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A Hybrid Ensemble Deep Learning Approach for
Early Prediction of Battery Remaining Useful Life

Abstract—Accurate estimation of the remaining useful life
(RUL) of lithium-ion batteries is critical for their large-scale
deployment as energy storage devices in electric vehicles and
stationary storage. A fundamental understanding of the factors
affecting RUL is crucial for accelerating battery technology
development. However, it is very challenging to predict RUL
accurately because of complex degradation mechanisms occur-
ring within the batteries, as well as the dynamic operating
conditions in practical applications. Moreover, due to insignificant
capacity degradation in early stages, early prediction of battery
life with early cycle data can be more difficult. In this paper,
we propose a hybrid deep learning model for early prediction
of battery RUL. The proposed method can effectively combine
handcrafted features with domain knowledge and latent features
learned by deep networks to boost the performance of RUL early
prediction. We also design a non-linear correlation-based method
to select effective domain knowledge-based features. Moreover, a
novel snapshot ensemble learning strategy is proposed to further
enhance the model generalization ability without increasing any
additional training cost. Our experimental results show that
the proposed method not only outperforms other approaches
in the primary test set having a similar distribution as the
training set, but also generalizes well to the secondary test set
having a clearly different distribution with the training set. The
PyTorch implementation of our proposed approach is available
at https://github.com/batteryrul/battery rul early prediction.

Index Terms—Remaining useful life, Lithium-ion battery, Deep
learning, Early prediction

I. INTRODUCTION

Lithium-ion batteries (LIBs) are widely used as energy stor-
age devices in various commercial applications such as electric
vehicles (EVs), stationary storage and portable electronic
devices due to their low costs, high energy densities and long
cycle lives [1], [2], [3], [4]. Precisely monitoring the capacity
degradation process and estimating the remaining useful life
(RUL) of LIBs are crucial since the failure of LIBs will
result in system performance degradation or even catastrophic
hazards. What’s more, accurately predicting battery RUL with
early cycle data would benefit battery manufacturing. For
instance, prediction with early cycle data would accelerate
battery development cycle, allow manufacturers to perform
rapid validation of their new manufacturing processes, and
grade new batteries by their expected lifetimes [5]. However,
due to nonlinear degradation mechanisms caused by cycling
and varied operation conditions, accurately predicting battery
RUL is very challenging. Moreover, making predictions only
with early cycle data is much more difficult as a lithium-
ion battery often degrades with a very low rate at the early
stage and then goes through an accelerated degradation after
a certain time point or cycle number, which is called the
knee point [6]. In other words, the degree of degradation
is negligible from cycle to cycle in the early stage. Fig.

1 demonstrates the LIBs’ capacity degradation process over
cycles. In particular, the early RUL prediction in this paper
refers to only utilizing the first 100 cycle measurements before
rapid capacity degradation or the knee point occurring to
predict the lifetimes of LIBs, following [5].

Generally, battery RUL is the number of cycles when a
battery reaches 80% of its initial capacity, which is defined as
the end of life (EOL) of the battery [7]. Previous works on
battery RUL prediction can be classified into two categories:
physics-based approaches and data-driven-based approaches.

Physics-based approaches such as the single particle model
(SPM) [8], [9] and pseudo-two-dimensional (P2D) model
[10], [11], [12], [13], [14] are based on the electrochemi-
cal principles underlying LIBs and can simulate a battery’s
current and voltage characteristics from kinetics and transport
equations. Another more general physics-based approach is the
multiphase porous electrode theory that uses nonequilibrium
thermodynamics to account for important microscopic physics
such as phase separation [15], [16]. Those approaches are used
for parameter estimation and cycle life prediction of LIBs.
While such models are typically accurate and interpretable,
they are often computationally complex and have many pa-
rameters and interactions that might be unknown [17]. In
other words, an accurate physical model often requires strong
domain knowledge on battery degradation mechanisms.

On the contrary, data-driven-based approaches do not as-
sume battery degradation mechanisms a priori [18] but lever-
age battery historical cycling data. Various approaches such
as the support vector machine (SVM) [19], Box-Cox transfor-
mation [20] and other machine learning (ML)-based models
[18], [5], [21], [22] have already been widely applied to battery
RUL prediction tasks. For instance, Wu et al. employed a Feed
Forward Neural Network (FFNN) to model the relationship
between battery RUL and the difference of constant-current
charge voltage curves under different cycles [21]. Zhang et al.
trained a long short-term memory (LSTM) network to learn
the long-term dependencies among the degraded capacity [22].
Although the aforementioned methods have achieved satisfac-
tory performances, they still have some inevitable limitations.
On one hand, their model performances heavily rely on the
quality of handcrafted features based on domain knowledge.
These features are usually pre-devised based on the specialized
knowledge of the field and have certain specific physical mean-
ings. Involving unqualified features or excluding informative
features can result in a poor prediction accuracy. For instance,
Severson et al. proposed a set of 21 domain specific features
from the first 100 cyclic measurements of batteries in [5] and
the accuracy of their model varies largely with the different
feature subsets. It reveals the great difficulty of feature en-
gineering for the battery RUL prediction task. Furthermore,

https://github.com/batteryrul/battery_rul_early_prediction
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Fig. 1: Battery Capacity Degradation Curves

it can be even more challenging for early prediction since
some features employed in previous works may be no longer
informative in the early stage of battery operation before rapid
degradation. On the other hand, most of previous works tend
to leverage derived data like discharge capacity or handcrafted
features aggregated from different cycles. They usually avoid
leveraging raw measurements (e.g., terminal voltage, current,
and temperature) from each cycle due to their tremendous
data volumes. Therefore, some important intrinsic physical
information embedded in these direct measurements might
be missed out due to limited domain knowledge. Moreover,
existing works evaluate their proposed methods within a single
battery, in which they partition single battery measurements
into training and evaluation segments, but seldom across
different batteries. The problem of distribution discrepancy
among different batteries has not been taken into account. In
other words, the generalization capability of their methods is
not sufficiently verified.

To address the above issues, in this paper we propose an
innovative hybrid deep learning method to make full use of
both handcrafted features with domain knowledge and latent
features learned by a deep neural network for early prediction
of battery RUL. In order to select the most effective do-
main knowledge-based features, a non-linear correlation-based
feature selection method is developed. Furthermore, a novel
snapshot ensemble learning strategy is designed to further
improve the generalization performance of the proposed hybrid
model. Extensive experiments have been conducted to verify
the performance of the proposed hybrid deep learning method
on battery RUL prediction. The main contributions of this
paper are summarized as below:

• We propose an innovative hybrid deep model which can
not only leverage prior domain knowledge but also learn
latent features from raw measurements. The two types
of features can compensate each other, resulting in a
superior performance for battery RUL prediction. To the
best of our knowledge, we are the first to propose the

hybrid deep learning method that can leverage two types
of information for early prediction of battery RUL.

• A non-linear correlation-based approach is proposed for
feature selection from excessive domain knowledge-based
features, which is simple but can effectively improve the
performance of battery RUL prediction.

• We develop a novel snapshot ensemble learning strategy
upon the proposed deep learning framework to further en-
hance the generalization capability of the model without
increasing any additional training cost.

• Our experimental results show that our proposed method
outperforms state-of-the-art methods for LIBs’ early pre-
diction task. It can not only achieve good performance in
the test set having a similar distribution as the training set,
but also generalize well in the test set that has a clearly
different distribution with the training set.

The rest of the paper is organized as follows. Section
II reviews some related works on battery RUL prediction.
Section III introduces the details of the proposed method,
including feature generation and selection, the structure of
proposed hybrid deep learning model and how to improve
model generalization ability. Section IV describes the dataset
used for evaluation and experimental setup, followed by the
experimental results and ablation study. Section V concludes
this paper and presents potential future works.

II. RELATED WORKS

In recent years, data-driven approaches have been widely
adopted in lithium-ion battery RUL prediction applications.
Particle filter (PF) is a commonly used method in battery RUL
prediction. Zhang et al. leveraged battery capacity degradation
curve data and a PF to identify key parameters in a battery
exponential model, which was then used for forecasting battery
RUL [23]. Song et al. proposed a hybrid method of PF
algorithm and an enhanced autoregressive (AR) model, which
used a nonlinear degradation factor and an iterative updating
approach to improve long term prediction performance [24].
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Pang et al. jointly utilized the Kalman filter (KF) and the
expectation-maximization (EM) algorithm to estimate battery
degradation state and model parameters [25]. Although data-
driven approaches are widely used, a precise model description
of battery degradation is a prerequisite.

In addition to the approaches described above, ML-based
methods have also received much attention. Patil et al. pro-
posed a two-stage prediction approach [19]. Particularly, a
set of parameters were extracted from voltage, temperature
and time curves from each discharge cycle. Then, a SVM-
based classification model was trained to estimate a gross
RUL value at the early stage and Support Vector Regression
(SVR) was employed to predict the accurate RUL when the
battery gradually reached its EOL. Chang et al. developed a
hybrid model that used a Relevance Vector Machine (RVM)
to compensate the prediction error of an Unscented Kalman
Filter (UKF) with discharge capacity curves [26]. In [27], Chen
et al. utilized a SVR-based model to predict battery RUL.
Meanwhile, they leveraged phase space reconstruction (PSR)
to obtain the optimal input sequence from the reconstructed ca-
pacity and discharging voltage difference of equal time interval
curves, which were reconstructed by the ensemble empirical
mode decomposition (EEMD). Severson et al. generated a set
of domain specific features from the early 100 cycles data
and then a regularized elastic net was employed to map those
features to battery cycle life [5]. Ren et al. proposed to extract
geometric features from charging and discharging processes
and used an auto-encoder neural network for feature fusion
before feeding them into a neural network (NN) for predicting
battery RUL [28]. The performances of these conventional
ML-based methods, to a large extent, depend on the quality of
extracted features, which are either linear or non-linear trans-
formations of raw measurements based on specific domain
knowledge.

To extract as much representative information as possi-
ble, deep learning methods have also been introduced for
battery RUL prediction. Li et al. applied Empirical Mode
Decomposition (EMD) to decompose the capacity data into
variance high-frequency and low-frequency sub-layers that
were respectively fit into an Elman neural network and LSTM
for RUL prediction [29]. Similarly, Liu et al. also decomposed
the capacity data and fitted them into a hybrid model, which
used a LSTM network to capture the long-term dependence
of capacity degradation and a Gaussian Process Regression
(GPR) to capture the prediction uncertainty caused by capacity
regeneration phenomena [18]. Ma et al. leveraged a fusion
model of convolutional neural network (CNN) and LSTM
(denoted as CNN-LSTM) that can leverage not only CNN’s
automatic feature extraction capability but also LSTM’s ca-
pability of capturing temporal dependency [7]. Ren et al.
designed an encoder to augment feature dimensions and then
leveraged a CNN-LSTM hybrid model to mine deeper useful
information from the augmented data [30]. A Gated Recurrent
Unit Recurrent Neural Network (GRU-RNN) approach was
proposed in [31], which extracted sufficient statistical features
from voltage, current and temperature measurements at each
cycle. Additionally, the authors used the linear correlation and
random forest to further reduce the size of features. Although

the effectiveness of deep learning methods has been demon-
strated in above works, they highly rely on the information
provided by battery degradation curves, especially requiring
the segments where the batteries start to degrade. Unlike them,
our research focuses on the early stage data for battery RUL
prediction. Moreover, as aforementioned, most approaches in
previous works are trained and evaluated within a single bat-
tery data but seldom across different batches (e.g., collected in
different time periods). Due to the deviation between different
batteries’ initial states, it will be more challenging and require
the proposed model to have good generalization capability
such that it can achieve good accuracy on unseen batteries
as well.

It is worth noting that our work is related to [5] but signifi-
cantly differentiates from it. Although authors in [5] proposed
various features based on their domain knowledge, the feature
selection process was not explicitly stated. Their performance
varied largely with different feature subsets. Moreover, the
shallow elastic net they employed tends to only perform well
on the primary test set but generalize poorly on the secondary
test set, which has a different distribution from the training set.
It reveals the shortcoming of using handcrafted features only
for battery RUL prediction. On the contrary, we first design a
non-linear correlation feature selection method together with
the recursive feature elimination (RFE) technique to generate
an appropriate domain knowledge feature subset. Secondly,
a hybrid model, which can integrate local statistical features
with domain knowledge-based features, is proposed to mitigate
the data distribution discrepancy over training and test datasets
and thus improves prediction accuracy. Moreover, the snapshot
ensemble training strategy is developed to further enhance the
generalization performance of our model.

III. METHODOLOGY

A. Overview

For a system like LIBs, the degradation process may span
over thousands of cycles and for each cycle there are many
variables collected by different sensors. In general, it is im-
practical to directly feed those tremendous raw data into a deep
learning model. The noise and redundant information among
those raw measurements can result in slow model convergence.
It is even more challenging when only utilizing data from a few
cycles to conduct an early prediction due to LIBs’ non-linear
degradation characteristics as aforementioned. In addition, the
inconsistent distribution between training and test data further
requires a good generalization ability for RUL prediction.

To cope with the above challenges, we propose to utilize
features extracted based on cycle-level statistical characteris-
tics (named as Local Statistical Features) and domain knowl-
edge (named as Domain Knowledge-based Features) as shown
in Fig. 2(a). Then, a hybrid model is developed to leverage
both local statistical information and domain knowledge for
battery RUL prediction as shown in Fig. 2(b). Moreover,
a training strategy called snapshot ensemble is designed to
further improve the model generalization ability as illustrated
in Fig. 2(c).
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Fig. 2: (a) Local Statistical Features are extracted at individual cycle level and Domain Knowledge-based Features are extracted
at entire cycle level. A non-linear correlation-based method is leveraged to select features; (b) The hybrid model takes local
statistical features and selected domain knowledge features as input; (c) Snapshot Ensemble Learning Strategy.
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B. Feature Generation and Selection

The pipeline of feature generation and selection is crucial
to the prediction performance of our proposed approach. The
details are given as follows.

1) Local Statistical Features: Directly feeding cycle-level
battery measurements to a deep neural network is impractical
as the number of sampled data per cycle can be tremendous.
Generally for time series analysis, the high dimensional raw
measurements are often aggregated at the cycle level by apply-
ing different statistical metrics. For instance, for variable Q(V )
which is the discharge capacity as a function of voltage, we
summarize the minimum value at each cycle and then generate
a new feature vector. Similarly, other statistical metrics like
maximum value, mean value, variance and skewness are also
applied to the Q(V ) curve per cycle. The aggregation of
those local statistical features represents the cycle-to-cycle
degradation trend of battery cells from different perspectives.
Moreover, it requires less prior knowledge compared with
domain knowledge-based features.

2) Domain Knowledge-based Features: There is no doubt
that model performance can be significantly improved by
integrating features based on domain knowledge. In [5], the
authors have shown that battery RUL is highly correlated to
the variance of ∆Q100−10(V ), with a correlation coefficient
of 0.93. Here, ∆Q100−10(V ) represents the difference of the
discharge capacity curves as a function of voltage between
100th and 10th cycles. Only using this variable, they have
achieved a promising accuracy on battery RUL prediction.
Based on their domain knowledge, they proposed a set of
different domain specific features summarized from battery
cycle-to-cycle raw measurements.

However, a procedure to properly select the key features
from those domain knowledge-based features is missing in
[5]. On one hand, it requires researchers’ prior knowledge to
carefully generate a subset from them as involving irrelevant
information or inadvertently removing important features can
lead to performance degradation. On the other hand, the
selected features may even contrarily reduce model perfor-
mance in situations where training and test data have different
distributions.

To mitigate the above issues, we propose a non-linear
correlation-based feature selection method. Considering the
non-linear degradation characteristics at LIBs’ early stage,
we adopt the Spearman’s correlation coefficient to measure
monotonic relationships instead of the commonly used linear
correlation coefficient like Pearson. The Spearman’s coeffi-
cient is calculated as Equation (1). Here, R(Xi) and R(Yi) are
the ranks of each data point in vector X and Y , respectively,
and n is the number of samples.

ρ(X,Y ) = 1−
6
∑n

i=1(R(Xi)−R(Yi))

n(n2 − 1)
. (1)

To be specific, we first calculate the correlation between
training features ftrain and target y, denoted as ρ(ftrain, y)
and generate a primary feature subset A with correlation
ρ(ftrain, y) above a pre-defined threshold. Then, among fea-
tures in subset A, we further recursively eliminate the features

via an extreme gradient boosting regressor (XGBRegressor)
and obtain a sub-subset B. In section IV, we will demonstrate
how the features selected by this method contribute to the
model performance.

C. Hybrid Model

In order to mine as much useful information as possible
from raw measurements, we propose a hybrid model to com-
bine both the domain knowledge-based features and the local
statistical features as inputs as shown in Fig. 2(b). Particu-
larly, the one-dimensional (1D) CNN architecture is adopted
to capture the temporal dependency among the time series
data. Compared to recurrent neural networks, 1D CNNs are
more computational efficient and have stable back propagation
characteristics. We employ the 1D CNN Encoder E to encode
those local statistical features to feature vectors as shown
in Equation (2). Here, Xlocal represents the local statistical
features whose dimension is n × l ×m. n is the number of
samples, l is the total number of statistical characteristics and
m is the cycle number.

Meanwhile, the selected domain knowledge-based features
are fed into a fully-connected network D consisting of a series
of fully connected layers as shown in Equation (3). Xdomain

represents the selected domain-specific features from the same
cycle period as the local statistical features and its dimension
is n× p, where n is the number of samples and p is the total
number of selected domain knowledge-based features. Lastly,
the high-dimensional feature maps Hl and Hd are flattened and
concatenated together (denoted as Hl‖Hd in Equation (4)). To
prevent overfitting, two dropout layers are also integrated just
after CNN encoder E and fully-connected network D, before
the concatenation operation. Then, a fully-connected layer is
used to map the concatenated features to final target ŷ. The
hybrid model is optimized by minimizing the loss between ŷ
and ground truth label y.

Hl = E(Xlocal), (2)
Hd = D(Xdomain), (3)
ŷ = (Hl ‖Hd)×W +B. (4)

D. Improving Model Generalization Ability

The ensemble method is a commonly used approach for
better generalization performance as it can achieve consensus
among models trained with different initialization and regular-
ization configurations [32]. Among various ensemble methods,
snapshot ensemble [33] has the advantage of being able to
learn an ensemble of multiple neural networks without any
additional training cost. As illustrated in Fig. 2(c), instead
of independently training multiple models from scratch, the
snapshot ensemble method saves several intermediate models
along one optimization path. To prevent the saved models to be
similar, a cosine annealing learning rate schedule is adopted.
To be specific, during the training period of one snapshot,
a large learning rate is first applied to Stochastic Gradient
Descent (SGD) optimizer in order to let the model escape from
the current local minimum. Then, the learning rate gradually
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decreases to a predefined value, which allows the model
converge to some other local optimal point. We adopt the
cyclical cosine annealing schedule with warm restart technique
[34] for the learning rate adjustment. Fig. 3 illustrates the
learning rate schedule over the whole training progress and
Equation (5) gives the details of how to calculate the learning
rate at a specific training epoch. Here, t is the training epoch,
lr(t) is the learning rate at epoch t, lrmax and lrmin are the
maximum and minimum learning rates, T is the total number
of training epochs for one snapshot and mod is the modulo
operation. Although T could start with a small value and in-
crease by a factor suggested in [34], we empirically found that
a fixed T could yield a better result. Via the aforementioned
snapshot strategy, we can obtain multiple models converging to
different local minima, which can significantly improve model
generalization ability over ensembling.

T

Snapshot

Fig. 3: Snapshot Ensemble with Cosine Annealing Learning
Rate Schedule

lr(t) = lrmin+
1

2
(lrmax−lrmin)(1+cos(

mod(t, T )

T
π)). (5)

It is worth noting that the optimization curve in Fig.
2(c) shows that the first several intermediate models tend to
perform worse as it needs some training epochs for the model
converging to some local minimum points. Therefore, we only
take the last several models out of all saved models for final
ensemble prediction.

IV. EXPERIMENTS

In this section, we evaluate the performance of our proposed
hybrid model with a public dataset for the early prediction task
of battery remaining useful life.

A. Dataset and Experimental Setup

1) A123 Battery Dataset: The “A123 dataset” used in this
paper is generated by Severson et al. [5] and consists of
124 commercial lithium-ion battery cells in total. The cells
were cycled under various fast-charging policies but the same
discharging rate until reaching EOL, which is defined as 80%
of the nominal capacity. Cycle measurements of voltage, cur-
rent, charge capacity, discharge capacity, temperature, internal
resistance and charge time were recorded. There are three
batches of batteries in this dataset. Following [5], for the

first two batches, we alternatively select one for training and
the following one for primary testing. And all batteries in
third batch are selected for secondary testing. Thus, the whole
dataset was separated into three subsets: training, primary test
and secondary test sets. Note that battery cells in the training
and primary test sets were collected at the same time period
but cells in the secondary test set were collected about one year
later. Due to calendar aging, bias was introduced to the sec-
ondary test set. Fig. 4 compares the battery cell distributions
in terms of cycle life and initial discharge capacity among
these three subsets. It is clear that the training and primary
test sets have similar distributions, while the secondary test
set has a different distribution from the training and primary
test sets. Our target is to design a hybrid model that can not
only perform well in the primary test set but also generalize
well to the secondary test set. (Check https://data.matr.io/1 for
more details about this A123 battery dataset.)
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Fig. 4: (a)-(c) Battery cell distribution in terms of cycle
life for training, primary test and secondary test sets; (d)-(f)
Battery cell distribution in terms of initial capacity for training,
primary test and secondary test sets.

2) Selecting Domain Knowledge-based Features: Severson
et al. have done an explicit research on the relation between
RUL and domain specific features in [5] and proposed 21
domain knowledge-based features for the A123 battery dataset.
However, as the code for the calculation of these features used
in [5] has not been released, we have to implement these

https://data.matr.io/1
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Fig. 5: Correlation between domain knowledge-based features and the logarithm value of battery RUL.

domain knowledge-based features according to the paper as
shown below.

• var dQ 100 10, min dQ 100 10, mean dQ 100 10,
skew dQ 100 10, kurt dQ 100 10: the variance, min-
imum, mean, skewness and kurtosis values of differ-
ence of discharge capacity curves ∆Q100−10(V ). Here,
∆Q100−10(V ) represents the difference among discharge
capacity curves as a function of voltage between the
100th and 10th cycles, which equals Q100(V )−Q10(V );

• dQ 2V : value at 2V;
• slope Qd cycle 2 100, intercept Qd cycle 2 100,
slope Qd cycle 91 100, intercept Qd cycle 91 100:
slope and intercept values of the linear fit to the capacity
fade curve from cycle 2 to 100 and cycle 91 to 100.

• Qd 2, Qd 100: discharge capacity at cycle 2 and 100;
• Qd max cycle 2: difference between maximum dis-

charge capacity and discharge capacity at cycle 2;
• avg time first 5: the average charge time of first 5

cycles;
• max temp cycle 2 100, min temp cycle 2 100,
integral temp cycle 2 100: the maximum and
minimum temperatures from cycle 2 to 100, the integral
of temperature over time from cycle 2 to 100;

• ir 2, min ir cycle 2 100, ir diff cycle 100 2: in-
ternal resistance at cycle 2, minimum internal resistance
from cycle 2 to 100, internal resistance difference be-
tween cycle 100 and 2.

The Spearman’s coefficients ρ(ftrain, y) between
training features and targets are presented in Fig. 5.
We generate a subset A including 12 features whose
|ρ| > 0.45. Within the selected features in A, we perform
recursive feature elimination via an XGBRegressor
estimator on the training set to further remove the
noisy features. The final subset with 8 features we use
in our model is {var dQ 100 10, min dQ 100 10,
mean dQ 100 10, slope Qd cycle 91 100, Qd 2,
Qd 100, min ir cycle 2 100, ir diff cycle 100 2}.

3) Experimental Setup: Same as [5], we only use the first
100 cycle measurements for the early prediction of battery
cell RUL. To accelerate the learning process of the proposed
hybrid model, we apply min-max normalization to both local
statistical features and domain knowledge-based features on
the training set. The normalization scalers are then applied
to the primary and secondary test sets as well. The logarithm
value of cycle life is the prediction target of the hybrid model.
The model is trained on the training set and then evaluated on
the primary and secondary test sets.

We use k-fold cross-validation with grid search to tune the
hyper-parameters of the proposed hybrid model. Particularly,
the training set is randomly split into 5 folds, where 4 folds
are utilized for training and the remaining one for validation.
We use the validation performance to select the best hyper-
parameters. After selection, we first identify the network
configuration for our proposed hybrid model as shown in Table
I. Here, “Conv1D(5,1)” represents 1-D convolutional operation
with a kernel size = 5 and stride = 1. “FC-16” means a fully
connected layer with the output dimension = 16. In addition,
the dropout rates of the two dropout layers after the CNN
encoder E and deep network D are set to be 0.5 and 0.1,
respectively. For the settings of snapshot ensemble, we finally
set lrmax = 0.1, lrmin = 1e − 6 and T = 200 in Equation
(5). Hence, the learning rate starts at 0.1 and decays with a
cosine annealing until reaching 1e−6 within 200 epochs, then
we save the intermediate model and reset the learning rate to
0.1 and repeat it again. We take the last 10 saved models for
ensemble learning and evaluate them on test sets. Please refer
to the released code for more implementation details.

Root Mean Square Error (RMSE) and Mean Absolute
Percentage Error (MAPE) are chosen to evaluate the model
performance. They are defined in Equations (6) and (7),
respectively. Here, n is the total number of samples, ŷi is
the predicted cycle life and yi is the ground truth.
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TABLE I: Network Configuration of Proposed Hybrid Model

Layers Local Statistical Features Domain Knowledge-based Features
#1 Conv1D(5,1); ReLU; MaxPool1d FC-16; Sigmoid#2 Conv1D(5,1); ReLU; MaxPool1d
#3 Conv1D(5,1); ReLU; MaxPool1d FC-16; Dropout#4 Flatten; FC-16; Dropout
#5 Concatenate
#6 FC-1

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (6)

MAPE =
1

n

n∑
i=1

|ŷi − yi|
yi

× 100% (7)

B. Performance Comparison

To evaluate the effectiveness of our proposed hybrid
model, we compare it with various methods as shown in
Table II. As aforementioned, we implemented the domain
feature extraction part according to the original paper [5]
and trained an elastic net with them in the same manner
as the original paper. The models Elastic-V, Elastic-D and
Elastic-F represent the elastic net trained with “Variance”,
“Discharge” and “Full” feature sets, respectively. Particularly,
the “Variance” feature set contains var dQ 100 10
feature only; the “Discharge” feature set contains more
features from discharge capacity fade curves, namely {
var dQ 100 10, min dQ 100 10, skew dQ 100 10,
kurt dQ 100 10, Qd 2, Qd max cycle 2 };
the “Full” feature set consists of all the 9
features, namely {var dQ 100 10, min dQ 100 10,
slope Qd cycle 2 100, intercept Qd cycle 2 100,
Qd 2, avg time first 5, integral temp cycle 2 100,
min ir cycle 2 100, ir diff cycle 100 2}. We take these
models as the baselines in our experiments.

Other machine learning based methods like SVR [35], NN
[36], LSTM [22] and CNN-LSTM [7] are also evaluated with
the same dataset. We tried different combinations of models
and feature sets, and only listed the models that perform best
in Table II. In particular, SVR-V and NN-F mean that the
models are trained with the “Variance” and “Full” feature
set, respectively. LSTM and CNN-LSTM models are trained
with local statistical features. Moreover, we also investigate
two more methods, namely GRU-RNN [31] and PSR-SVR
[27]. For GRU-RNN, we generate the exact same features
from voltage, current and temperature measurements as [31],
and then apply the random forest method to select 15 best
features. We adopt their GRU-RNN model to evaluate the
performance on RUL prediction. For PSR-SVR, we extract the
discharge capacity and discharging voltage difference of equal
time intervals from the first 100 cycles. The EEMD is then
employed to reconstruct the signal and the same PSR process
is utilized to obtain an optimal input sequence. Particularly,

we set embedding dimension m = 6 and delay time τ = 3
which are the same as [27]. Through explicit experiments, we
intend to explore how to properly design a model and generate
features so as to not only achieve a good performance but also
generalize well.

TABLE II: Performance Comparison among Various Methods

Methods Primary Test Secondary Test
RMSE MAPE RMSE MAPE

Elastic-V [5] 138.39 13.19 196.01 11.41
Elastic-D [5] 170.35 10.99 179.64 14.20
Elastic-F [5] 117.64 9.20 225.72 12.85
SVR-V [35] 170.72 14.72 226.79 12.11
NN-F [36] 116.54 9.13 225.83 12.87
LSTM [22] 166.87 18.05 380.85 22.66

CNN-LSTM [7] 176.63 14.85 375.47 25.25
GRU-RNN [31] 127.65 9.94 356.31 34.17
PSR-SVR [27] 191.83 20.3 404.57 32.93

Proposed 114.05 8.54 177.88 11.31

From Table II, we can see that different feature sets gener-
ally result in different performance on the two test sets. For
instance, Elastic-D performs better in the secondary test set
in terms of RMSE but performs worse in the primary test
set in terms of both RMSE and MAPE, when compared with
Elastic-F. SVR-V leverages the same feature set as Elastic-
V but performs worse than it. These observations indicate
the importance and difficulty of selecting suitable domain
knowledge-based features and proper models. Moreover, it
also shows the poor generalization ability of simple models
like the elastic, which fails to achieve good performance
on the secondary test dataset. It is not surprising that deep
neural networks like LSTM and CNN-LSTM also perform
poorly in both test sets as they are originally designed for
the capacity degradation curve, but such degradation is too
small to be captured in the early stage of the whole battery
cycle life. The results of GRU-RNN and PSR-SVR reveal the
difficulty of generating representative features from classical
characteristics like discharging voltage for early prediction of
battery RUL. Our proposed hybrid model outperforms others
in both primary and secondary test sets in terms of RMSE
and MAPE, indicating the effectiveness of combining local
statistical and domain knowledge-based features to improve
model generalization ability.

Moreover, we have selected some representative methods
with different network architectures (i.e., Elastic-F, SVR-
V, CNN-LSTM and GRU-RNN) and our proposed method
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Fig. 6: Visualization of Prediction Results for Different Methods.
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Fig. 7: Visualization of Prediction Results for Single Battery.

to demonstrate the final RUL prediction results of testing
samples. Fig. 6 visualizes the final RUL prediction results
of these methods for primary and secondary test sets. As
aforementioned, most of methods can achieve relatively good
performance on primary test set but generalize worse on
secondary test set. Fig. 7 depicts the early prediction results
of two randomly selected batteries. By only utilizing the early
cycle data (the first 100 cycles) before the degradation of
battery capacity, our proposed hybrid model could achieve
more accurate RUL prediction results than other methods.

C. Ablation Study

To investigate the contributions of local statistical features
and domain knowledge-based features to model performance,
we conduct an ablation study as shown in Fig. 8. Here,
CNN model is trained with local statistical features only, and
NN-C is a network consisting of two fully connected layers
and trained with domain knowledge features selected based
on correlations. It is obvious that features based on domain
knowledge contribute more to the accuracy and only using
local statistical features would result in very poor performance
as there are redundant information and noise underlying them.
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TABLE III: Performance Comparison between model averaging and snapshot ensemble.

Methods Primary Test Secondary Test
RMSE MAPE RMSE MAPE

Model Averaging 120.56±10.04 8.71±0.24 184.09±6.47 12.91±1.42
Weighted Averaging 117.99±4.24 8.62±0.16 192.45±3.54 12.04±0.82
Snapshot Ensembles 114.05±1.31 8.54±0.08 177.88±1.36 11.31±0.33

However, combining local statistical information with domain
knowledge indeed helps to enhance model performance on
both test sets.
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Fig. 8: Model performance with different features.

We also compare different ensemble learning methods on
prediction performance. A common ensemble method to im-
prove model generalization ability is to train several models
initialized with different random seeds and take the average
value of these model predictions as the final result. It is
denoted as Model Averaging in Table III. In addition, we
also investigate the weighted average ensemble by assigning
different weights to each individual model based on their
performance on the validation set. The lower RMSE the model
achieves, the higher weight it is assigned with. This method
is denoted as Weighted Averaging. Note that both Model
Averaging and Weighted Averaging methods require training
of multiple models for ensemble learning, while our proposed
snapshot ensemble only requires the model to be trained
once. The mean and standard deviation values are calculated
over 5 iterations for all the ensemble learning methods. From
Table III, we can find that the proposed snapshot ensemble
outperforms both methods with smaller RMSE and lower
variance, which indicates the effectiveness and robustness of
the proposed ensemble learning.

Here, we also test different correlation methods for feature
selection. In addition to the non-linear Spearman’s correlation
coefficient for measuring the monotonic relationship between
features and RUL, we also explore another linear correlation
method (i.e., Pearson correlation coefficient). We compare the
two correlation methods with/without RFE to evaluate the
impact of different correlation methods and the usefulness of
RFE. The results are shown in Table IV. We can find that the
feature subset selected by non-linear Spearman’s correlation
consistently performs better than the subset selected by linear
correlation with and without RFE. In addition, the RFE can
further improve the performance in both scenarios.

TABLE IV: Performance Comparison of Different Correlation
Methods.

Features selected by Primary Test Secondary Test
RMSE MAPE RMSE MAPE

Pearson 144.72 11.38 222.46 17.10
Pearson + RFE 129.45 10.41 220.43 14.48

Spearman 116.45 8.55 206.88 11.67
Spearman + RFE 114.05 8.54 177.88 11.31

V. CONCLUSION

In this paper, we propose a hybrid deep learning model that
can integrate the handcrafted features with domain knowledge
and the latent features derived by deep networks to boost the
performance and generalizability of battery RUL prediction.
Moreover, we also explore different correlation methods for
feature selection and different ensemble strategies that would
affect model generalization ability. An exhaustive comparison
with other SOTA approaches and ablation study have been
conducted in the paper. The experimental results show that
our proposed hybrid model outperforms SOTA approaches in
terms of two evaluation criteria in the primary test set, and
also has better generalization ability to the secondary test set.
In addition, the proposed non-linear correlation-based feature
selection and snapshot ensemble strategy can clearly contribute
to model prediction accuracy and generalization ability.

In the future, we intend to integrate physics-based models
with deep learning models as the physics-based models are
well-known for its physical interpretability and outstanding
capability on accurately modeling LIBs’ degradation pro-
cesses [37], [38]. The combination of these two types of
models would result in novel hybrid models that are more
physically consistent, explainable and accurate. Besides, we
also intend to investigate the minimal required cycles for
accurate battery RUL prediction in our future work, since
it can significantly reduce the experimental cost for battery
manufactures in practical applications.
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