 proteins in the
“mannosyltransferase complex”, a protein complex
that is responsible for mannosyltransferase activity
31. Finally, the third unmatched 5-protein complex
(ID=10) predicted by DECAFF was also found to
correspond directly with a “nuclear condensin com-
plex”, a multisubunit protein complex that plays a
central role in the condensation of chromosomes that
remain in the nucleus 31.

These results show that while some of our pre-
dicted complexes do not match with any of our
benchmark MIPS complexes (an incomplete refer-
ence set), many of them match very well with actual
complexes published in biological literature. Our
predicted complexes with low p-values are thus likely
to be true protein complexes. In fact, this is fur-
ther supported by matching the predicted complexes
with the known protein complexes from the BIND
database 32: more than half of the predicted com-
plexes (673 out of 1055 complexes) from Bader pro-
tein interaction data that did not match with any
of our MIPS benchmark complexes matched BIND
complexes. Similarly, 256 out of the 712 unmatched
predicted complexes from the MIPS protein interac-
tion dataset matched BIND complexes, and 825 out
of the 1,605 unmatched predicted complexes from
BIOGRID protein interaction data matched BIND
complexes.

We also investigated why a number of the ref-
erence protein complexes in our MIPS benchmark
were not matched by any of our complexes pre-
dicted by DECAFF. Out of the 215 benchmark MIPS
complexes, 157 were matched with a complex pre-
dicted by DECAFF using the most comprehensive
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Table 2. Ten predicted complexes with different functions from the BIOGRID protein interaction data.

ID N δ P-value ω GO ID Function ORFs

1 22 0.892 4.95E-54 0.866 GO:0000119 mediator complex YBL093C, YBR193C, YBR253W, YDL005C, YDR308C,
YER022W, YER111C, YGL025C, YGL151W, YGR104C,
YHR041C, YHR058C, YLR071C, YMR112C, YNL236W,
YNR010W, YOL051W, YOL135C, YOR174W, YPL129W,
YPR070W, YPR168W

2 20 0.858 1.17E-45 0.113 GO:0046540 U4/U6 x U5 tri-snRNP
complex

YBL026W, YBR055C, YDR378C, YDR473C, YER029C,
YER112W, YER172C, YFL017W-A, YGR074W,
YGR091W, YHR165C, YJR022W, YKL173W, YLL036C,
YLR147C, YNL147W, YOR159C, YOR308C, YPR178W,
YPR182W

3 15 1.000 1.61E-43 0.800 GO:0005669 transcription factor
TFIID complex

YBR198C, YCR042C, YDR145W, YDR167W, YER148W,
YGL112C, YGR274C, YML015C, YML098W, YML114C,
YMR005W, YMR227C, YMR236W, YPL011C, YPL129W

4 10 0.844 2.65E-30 0.900 GO:0042729 DASH complex YBR233W-A, YDR016C, YDR201W, YDR320C-A,
YGL061C, YGR113W, YKL052C, YKL138C-A,
YKR037C, YKR083C

5 10 0.956 2.10E-28 1.000 GO:0016514 SWI/SNF complex YBR289W, YDR073W, YHL025W, YJL176C, YMR033W,
YNR023W, YOR290C, YPL016W, YPL129W, YPR034W

6 8 1.000 7.37E-25 1.000 GO:0017119 Golgi transport com-
plex

YER157W, YGL005C, YGL223C, YGR120C, YML071C,
YNL041C, YNL051W, YPR105C

7 12 0.742 7.16E-19 0.417 GO:0030014 CCR4-NOT complex YAL021C, YCR093W, YDL165W, YDR443C, YER068W,
YER148W, YGR092W, YGR274C, YIL038C, YNL288W,
YNR052C, YPR072W

8 6 1.000 9.90E-19 0.667 GO:0030897 HOPS complex YDL077C, YDR080W, YLR148W, YLR396C, YMR231W,
YPL045W

9 5 1.000 5.17E-15 0.000 GO:0031501 mannosyltransferase
complex

YDR245W, YEL036C, YJL183W, YJR075W, YPL050C

10 5 1.000 1.28E-15 0.000 GO:0000796 condensin complex YBL097W, YDR325W, YFR031C, YLR086W, YLR272C

a ID:complex ID; N: the size of complexes; δ: density of complexes; p-value: Corrected p-value of complexes; ω: similarity
between the predicted complexes and MIPS Benchmark; GO ID: the protein GO function ID; Function: the protein function
with lowest p-value; ORFs: proteins’ ORFs in complexes.

BIOGRID dataset. 31 of the unmatched 58 refer-
ence complexes appeared as individual protein pairs
in the BIOGRID interaction graph. Out of remain-
ing 27 unpredicted reference protein complexes, 22
were undetected by DECAFF as they were present
in the interaction graph as very sparsely connected
subgraphs with a very low average density of 0.178;
only 5 reference protein complexes were mistakenly
filtered because they were deemed as unreliable pro-
tein complexes. We can expect that the performance
of DECAFF should improve further with the avail-
ability of better PPI detection technologies that can
generate more complete PPI data.

5. Conclusions

While much efforts has been expended on charting
the protein interactome, the map for the protein
“complexome” has remained comparatively empty.
In this paper, we have proposed a robust method for
exploiting the protein interaction networks to mine
for new protein complexes.

Unlike other current computational techniques,
our DECAFF algorithm attempts to identify dense
and reliable graphical subcomponents in protein in-
teraction networks that could correspond to actual
multiprotein complexes. To address the possibility
of missing interactions in the underlying interaction
network, we have relaxed the graphical constraint
from cliques to local dense neighborhoods. The use
of local dense neighborhoods as a basis for mining
the interaction graphs also allowed us to be certain
that maximal dense neighborhoods can always be
found under the merging operation (Theorem 1). As
such, the main focus is to detect as many local dense
graphs as possible to ensure coverage, and to ascer-
tain the reliability of the component interactions as
much as possible to ensure accuracy. For the former,
we have employed a novel hub-removal procedure
that can effectively mine for multiple and possibly
overlapping local dense subgraphs for each protein
(vertex). This process caters for the biological pos-
sibility of a protein participating in multiple protein
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complexes. For the latter, we have devised a novel
reliability measure to filter away potential false pro-
tein complexes in order to address the possibility of
false positives in the underlying protein interaction
networks.

We evaluated our DECAFF algorithm using
three yeast protein interaction data and found that
the performance of DECAFF algorithm is indeed sig-
nificantly better than all the other existing compu-
tational techniques. Our current work has shown
that both the network topological information and
the interaction reliability information in the interac-
tion map can be exploited together to help discover
the underlying elements for mapping the complex-
ome. Further resolution and usage of the algorithm
will be for mapping out the “protein complex inter-
actome” by uncovering the interacting links between
the complexes and the proteins as well as other bio-
molecules.
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