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Abstract

Computational prediction of drug–target interactions (DTIs) has become an essential task in the drug discovery process. It
narrows down the search space for interactions by suggesting potential interaction candidates for validation via wet-lab
experiments that are well known to be expensive and time-consuming. In this article, we aim to provide a comprehensive
overview and empirical evaluation on the computational DTI prediction techniques, to act as a guide and reference for our
fellow researchers. Specifically, we first describe the data used in such computational DTI prediction efforts. We then cate-
gorize and elaborate the state-of-the-art methods for predicting DTIs. Next, an empirical comparison is performed to dem-
onstrate the prediction performance of some representative methods under different scenarios. We also present interesting
findings from our evaluation study, discussing the advantages and disadvantages of each method. Finally, we highlight
potential avenues for further enhancement of DTI prediction performance as well as related research directions.
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Introduction

In silico prediction of interactions between drugs and their
target proteins is desirable, as it effectively complements wet-
lab experiments that are typically costly and laborious.
The newly discovered drug–target interactions (DTIs) are crit-
ical for discovering novel targets interacting with existing

drugs, as well as new drugs targeting certain disease-
associated genes.

Drug repositioning, for instance, is the reuse of existing
drugs for novel indications, that is, existing drugs may be used
to treat diseases other than those that they were originally
developed for [1]. As existing drugs have already been
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extensively studied (e.g. their bioavailability and safety profiles),
repositioning them would significantly reduce costs and accel-
erate the drug discovery process, which made drug reposition-
ing a popular strategy for drug discovery [2]. One famous
example of a repositioned drug is that of Gleevec (imatinib
mesylate), which was originally thought to interact only with
the Bcr-Abl fusion gene associated with leukemia. Nevertheless,
Gleevec was later found to also interact with PDGF and KIT,
eventually leading it to be repositioned to treat gastrointestinal
stromal tumors as well [3, 4]. This is one of many drug reposi-
tioning success stories that exist in the literature [5–10]. As
demonstrated in the example of Gleevec, a drug’s promiscuity
(i.e. interaction with multiple targets) may contribute to its pol-
ypharmacology (i.e. having multiple therapeutic effects), which
is clear motivation for attempting to discover new DTIs for
existing drugs.

On the other hand, there is also a large number of small-
molecule compounds that have not been used as drugs yet and,
for the majority of them, their interaction profiles with proteins
are still unknown. For example, the PubChem database currently
houses >90 million compounds, most of which have unknown
interaction profiles [11]. Detecting interactions (with disease-
associated genes and target proteins) for these compounds would
be useful for new drugs, as this would help narrow down pro-
spective drug candidates to work with in the drug discovery proc-
ess [12]. Moreover, detecting such interactions may provide
insight by discovering off-targets that can cause undesirable side
effects [13]. Therefore, prediction of DTIs is of great importance; it
is essential for drug repositioning, assists with drug candidate
selection and helps detect side effects in advance.

While experimental wet-lab techniques exist for predicting
such interactions, they involve tedious and time-consuming
work. This is where computational methods prove useful, as
they may be used to efficiently predict potential interaction
candidates with reasonable accuracy, thus narrowing down the
DTI search space to be investigated by their wet-lab
counterparts.

Currently, there are three major categories of computational
methods for predicting DTIs. The first category is the ligand-
based approaches, which leverage the concept that similar mol-
ecules tend to share similar properties and usually bind similar
proteins [14]. In particular, they predict interactions using the
similarity between the proteins’ ligands [15]. However, the pre-
diction results of ligand-based approaches may become unreli-
able when the number of known ligands per protein is
insufficient [16].

The second category is the docking approaches, which take
the 3 D structures of a drug and a protein and then run a simula-
tion to determine whether they would interact [17–19].
However, there are proteins for which the 3 D structure is not
known, so docking cannot be applied to them. For example,
many drug targets are membrane proteins [20] for which the
prediction of the 3 D structure is still challenging [21]. In addi-
tion, dealing with a receptor protein’s flexibility can be
challenging, as a large number of degrees of freedom need to be
considered in the calculations.

The third category is the chemogenomic approaches, which
use information from both the drug and target sides simultane-
ously to perform prediction. An advantage of chemogenomic
approaches is that they can work with widely abundant biologi-
cal data to perform prediction. For example, the information
used for prediction in [22] consisted of chemical structure
graphs and genomic sequences for the drugs and targets,

respectively, which are available and easy to obtain from pub-
licly accessible online databases.

In this survey, we focus on reviewing the more popular third
category, the chemogenomic methods. The survey starts by
describing the kinds of data required to perform the prediction
task as well as how they may be obtained. Next, we classify the
chemogenomic methods into five types and aimed to provide
an overview of all the important prediction methods that belong
to each of these types. Furthermore, we choose representative
methods for each of the five types below, present a comprehen-
sive comparison among them and discuss the advantages and
disadvantages for these methods.

1. Neighborhood models. Neighborhood methods predict the
interaction profile for a drug (or a target) based on its nearest
neighbors’ interaction information.

2. Bipartite local models. Bipartite local models (BLMs) first per-
form two sets of predictions individually, namely, one from
the drug side and one from the target side, and then aggre-
gate these predictions to generate the final prediction scores
for given drug–target pairs.

3. Network diffusion models. Network diffusion methods
investigate graph-based techniques (e.g. Random Walk) for
influence propagation in drug–target networks and predict
novel DTIs.

4. Matrix factorization models. Matrix factorization first learns
the latent feature matrices for drugs and targets from the
DTI matrix, and then multiplies these two latent feature
matrices to reconstruct the interaction matrix for prediction.

5. Feature-based classification models. Drug–target pairs in
training data are represented as feature vectors, which are
then fed into machine learning models [e.g. Random Forest,
Support Vector Machines (SVMs)] for predicting novel
interactions.

In previous surveys [23, 24], it was commonplace to separate
the prediction methods into only two categories, similarity-
based methods and feature-based methods. However, as more
prediction methods were being proposed by researchers, we
decided to further divide the similarity-based methods into four
categories, each with their unique characteristics. The new cat-
egorization of chemogenomic methods was found to be conven-
ient and useful when representative methods were chosen
from each of the categories and compared with each other in
cross-validation (CV) experiments whose results are presented
later in this study. Conclusions were drawn regarding the
advantages and disadvantages of the prediction methods and
their corresponding categories, which is useful information for
practitioners as well as newcomers to the field.

Compared with previous reviews on this topic of DTI predic-
tion [23–26], our survey is more comprehensive and up-to-date
regarding the chemogenomic methods for predicting DTIs. In
addition, we provide a novel categorization for the different
chemogenomic approaches. Moreover, we describe the kinds of
data that may be used in chemogenomic prediction tasks; how-
ever, note that we especially focus on listing software packages
that generate features for representing drugs and targets (as
opposed to online databases containing readily available infor-
mation on DTIs). Furthermore, in the Supplementary Material
of this study, we provide a comprehensive list of data sets that
have been compiled by fellow researchers and used in previous
work. We also perform an empirical comparison among various
state-of-the-art methods from the different categories and dis-
cuss their advantages and limitations based on the results. One
of the surveys, [23], also provided comparison results among
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different methods; however, as many new prediction methods
have appeared since it was published in 2013, it is desirable to
summarize more recent advanced methods. Finally, we discuss
potential future trends as well as promising research directions
that could be used to further improve DTI prediction.

In the recent review by Chen et al. [26], all online databases
that store information on drugs and their targets were mentioned
and described in detail (KEGG [27], DrugBank [28], etc.).
Furthermore, a literature review on algorithms for DTI prediction
was provided where the different algorithms are described and
discussed. In addition to the algorithms, online Web servers for
predicting interactions were described, and promising research
directions in the field of drug discovery have been discussed as
well. Our survey is similar to [26] in terms of reviewing the state-
of-the-art methods and providing a list of potential future
research directions. However, we provide a different categoriza-
tion of the various prediction methods, and the future research
directions proposed here differ from and complement those dis-
cussed in [26]. Finally, from the data perspective, while we do not
focus on the databases from which data can be obtained, we
make an effort here to list the different software packages that
may be used to generate further descriptors for drugs and targets.
We also provide, as Supplementary Material, a list of data sets
that have been used in previous efforts in DTI prediction.

While targets exist in multiple forms, this survey primarily
considers protein targets. As such, unless otherwise stated, all
targets being referred to in this work are proteins.

The rest of this survey is organized as follows. ‘Data repre-
sentation and types’ section first introduces the data for repre-
senting drugs, targets and their interactions. Then, ‘Methods’
section presents our novel categorization for various prediction
methods in details. Next, ‘Empirical evaluation’ section demon-
strates the empirical comparison results for various methods
on benchmark data. Finally, ‘Avenues for improvement and fur-
ther research’ section discusses future directions for DTI
prediction.

Data representation and types

To train a classifier for predicting DTIs, a list of known DTIs is
required. In other words, we want to predict which drugs and
targets interact or not based on existing training data. Data for
representing the drugs and targets involved are also needed.
These required data are described in more detail below.

Furthermore, we provide as Supplementary Material a complete
list of publicly accessible data sets that have been used in pre-
vious efforts for predicting DTIs. An overview of a typical DTI
prediction task is given in Figure 1.

Interaction data

Information on known DTIs needs to be gathered, as a classifier
will be trained on these known interactions to predict the new
interactions. Such information can be found in publicly avail-
able online databases that store information on drugs and their
known targets. Examples of databases that have been used in
previous work include KEGG [27], DrugBank [28], ChEMBL [29]
and STITCH [30] (see [26] for an exhaustive list of such data-
bases). The interaction data gathered from these databases are
usually formatted into an interaction (adjacency) matrix
between drugs and targets. This matrix corresponds to a bipar-
tite graph where nodes represent drugs and targets, and edges
connect drug–target pairs that interact.

Drug and target data

Types of data that are available for drugs and may be used for
training DTI classifiers include—but are not limited to—graphi-
cal representations of drugs’ chemical structures [31], side
effects [32], Anatomical Therapeutic Chemical (ATC) codes [33]
and gene expression responses to drugs [34]. Other forms of
data may further be extracted from the chemical structure
graphs of drugs including substructure fingerprints as well as
constitutional, topological and geometrical descriptors among
other molecular properties (e.g. via the Rcpi [35], PyDPI [36] or
Open Babel [37] packages).

As for targets, available data that can be obtained include
genomic sequences [38], Gene Ontology (GO) information [39],
gene expression profiles [40], disease associations [41] and
protein–protein interaction (PPI) network information [42, 43]
among others. Further, information may also be extracted from
protein sequences, including amino acid composition, CTD
(composition, transition and distribution) and autocorrelation
descriptors (e.g. via the PROFEAT Web server [44]).

Methods

Many (chemogenomic) DTI prediction methods have been
developed over the past decade. We briefly describe them here

Figure 1. Flowchart of a standard DTI prediction task using a chemogenomic prediction method.
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and categorize them based on the techniques that they use for
prediction. Table 1 demonstrates our summarized categories of
different methods for predicting DTIs.

In sections ‘Neighborhood’, ‘Bipartite local models’,
‘Network diffusion’ and ‘Matrix factorization’, the input data for
the methods below consist of an interaction matrix Y 2 R

n�m

showing which drugs and targets interact, a similarity matrix
Sd 2 R

n�n for drugs and a similarity matrix St 2 R
m�m for targets.

In section ’Feature-based classification’, the similarity matrices

are replaced by drug and target feature matrices, Fd 2 R
n�p and

Ft 2 R
m�q, for representing the drugs and targets, respectively.

Neighborhood

Neighborhood methods use relatively simple similarity func-
tions to perform predictions. More precisely, a new drug or tar-
get has its interaction profile predicted using its similarities to
other drugs or targets, respectively; a new drug is one that has
no known targets and, similarly, a new target is one that has no
known interactions with any drugs.

Nearest Profile and Weighted Profile
Nearest Profile and Weighted Profile are two methods that were
introduced in [22]. Nearest Profile infers the interaction profile
of a new drug or target from its nearest neighbor (i.e. the drug or
target most similar to it). For example, the Nearest Profile for a
new drug di is computed as:

bYðdiÞ ¼ Sdðdi; dnearestÞ � YðdnearestÞ; (1)

where dnearest is the drug most similar to di, and YðdiÞ is the
interaction profile of drug di. On the other hand, Weighted
Profile performs something like a weighted average using the
similarities to all the other drugs or targets. The weighted pro-
file for di is computed as:

bYðdiÞ ¼

Pn
j¼1

Sdðdi; djÞ � YðdjÞ

Pn
j¼1

Sdðdi; djÞ
: (2)

In both of these methods, predictions from both the drug
and target sides are averaged to obtain the final predictions.

Similarity Rank-based Predictor
Similarity Rank-based Predictor (SRP) [45] computes two ten-
dency indices for each drug–target pair: one for the likelihood
that it would interact and one for the likelihood that it would
not. Given a drug di and a target tj, its ‘tendency-to-interact’
index is computed as:

TIþðdi; tjÞ ¼
X

p2PþðtjÞ

Sdðdi; dpÞ
Rdðdi; dpÞ

; (3)

where PþðtjÞ � fd1;d2; . . . dng is the set of drugs that are known to
interact with tj, and Rdðdi; dpÞ is the similarity rank of drug di to
dp among the n drugs. Another ‘tendency-to-not-interact’ index,
TI�ðdi; tjÞ, is similarly computed as:

TI�ðdi; tjÞ ¼
X

q2Q�ðtjÞ

Sdðdi; dqÞ
Rdðdi; dqÞ

; (4)

where Q�ðtjÞ is the set of drugs known to not interact with tj. An
interaction likelihood score is then computed as the odds ratio:

Cðdi; tjÞ ¼
TIþðdi; tjÞ
TI�ðdi; tjÞ

: (5)

In addition to the above score, which was computed using
Sd, a similar corresponding score is also obtained using St, and
then the two scores are averaged to give the final prediction
score.

Bipartite local models

BLMs perform two sets of predictions, namely, one from the
drug side and one from the target side, and then aggregate these
predictions to give the final prediction scores for the potential
interaction candidates.

SVM-based BLMs
This pioneering effort [46] introduced the concept of BLM
where a local model is trained for each drug (or target) to
predict which targets (or drugs) would interact with it. In the
case of [46], the local models were SVM classifiers. Predictions
from the drug and target sides are then averaged to get the
final results.

Table 1. The Categories of the different methods for predicting DTIs.

Categories Methods Category description

Neighborhood Nearest Profile and Weighted Profile [22], SRP
[45]

Neighborhood methods use relatively simple similarity func-
tions to perform predictions

BLMs Bleakley et al. [46], LapRLS [47], RLS-avg and
RLS-kron [48], BLM-NII [49]

BLMs perform two sets of predictions, one from the drug side
and one from the target side, and then aggregates these pre-
dictions to give the final prediction scores

Network diffusion NBI [50], Wang et al. [51], NRWRH [52], PSL
[53], DASPfind [54]

Network diffusion methods investigate graph-based techni-
ques to predict new interactions

Matrix factorization KBMF2K [55], PMF [56], CMF [57], WGRMF [58],
NRLMF [59], DNILMF [60]

Matrix factorization finds two latent feature matrices that,
when multiplied together, reconstruct the interaction matrix

Feature-based
classification

He et al. [61], Yu et al. [62], Fuzzy KNN [63],
Ezzat et al. [64], EnsemDT [65], SITAR [66],
RFDT [78], PDTPS [81], ER-Tree [83], SCCA
[84], MH-L1SVM [86]

Feature-based classification methods are those that need the
drug–target pairs to be explicitly represented as fixed-length
feature vectors
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Specifically, assuming a bipartite DTI network, the algorithm
tries to predict whether the edge eij exists between drug di and
target tj. The following steps are performed:

1. Ignoring tj, a classifier is trained for di using the list of its
known interactions with other targets (positive examples) as
well as the list of targets not known to interact with di (nega-
tive examples). Interactions are labeled as þ 1, whereas non-
interactions are labeled as �1. The trained classifier is used
to predict for eij.

2. Ignoring di, a classifier is trained for tj using the list of its
known interactions with other drugs as well as the list of
drugs not known to interact with tj. Interactions are labeled
as þ 1, whereas noninteractions are labeled as �1. The
trained classifier then predicts for eij.

3. Predictions from both the drug and target sides (i.e. from
both classifiers) are aggregated using the maxð�; �Þ function.

Laplacian Regularized Least Squares
Laplacian Regularized Least Squares (LapRLS) [47] is another
algorithm that is based on the BLM concept. The local models in
LapRLS use regularized least squares to minimize an objective
function that includes an error term as well as a graph regulari-
zation term. From the drug side, the objective function to be
minimized is:

min
ad

ðjjY � Sdadjj2F þ bdTrða>d SdLdSdadÞÞ; (6)

where jj � jjF is the Frobenius norm, Ld is the normalized
Laplacian obtained using Sd and bd is a parameter. Note that
the trace of a given matrix A is TrðAÞ ¼

P
i Aii, and the expres-

sion Trða>d SdLdSdadÞ is a graph regularization term, which helps
model the manifold that is assumed to underlie the data. The
manifold assumption (i.e. that data points lie on a low-
dimensional nonlinear manifold) is one that is found to be usu-
ally true [67–69] and, therefore, modeling the manifold would be
beneficial to the prediction performance. After obtaining a�d that
minimizes the above function, the prediction matrix from the
drug side is obtained as bYd ¼ Sda�d. A similar objective function
is minimized from the target side to obtain bYt, and then the
final prediction matrix is obtained as:

bY ¼ bYd þ bYt

2
: (7)

Regularized Least Squares
Regularized Least Squares (RLS-avg) [48] uses kernel ridge
regression to perform prediction. Furthermore, unlike the pre-
vious methods, Gaussian interaction profile (GIP) kernels are
used to compute network similarity matrices for drugs and tar-
gets from the interaction matrix Y; network similarity between
two drugs di and dj is computed as GIPdðdi; djÞ ¼ exp ð�cjjYðdiÞ
�YðdjÞjj2Þ where c is a parameter, and YðdiÞ and YðdjÞ are the
interaction profiles of di and dj, respectively. These network
similarity matrices are then merged with Sd and St as:

Kd ¼ aSd þ ð1� aÞGIPd; (8)

Kt ¼ aSt þ ð1� aÞGIPt; (9)

where a is a parameter such that 0 � a � 1. Kd is a drug kernel
that is formed via linear combination between the drug chemi-
cal similarity matrix Sd and the drug network similarity matrix

GIPd, whereas Kt is a target kernel that is formed via linear com-
bination between the target sequence similarity matrix St and
the target network similarity matrix GIPt. The authors of this
work hypothesized that incorporating network information (i.e.
interaction information from the DTI network) into the predic-
tion process as indicated above would lead to better prediction
performance. Next, the prediction scores matrix is obtained as:

bY ¼ 1
2
ðKdðKd þ rIÞ�1YÞ þ 1

2
ðKtðKt þ rIÞ�1Y>Þ>; (10)

where r is a regularization parameter. Note that Equation (10)
shows predictions from both the drug and target sides being
averaged to give the final scores.

Moreover, another algorithm was also introduced in [48],
named RLS-kron, where the drug and target sides of the predic-
tion have been merged into one by using the Kronecker product.
Given that K ¼ Kd � Kt is a kernel over drug–target pairs, the pre-
diction scores matrix is obtained as:

vecðbY>Þ ¼ KðKþ rIÞ�1vecðY>Þ; (11)

where vecðY>Þ is a column vector created by stacking the col-
umns of Y>. As the matrix K would require too much memory
and the computation of its inverse would be computationally
intensive, the authors use a more efficient implementation [70]
that is based on eigen decompositions.

Bipartite Local Models with Neighbor-based Interaction Profile
Inferring
BLM algorithms exploiting local models achieved decent per-
formance for DTI prediction. However, they had an outstanding
issue that they are not able to train local models for drugs or tar-
gets that do not have any known interactions (i.e. new drugs or
targets). To address this issue, Bipartite Local Models with
Neighbor-based Interaction Profile Inferring (BLM-NII) [49],
which is based on RLS-avg, introduces a preprocessing method
denoted as NII to infer temporary interaction profiles for those
novel drugs or targets.

Specifically, a local model is trained for each drug di.
However, if drug di happens to have an empty interaction pro-
file, a temporary interaction profile is inferred for it before train-
ing as:

YðdiÞ ¼

Pn
j¼1

Sdðdi; djÞ � YðdjÞ

Pn
j¼1

Sdðdi; djÞ
; (12)

after which it is normalized via min-max normalization to
obtain:

~YðdiÞ ¼
YðdiÞ �minðYðdiÞÞ

maxðYðdiÞÞ �minðYðdiÞÞ
: (13)

Now that drug di does not have an empty profile, classifier
training and prediction may proceed as per normal. The NII pro-
cedure is similarly applied to the target side wherever applica-
ble, and predictions are obtained from the target side as well.
Predictions from the drug and target sides are then aggregated
as is typical in algorithms from the category of BLMs. The NII
preprocessing procedure was found to improve prediction
performance.

Drug discovery | 5

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby002/4824712
by National University of Singapore user
on 26 January 2018

Deleted Text: &hx2013;
Deleted Text: -
Deleted Text: &hx2013;
Deleted Text: 3.2.2 
Deleted Text:  (LapRLS)
Deleted Text: 29
Deleted Text: ,
Deleted Text: -
Deleted Text: 3.2.3 
Deleted Text:  (RLS-avg &hx0026; RLS-kron)
Deleted Text: 30
Deleted Text: 30
Deleted Text: -
Deleted Text: Since 
Deleted Text: 3.2.4 
Deleted Text:  (BLM-NII)
Deleted Text: 31
Deleted Text: prior to
Deleted Text: bipartite local model


Regularized Least Squares with Weighted Nearest Neighbors
Another method based on RLS-kron [48] was introduced in [71]
where RLS-kron was augmented with a preprocessing method,
WNN, that has the same purpose as NII. For every new drug di,
WNN is used to infer an interaction profile for it as:

YðdiÞ ¼
Xn

j¼1

wjYðdjÞ; (14)

where d1 to dn are drugs sorted in descending order based on
their similarity to di, and wj ¼ gj�1 where g is a decay term with
g � 1. The same is done from the target side, and then RLS-
kron proceeds as per normal. As with NII, applying WNN has
also resulted in improvements in the prediction performance,
which confirms that such preprocessing methods are indeed
successful.

Network diffusion

The network diffusion category of methods includes those that
investigate graph-based techniques to predict new interactions;
the network diffusion technique is predominant in this cate-
gory, which is why it is named as such.

Network-based inference
To perform prediction, network-based inference (NBI) [50]
applies network diffusion on the DTI bipartite network corre-
sponding to the interaction matrix Y. Network diffusion is per-
formed according to:

bY ¼WY; (15)

where W 2 Rn�n is the weight matrix defined as:

Wij ¼
1

Cði;jÞ

Xm
l¼1

YilYjl

kðtlÞ
; (16)

where C is the diffusion rule, and k(x) is the degree of node x in
the DTI bipartite network. In the case of NBI, the C rule is given
by C ¼ kðdjÞ.

Heterogeneous graph inference
Another method that extends NBI is presented in [51]. In place of
the basic bipartite network, network diffusion is performed on a
heterogeneous network (as illustrated in Figure 2). The heterogene-
ous network augments the basic bipartite one by adding, between
all pairs of drugs or targets, edges whose weights correspond to

the pairwise similarities as indicated in Sd or St, respectively.
Network diffusion in this method is done using the equation:

Yðiþ1Þ ¼ aSdYðiÞSt þ ð1� aÞYð0Þ; (17)

where YðiÞ is the prediction scores matrix at time step i, Yð0Þ ¼ Y,
and a is an adjustable parameter. To ensure that the above for-
mula would converge, Sd and St are normalized beforehand as:

Sdðdi; djÞ ¼
Sdðdi; djÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1
Sdðdi; dkÞ

Pn
k¼1

Sdðdk; djÞ
s ; (18)

Stðti; tjÞ ¼
Stðti; tjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1
Stðti; tkÞ

Pm
k¼1

Stðtk; tjÞ
s : (19)

Network-based Random Walk with Restart on the Heterogeneous
network
Network-based Random Walk with Restart on the Heterogeneous

network (NRWRH) [52] uses a heterogeneous network as well,
and it predicts interactions via Random Walk on it. To perform
Random Walk, NRWRH uses the transition matrix:

M ¼
MDD MDT

MTD MTT

" #
; (20)

where MDD and MTT are transition matrices between drugs them-
selves and targets themselves, respectively, and MTD and MDT are
transition matrices from targets to drugs and from drugs to tar-
gets, respectively. Note that MDD ¼ Sd; MTT ¼ St; MDT ¼ Y and
MTD ¼ Y>. The predicted matrix at step iþ 1 is modeled as:

Aðiþ1Þ ¼ ð1� rÞM>AðiÞ þ rAð0Þ; (21)

where Að0Þ 2 R
ðnþmÞ�ðnþmÞ is the adjacency matrix between the

nodes (including the n drugs and m targets in both the rows and
the columns), and r is the restart probability. By running the
above equation multiple times until convergence, the matrix A

would contain the final prediction scores, and the prediction
scores matrix bY 2 R

n�m is then extracted from A.

Probabilistic Soft Logic
In addition to the above diffusion models, Probabilistic Soft
Logic (PSL) [53] also uses a heterogeneous network similar to the
one shown in Figure 2. As its name suggests, PSL uses probabil-
istic soft logic to perform prediction, i.e. it involves applying
rules that use logical connectives, such as ^ (and), _ (or), and
: (not). Specifically, to determine if a drug and target interact,
triad and tetrad relations (i.e. paths of length 3 and 4, respec-
tively) involving the drug and target are searched for in the het-
erogeneous network and used for prediction of the potential
interaction. Triad rules take the form of:

SimilarTargetðt1; t2Þ ^ Interactsðd; t1Þ

! Interactsðd; t2Þ
(22)

SimilarDrugðd1; d2Þ ^ Interactsðd1; tÞ

! Interactsðd2; tÞ
(23)Figure 2. (A) Bipartite DTI network, (B) heterogeneous network that additionally

includes drug and target pairwise similarities (the dashed lines).
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while tetrad rules take the form of:

SimilarDrugðd1; d2Þ ^ SimilarTargetðt1; t2Þ

^ Interactsðd1; t1Þ ! Interactsðd2; t2Þ:
(24)

To predict new interactions, the above rules are applied
wherever applicable on the DTI network (i.e. each of the rules is
applied to its corresponding relations that exist in the network).

Furthermore, to avoid investigating the large number of all
possible triad and tetrad relations, a technique called blocking
is used beforehand where edges between pairs of drugs or tar-
gets (which correspond to pairwise similarities) are removed
from the network if their weights (i.e. similarity values) are
below some user-defined cutoff value.

Determine All Simple Paths, Find Interactions
Determine All Simple Paths, Find Interactions (DASPfind) [54]
predicts an interaction between a drug d and a target t by find-
ing all simple paths (i.e. that have no cycles) connecting them
on the heterogeneous network. For the found simple paths,
each path p has its score sp computed by multiplying the
weights on its edges. Finally, the scores are summed up to give
the final prediction score for (d, t) as per the equation:

score ¼
Xz

p¼1

ðspÞa�lenðpÞ; (25)

where z is the number of simple paths between drug d and tar-
get t, a is an adjustable decay parameter and len(p) is the length
of path p (i.e. longer paths will have less of a contribution to the
prediction score). Note that lenðpÞ � 3. Similar to PSL, the block-
ing procedure (i.e. eliminating edges with weights below a cer-
tain threshold) is also used here before prediction.

Matrix factorization

Matrix factorization takes an input matrix and tries to find two
other matrices that, when multiplied together, approximate the
input matrix. In the case of DTI prediction, the interaction
matrix Y 2 R

n�m is factorized into two matrices A 2 R
n�k and

B 2 R
m�k such that AB> 	 Y. k is an adjustable parameter corre-

sponding to the number of latent features in A and B, and
k
 n;m.

Matrix factorization identifies latent features of drugs and
targets in an unsupervised fashion, which is useful for collabo-
rative filtering. For example, if the latent vectors of two drugs
turn out to be similar, then it is likely that these drugs share
many of the same interactions, thus allowing the transfer of
interactions between them.

As we are looking for missing interactions in the matrix Y,
matrix factorization can be used as a matrix completion techni-
que (i.e. the abovementioned transfer of interactions between
drugs themselves and targets themselves), which makes it a
good fit for the DTI prediction problem. An illustration of matrix
factorization is given in Figure 3.

Kernelized Bayesian Matrix Factorization with Twin Kernels
Kernelized Bayesian Matrix Factorization with Twin Kernels
(KBMF2K) [55] is, to our knowledge, the first in a number of
methods that uses matrix factorization for predicting DTIs. It
uses a Bayesian probabilistic formulation along with the con-
cept of matrix factorization to perform prediction. Worded dif-
ferently, it uses variational approximation to perform nonlinear

dimensionality reduction, thus improving efficiency in terms of
computation time.

As there are too many algorithmic details to mention, we
only provide a minimal overview of the algorithm here. Please
observe Figure 4 below which is inspired from a figure in [55].

Assuming R is the chosen subspace dimensionality,
Pd 2 R

n�R contains projection parameters, and Kd contains the
corresponding priors. With the projection matrix Pd, the drug
kernel matrix Sd is used to project the interactions (more precisely,
the drug–target pairs) to a low-dimensional space (called the phar-
macological space). This results in Gd, which consists of the low-
dimensional representations of drugs in this space. The same is
done to obtain Gt (using a projection matrix Pt 2 R

m�R), which con-
sists of lower-dimensional representations of targets in that same
space. Having obtained lower-dimensional representations of both
drugs and targets in the same unified space, a prediction scores
matrix F is obtained and presented as the interaction matrix bY .

Probabilistic Matrix Factorization
Probabilistic Matrix Factorization (PMF) [56] is another matrix fac-
torization method that uses probabilistic formulations as well.
Specifically, it models interactions via ‘probabilistic linear models
with Gaussian noise’. Unlike KBMF2K, however, it does not depend
on or use similarity matrices between drugs or targets while per-
forming prediction, and thus it achieves relatively lower perform-
ance than other matrix factorization techniques introduced here.

To explain the general idea behind PMF, suppose we have
two matrices A and B containing latent feature vectors for the
drugs and targets, respectively, that construct the interaction
matrix Y as AB> ¼ Y. The conditional probability over observed
interactions in Y is given by

pðYjA;B; r2Þ ¼
Yn
i¼1

Ym
j¼1

½f ðYijjaib
>
j ; r

2Þ�Iij ; (26)

where n and m are the numbers of drugs and targets, respec-
tively, f ðxjl; r2Þ is the Gaussianly distributed probability density

Figure 3. Illustration of matrix factorization. The goal is to find two latent fea-

ture matrices, A and B, that reconstruct the interaction matrix Y when multi-

plied together.

Figure 4. Minimal representation of the KBMF2K algorithm, which predicts DTIs

from drug and target kernels, Sd and St.
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function for x with mean l and variance r2 and Iij is an indicator
function that is equal to 1 if Yij is known and 0 otherwise.
Assuming zero-mean, spherical Gaussian priors on the latent
vectors of A and B, the formula of the log-likelihood of A and B

is derived using Bayes’ rule as:

lnðpðA;BjY; r2; r2
A; r

2
BÞÞ ¼ �

1
2r2

Xn

i¼1

Xm
j¼1

IijðYij � aib
>
j Þ

2

� 1
2r2

A

Xn

i¼1

aia
>
i �

1
2r2

B

Xm
j¼1

bjb
>
j

: (27)

The first term on the right-hand side of the above equation
is the squared-error function to be minimized, while the last
two terms are extra Tikhonov regularization terms that are
added to help avoid overfitting by preventing the latent features
of A and B from assuming large values. The goal here is to find
the two latent matrices A and B that maximize the log-
likelihood presented above. Finally, the prediction scores matrix
is obtained as bY ¼ AB>.

Collaborative Matrix Factorization
Collaborative Matrix Factorization (CMF) [57] uses collaborative
filtering for prediction. In addition to the standard goal
of matrix factorization to find two matrices A and B

where 3AB> 	 Y, CMF proposes regularization terms to ensure
that AA> 	 Sd and BB> 	 St. CMF’s objective function is given as:

minA;B jjW � ðY �AB>Þjj2F þ klðjjAjj2F þ jjBjj
2
FÞ

þ kdjjSd �AA>jj2F þ ktjjSt � BB>jj2F
; (28)

where jj � jjF is the Frobenius norm, � is the element-wise prod-
uct, kl, kd and kt are parameters and W 2 Rn�m is a weight matrix
where Wij¼ 0 for unknown drug–target pairs (i.e. the test set
instances), so that they would not contribute to the estimation of
A and B. The first line is the weighted low-rank approximation
term that tries to find the latent feature matrices, A and B, that
reconstruct Y. The second line is the Tikhonov regularization term
that prevents large values to be assumed by A and B, which thus
promotes simpler solutions and helps avoid overfitting. The third
and fourth lines are regularization terms that require latent feature
vectors of similar drugs/targets to be similar and latent feature vec-
tors of dissimilar drugs/targets to be dissimilar, respectively.

Another variant for CMF, named MSCMF, involves using multi-
ple similarities for both the drugs and targets. Besides the chemi-
cal structure similarity and genomic sequence similarity that are
typically used for the drugs and targets, respectively, ATC similar-
ity is also used for drugs, and GO and PPI network similarities are
used for targets. The objective function for MSCMF is given as:

minA;B jjW � ðY �AB>Þjj2F
þ klðjjAjj2F þ jjBjj

2
FÞ

þ kdjj
XMd

k¼1

xk
dSk

d �AA>jj2F

þ ktjj
XMt

k¼1

xk
t Sk

t � BB>jj2F

þ kxðjjxdjj2F þ jjxtjj2FÞ

s:t: jxdj ¼ jxtj ¼ 1

; (29)

where Md and Mt are the numbers of drug and target similarity
matrices, respectively, and kx is a parameter. xd and xt are
weight vectors for linearly combining the drug and target simi-
larity matrices, respectively. The fifth line in the above equation
includes Tikhonov regularization terms for xd and xt, while the
sixth line is a constraint that ensures the weights in each of xd

and xt sum up to 1.

Weighted Graph Regularized Matrix Factorization
Weighted Graph Regularized Matrix Factorization (WGRMF) [58]
is similar to CMF with the exception that WGRMF alternatively
uses graph regularization terms to learn a manifold for label
propagation. WGRMF’s objective is given as:

minA;B jjW � ðY �AB>Þjj2F þ klðjjAjj2F þ jjBjj
2
FÞ

þ kdTrðA> ~‘d AÞ þ ktTrðB> ~‘t BÞ:
(30)

where Trð�Þ is the trace of a matrix, and ~‘d and ~‘t are the normal-
ized graph Laplacians that are obtained from Sd and St, respec-
tively. Before computing the graph Laplacians, Sd and St are
sparsified by keeping only a predefined number of nearest
neighbors for each drug and target, respectively. Kindly refer to
[72–74] for more details on graph regularization.

The weight matrix W here has the same role as in CMF; by
setting Wij¼ 0 for unknown drug–target pairs (i.e. test set
instances), they would not contribute toward the prediction of
interactions. The weight matrix W is important, as, otherwise,
these test instances would count as noninteractions (i.e. as neg-
ative instances) and may unfavorably affect predictions.

Neighborhood Regularized Logistic Matrix Factorization
Neighborhood Regularized Logistic Matrix Factorization
(NRLMF) [59] performs prediction via using the idea of logistic
matrix factorization (LMF) [75]. In other words, it models the
probability of an interaction between drug di and target tj as the
logistic function:

pij ¼
exp ðaib>j Þ

1þ exp ðaib>j Þ
; (31)

where ai and bj are the latent feature vectors of di and tj, respec-
tively. Drug–target pairs are more likely to interact (i.e. pij tends
to 1) on higher values of aib>j . Moreover, to prevent overfitting
the training data, the model being trained is regularized by plac-
ing spherical zero-mean Gaussian priors on the latent vectors of
all drugs and targets. Finally, the model is further regularized
using the local neighborhoods of the drugs and targets via graph
regularization. The objective function to be minimized is given as:

minA;B

Xn

i¼1

Xm
j¼1

ð1þ cYij � YijÞln½1þ exp ðaib
>
j Þ� � cYijaib

>
j

þ kdjjAjj2F þ ktjjBjj2F
þ aTrðA>‘dAÞ þ bTrðB>‘tBÞ

; (32)

where c, kd, kt, a and b are parameters. The first line of the above
equation is the LMF expression, which is augmented by
Tikhonov and graph regularization terms in the second and
third lines, respectively. Tikhonov regularization terms prevent
overfitting by favoring simpler solutions with smaller values,
while graph regularization terms implicitly learn the underlying
manifold in the data to encourage more accurate label propaga-
tion within the interaction matrix Y.
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Dual-Network Integrated Logistic Matrix Factorization
Dual-Network Integrated Logistic Matrix Factorization (DNILMF)
[60] can be considered an extension of NRLMF. DNILMF addition-
ally incorporates network-based similarity in a way that is simi-
lar to how it is done in RLS-avg and RLS-kron. Unlike RLS-avg and
RLS-kron, however, all kernels (i.e. similarity matrices) undergo a
kernel diffusion step beforehand. For a drug (or target) kernel, a
local similarity matrix is generated by keeping the similarities to
the nearest k neighbors for each drug (or target) while discarding
the rest, and then the local similarity matrix is diffused with the
global similarity matrix over a number of iterations.

Suppose that we are given the drug chemical similarity
matrix Sd and the target sequence similarity matrix St, and
that the drug and target network similarity matrices GIPd and
GIPt have been computed from the interaction matrix Y as
explained in section ‘Regularized least squares’. Each of these
four matrices is then normalized (by dividing values of each
row by the row’s sum) and symmetrized. Taking the target
matrices St and GIPt as an example (with the drug matrices fol-
lowing the same process), local matrices Lt and Lt;GIP are gener-
ated as:

Ltði; jÞ ¼

Stði; jÞP
k2Ni

Stði; kÞ
; j 2 Ni

0 ; otherwise

8>><>>: ;

Lt;GIPði; jÞ ¼

GIPtði; jÞP
k2Ni

GIPtði; kÞ
; j 2 Ni

0 ; otherwise

8>><>>:
(33)

where Ni denotes the nearest neighbors of target tj, and k is a
parameter specifying the number of nearest neighbors to con-
sider. Owing to the equations above, similarities to targets out-
side the list of nearest neighbors are set to 0. The local matrices,
Lt and Lt;GIP, are then used to update the global matrices, St and
GIPt, as:

Sðhþ1Þ
t ¼ ðLtÞGIPðhÞt ðLtÞ>

GIPðhþ1Þ
t ¼ ðLt;GIPÞSðhÞt ðLt;GIPÞ>

(34)

where Sðhþ1Þ
t and GIPðhþ1Þ

t are the current matrices after h itera-
tions. In the above equations, two interchanging diffusion oper-
ations are occurring in parallel. After a sufficient number of
iterations, the final target similarity matrix, Kt, is obtained by
averaging Sðhþ1Þ

t and GIPðhþ1Þ
t . The final drug similarity, Kd, is

obtained using the same procedure.
Predictions are obtained using the objective function:

minA;B
P

ijðð1þ cYij � YijÞln½1þ exp ðaAB> þ bKdAB> þ cAB>KtÞ�

�cYijðaAB> þ bKdAB> þ cAB>KtÞÞ

þ kd

2
jjAjj2F þ

kt

2
jjBjj2F ;

(35)

which is based on the modified logistic function:

p ¼ exp ðaAB> þ bKdAB> þ cAB>KtÞ
1þ exp ðaAB> þ bKdAB> þ cAB>KtÞ

; (36)

where a, b, c, kd and kt are parameters. Note that, in contrast to
NRLMF’s logistic function from Equation (31), the above

logistic function incorporates information from the similarity
matrices Kd and Kt (which were obtained via kernel diffusion).
The matrices, A and B, that minimize the objective function in
Equation (35) are used to obtain the final predictions matrix as
Y ¼ AB>.

As both NRLMF and DNILMF are based on logistic matrix fac-
torization, their objective functions [from Equations (32) and
(35)] resemble one another. However, while NRLMF uses graph
regularization to make use of the similarity matrices Sd and St in
prediction, DNILMF instead obtains the diffused kernels Kd and
Kt, incorporates them into the logistic function and uses them
in the objective function from Equation (35).

Feature-based classification

Feature-based classification methods are those that need drug–
target pairs to be explicitly represented as fixed-length feature
vectors. Given a drug feature vector d ¼ ½d1;d2; . . . ; dp� and a tar-
get feature vector t ¼ ½t1; t2; . . . ; tq�, the drug–target pair would
typically be represented by the concatenated feature vector
d�t ¼ ½d1; d2; . . . ; dp; t1; t2; . . . ; tq�. In addition to the feature vector,
each drug–target pair has a label to show whether it is a known
interaction (i.e. positive class) or a noninteraction (i.e. negative
class). With the feature vectors and labels, various supervised
machine learning methods can thus be developed for predicting
DTIs as illustrated in Figure 5.

Note that it is more accurate to call noninteractions as unla-
beled pairs, as we do not know for sure whether these pairs are
true noninteractions. Despite this detail, however, methods of
this category commonly treat unlabeled pairs as if they are, in
fact, true noninteractions.

Incremental and forward feature selection
In [61], drugs were represented by a number of common func-
tional groups that are found in drugs’ chemical structures, while
targets were represented by pseudo amino acid composition.
An innovative feature selection procedure was additionally
introduced in this work for the sake of improving the prediction
performance by using a better feature set.

The feature selection procedure starts by ranking features
using the mRMR (minimum Redundancy Maximum Relevance)
algorithm [76]. Incremental feature selection is then applied on
the ranked features, i.e. the ranked features are added to the
selected feature set in order, one by one, until the prediction
performance on a temporary validation set stops improving.
Finally, the set of selected features is further filtered by applying
forward feature selection to it. After the feature selection phase
is complete, a nearest neighbor algorithm is then applied to
obtain final predictions.

Random Forest and SVMs
Random Forest and SVM models were proposed for predicting
interactions in [62]. Assuming that the data consist of nd drugs
and nt targets, this means that there are nd � nt drug–target pairs
in total. When the dimensionality of the data is high (i.e. drug–
target pairs are represented by many features), it becomes
challenging, if not infeasible, to use the entire data set of all
drug–target pairs as training data to train a classification model.
Therefore, the set of noninteractions, which is far bigger than
the set of known interactions, is undersampled until its size is
equal to that of the set of interactions.

Drug and target features were generated using the DRAGON
(http://www.talete.mi.it/) and PROFEAT [44] packages, respec-
tively. Drug features generated by DRAGON include
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constitutional and topological descriptors, eigenvalue-based
indices and 2 D autocorrelations among others. On the other
hand, target features generated by PROFEAT include CTD and
autocorrelation descriptors, amino acid composition and so on.

Fuzzy K-nearest neighbors
Fuzzy K-nearest neighbors (Fuzzy KNN) [63] models each train-
ing instance as belonging to two classes (i.e. positive and nega-
tive classes) with different membership values. For each test
instance, its membership value to each of the two classes is
computed by a kind of weighted average of its similarities to its
nearest K neighbors, and the higher of the two values decides
which class it belongs to. The drugs were represented by FP2
fingerprints that were generated using the Open Babel [37] pack-
age, while the targets were represented using pseudo amino
acid composition.

Decision tree ensemble with oversampling
An ensemble technique was introduced in [64] to predict inter-
actions. Drug descriptors were computed using the Rcpi pack-
age [35], whereas target descriptors were generated via the
PROFEAT Web server [44]. Similar to the Random Forest used in
[62], an ensemble of decision trees is trained, and feature sub-
spacing is applied (i.e. a subset of the features is randomly
sampled for each decision tree). However, in contrast to
Random Forest, which performs bagging on the same sampled
group of negatives, a different set of negatives is randomly
sampled for each decision tree, which means better coverage of
the negative class in the data and including more of it in the
training process. In addition, clustering is used to look for small
disjuncts in the interacting class that are then oversampled to
reinforce them. This is to deal with an issue in the data known
as the within-class imbalance.

Decision tree ensemble with dimensionality reduction
EnsemDT [65] is another ensemble technique that is similar to
the one presented in [64]. However, EnsemDT does not

oversample small disjuncts in the interacting class. Instead, it
uses dimensionality reduction. That is, dimensionality reduc-
tion is applied to the drug and target feature vectors before con-
catenating them to form the instances. Three dimensionality
reduction techniques were investigated, namely, Singular Value
Decomposition (SVD), Partial Least Squares [77] and Laplacian
Eigenmaps [69]. While dimensionality reduction is commonly
used to improve the computational efficiency (i.e. reducing the
running time), these techniques were found to improve the pre-
diction performance as well.

Rotation Forest-based Predictor of Drug–Target Interactions
Rotation Forest-based Predictor of Drug–Target Interactions
(RFDT) [78] uses yet another ensemble learning technique to
predict DTIs. In particular, a variant based on Rotation Forest
[79] was used. For each base classifier, the feature set is ran-
domly divided into K roughly equal subsets (where K is a param-
eter). In other words, the feature matrix X 2 R

n�p is split into K
submatrices such that each submatrix has around p/K columns
where n is the number of instances, and p is the number of fea-
tures. Bagging is then applied to the training set, that is a subset
of the training examples is randomly sampled to form the train-
ing set for the current base classifier. Next, principal component
analysis (PCA) is applied to each of the submatrices separately,
and then the resulting features from each submatrix are com-
bined to form a diagonal block matrix called the rotation matrix.
Finally, the feature matrix X is multiplied by the rotation matrix,
and the resulting matrix is used as the training set along with
the corresponding labels to train the base classifier. This proce-
dure is repeated for all base classifiers constituting the
ensemble.

Using a rotation matrix (that is constructed by dividing the
feature set into K randomized subsets) and bagging are both
ways of injecting diversity into the ensemble. Increased diver-
sity within the ensemble is known to improve the overall pre-
diction performance [80].

Figure 5. Illustration of how feature-based prediction models are created. In the training phase, feature vectors for the training instances (i.e. the drug–target pairs) are

generated by concatenating the feature vectors of the involved drugs and targets. Along with their labels, the training instances are used to train the prediction model.

In the testing phase, feature vectors are generated for the testing instances, and the prediction model (from the training phase) is used to predict for the testing

instances.
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In this study, PubChem fingerprints (i.e. binary vectors indi-
cating presence or absence of 881 common substructures) are
used to represent drugs. Targets, on the other hand, are repre-
sented using autocovariance vectors that were generated using
the targets’ genomic sequences; specifically, a position-specific
scoring matrix (PSSM) was computed for each target (using its
sequence), and then the PSSMs were used to generate autoco-
variance vectors for representing the targets.

Predicting Drug Targets with Protein Sequence
Predicting Drug Targets with Protein Sequence (PDTPS) [81] is
similar to RFDT in that it makes use of PSSMs to represent tar-
gets. However, in place of autocovariance, it instead computes
bi-gram probabilities from the PSSMs. In addition, PCA is later
applied to reduce the dimensionality of the features. For predic-
tion, PDTPS uses Relevance Vector Machines (RVMs).
Experimental results showed that the proposed method was
successful.

RVM [82] is a machine learning method that is functionally
identical to SVM. However, unlike SVM, it uses Bayesian learn-
ing to make use of probabilistic formulations in prediction.
Prediction models trained via RVM are typically sparse (i.e. com-
pact and interpretable), while, at the same time, they are able to
produce results that are comparable with (and exceed) those of
SVM.

Extremely Randomized Trees
In [83], Extremely Randomized Trees (ER-Tree) are used to per-
form prediction. In regular Decision Tree-based ensembles,
each Decision Tree follows certain rules for (i) selecting attrib-
utes to use for tree-splitting and (ii) determining cutoff points
within the attributes. In ER-Tree, randomization is explicitly
introduced into the training process by random selection of
attributes and cutoff points. This explicit randomization helps
strongly reduce the variance of the tree-based models, thus
improving prediction performance. Furthermore, bagging is
avoided (i.e. the entire training set is used) to keep the bias as
low as possible.

In ER-Tree, for each base classifier, K attributes are chosen at
random. Each of the K attributes then has a cutoff point ran-
domly generated for it, that is each attribute a has its minimum
and maximum values, amin and amax, determined, and the cutoff
point is randomly generated from the interval ½amin;amax�. The
different K splits are then each evaluated by the formula:

Scoreðs;NÞ ¼ 2Is
cðNÞ

HcðNÞ þHsðNÞ
; (37)

where N is the current tree node (i.e. before the split s), NL and NR

are the left and right child nodes of N, respectively, HcðNÞ is the
classification entropy at N, HsðNÞ is the split entropy and Is

cðNÞ is
the mutual information of the split outcome and the classifica-
tion. Specifically, HcðNÞ; HsðNÞ and Is

cðNÞ are computed as:

HcðNÞ ¼ �
XC

i¼1

pi log2 pi;

HsðNÞ ¼ �
jNLj
jNj log2

jNLj
jNj þ

jNRj
jNj log2

jNRj
jNj

� �
;

Is
cðNÞ ¼ HcðNÞ �

jNLj
jNj HcðNLÞ �

jNRj
jNj HcðNRÞ:

(38)

where C is the number of different classes (two in our case), and

jNj is the number of examples at node N. The split with the
highest score is chosen for this iteration as:

s� ¼ argsi
max
i¼1...K

Scoreðsi;NÞ: (39)

This step is recursively repeated for the two child nodes, NL

and NR, and so on until this base classifier is trained. This proce-
dure is repeated for all the base classifiers, forming the
ensemble.

In terms of data representation, drugs are represented as
PubChem fingerprints, while targets were represented using
Pseudo Substition Matrix Representation (pseudo-SMR).

Similarity-based Inference of drug–TARgets (SITAR)
Unlike typical feature-based classification methods, which con-
catenate both drug and target feature vectors to represent drug–
target pairs, Similarity-based Inference of drug–TARgets (SITAR)
[66] represents each instance (drug–target pair) as a vector of its
similarities to the positives in the data. In particular, the simi-
larity between two drug–target pairs (d, t) and ðd0; t0Þ is computed
using the geometric mean as:

Sððd; tÞ; ðd0; t0ÞÞ ¼ Sdðd; d0Þr � Stðt; t0Þð1�rÞ; (40)

where r is an adjustable parameter. This results in feature vec-
tors whose length is equal to the number of known interactions.
After the feature vectors are generated, logistic regression is
then used to perform prediction.

Chemical substructures–protein domains correlation model
In [84], drugs are represented as PubChem fingerprints (binary
vectors indicating the absence/presence of 881 common chemi-
cal substructures), while targets are represented as domain fin-
gerprints (binary vectors indicating the absence/presence of 876
protein domains obtained from the Pfam database [85]).

SCCA (Sparse Canonical Correspondence Analysis) is then
applied for the extraction of drug and target features that, when
occurring together, would indicate the existence of an interac-
tion between the drug and target involved. SCCA extends ordi-
nary CCA by adding L1 norm regularization terms to ensure that
the learned weight vectors are sparse. The objective function
that SCCA attempts to minimize is given as:

maxa;b a>D>YTb

s:t: jjajj22 � 1; jjbjj22 � 1;

jjajj1 � c1
ffiffiffi
u
p

; jjbjj1 � c1
ffiffiffi
v
p

(41)

where D 2 R
n�u and T 2 R

m�v are the drug and target feature
matrices, respectively, and c1 and c2 are parameters that are
used to control the sparsity level where 0 < c1 < 1 and
0 < c2 < 1.

When used to predict DTIs, SCCA produced results that are
comparable with those of SVM. However, unlike SVM, which is
focused only on prediction, SCCA is an interpretable classifier
that, having been trained, can be inspected for learned rules
that may contain useful insights. As stated above, SCCA empha-
sizes learning sparse weight vectors, which makes it possible to
inspect these weight vectors for biological insights; the nonzero
elements in the learned weight vector would correspond to the
most significant chemical structures and protein domains that
govern DTIs.
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SVMs and minwise hashing
In [86], drugs were represented as PubChem fingerprints (881
chemical substructures), and proteins were represented as domain
fingerprints (4, 137 Pfam domains). Given a drug vector UðCÞ and a
protein vector UðPÞ, a compound–protein pair fingerprint UðC; PÞ is
then obtained by the tensor product of UðCÞ and UðPÞ as:

UðC; PÞ ¼ UðCÞ � UðPÞ; (42)

resulting in a binary vector that is 3 644 697 elements long.
Dimensionality reduction is then achieved by applying minwise
hashing [87] to the compound–protein fingerprints to convert
them to compact fingerprints to make the algorithm scalable to
large data sets.

Linear SVM is used as the classifier. Two variants have been
considered: one with an L2 regularization term (MH-L2SVM) and
another with an L1 regularization term (MH-L1SVM). The two
variants were found to produce similar prediction performance.
However, the learned weight vector from the MH-L1SVM is
more interesting because the number of features extracted was
much smaller than that of MH-L2SVM (i.e. less features to
inspect for insights).

Finally, using the inverse operation of the minwise operation
mentioned above, the weight vector learned using the compact
fingerprints is converted into a final weight vector for the origi-
nal fingerprint. This final weight vector is then inspected for
biological interpretation.

Empirical evaluation

We performed a comprehensive empirical comparison among
various methods, under three distinct CV settings in [25] as
follows:

1. S1, where random drug–target pairs are left out as the test
set;

2. S2, where entire drug profiles are left out as the test set; and
3. S3, where entire target profiles are left out as the test set.

S1 is the traditional setting for evaluation. Meanwhile, S2
and S3 are proposed to evaluate the ability of various methods
to predict interactions for novel drugs and targets. Here, novel
drugs and targets are those for which no interaction informa-
tion is available. As such, additionally conducting experiments
under S2 and S3 paints a fuller picture of how the different
methods perform in various given situations. Illustrations of
the different CV settings are provided in Figure 6.

In our experiments, we performed five repetitions of a 10-
fold CV procedure under each of the above scenarios using
AUPR [88] (area under the precision–recall curve) as the evalua-
tion metric. That is, under each 10-fold CV procedure, the data
set (the interaction data, specifically) is divided into 10 folds.
The folds take turns being left out as the test set, and the

prediction performance for each of them is evaluated in terms
of AUPR. The computed AUPRs are then averaged to give the
AUPR of the 10-fold CV. This process is repeated five times, and
the AUPRs of the 10-fold CVs are averaged to give the final
AUPR.

AUPR was used as the main evaluation metric in previous
work in DTI prediction. Furthermore, in cases of class imbal-
ance, the AUPR is more adequate because it severely penalizes
highly ranked incorrect recommendations [89], which better
reflects the aim of having accurate predictions at the top of the
prediction lists. For these reasons, we use AUPR as the evalua-
tion metric in our empirical comparison as well. In addition, in
DTI prediction, the relative order of the labels is more important
than the exact values of the prediction; thus, it makes more
sense to use an evaluation metric that measures how well the
different drug–target pairs are ranked.

Benchmark data set

Some of the most widely used data sets in the field of DTI pre-
diction are those that are introduced in [22]. Specifically, they
were four data sets concerning four different classes of target
proteins, namely, enzymes (Es), ion channels (ICs), G protein-
coupled receptors (GPCRs) and nuclear receptors (NRs).
Interaction data were extracted from the KEGG database [27]
(see Table 2 for some statistics on each of the data sets). In addi-
tion, each data set provides a drug similarity matrix Sd where
the pairwise similarities between the drugs were computed
using SIMCOMP [90] and a target similarity matrix St where the
pairwise similarities between the targets are computed using
normalized Smith–Waterman [91].

Selected methods

We include a subset of the methods mentioned in section
‘Methods’ such that the different categories are represented. As
baseline methods, we selected the Nearest Profile and Weighted
Profile from the neighbor-based methods. We further selected
CMF and WGRMF from the matrix factorization methods. From
the network-based methods, we selected Wang et al.’s method
from section ‘Heterogeneous graph inference’ (which we will
refer to as NBIþ from now on). As for BLMs, we selected
Regularized Least Squares with Weighted Nearest Neighbors
(RLS-WNN). In terms of prediction performance, the selected

Figure 6. The different cross validation settings: (A) S1 involves leaving out random drug–target pairs from the interaction matrix Y to use as the test set, (B) S2 is the

setting where entire drug profiles are left out and (C) S3 leaves out entire target profiles. Gray boxes represent left-out test instances.

Table 2. Statistics of each data set

Data sets NR GPCR IC E

Drugs 54 223 210 445
Targets 26 95 204 664
Interactions 90 635 1476 2926
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methods are the best performing ones in their respective cate-
gories as reported in the publications where they appeared,
which is why these methods in particular were selected to rep-
resent their categories. The source codes for all the selected
methods are downloadable via the URL: https://github.com/ali
zat/Chemogenomic-DTI-Prediction-Methods.

The data sets in Table 2 are in the form of similarity matrices
that were precomputed from nonvectorial data, that is, the raw
data from which the matrices were derived (i.e. chemical struc-

ture graphs and genomic sequences) are not in the form of
fixed-length feature vectors. Therefore, feature-based classifica-
tion methods were not included in this comparison. However,
we conducted a separate comparison among various feature-
based methods on another benchmark data set introduced in
[64]. Please refer to the Supplementary Material for the results
of this comparison.

Parameters for all prediction methods have been tuned to
give their optimal prediction performances under each of the
cross validation settings. The optimal parameter values were
obtained by grid search.

Results

The results of the different methods under S1, S2 and S3 CV set-
tings are given in Tables 3, 4 and 5, respectively. We discuss the
results below, stating advantages and disadvantages of each
method as well as other general comments. Note that the
results on the NR data set are particularly unstable because of
its excessively small size [25]. As such, while we provide results
for the NR data set, they are otherwise mostly ignored in the
discussion below.

Pair prediction case, S1
We draw two conclusions based on the results in Table 3. First,
CMF is the overall best method under the S1 CV setting, fol-
lowed by WGRMF. This shows that matrix factorization meth-
ods outperform other methods, which renders them as the
most promising DTI prediction methods under S1. Second,
Weighted Profile performs better than Nearest Profile in the IC
and E data sets. The reason is likely that the IC and E data sets,
being larger than the NR and GPCR data sets, have more neigh-
bors to more accurately infer interactions from.

Drug prediction case, S2
Moving on to the S2 CV setting, it is obvious from the results in
Table 4 that it is a more challenging setting than S1. According
to insights obtained from a previous study on pair-input com-
putational predictions [92], it is more difficult to predict new
interactions for drugs (or targets) when they do not appear in
the training set at all. This is in contrast to the S1 case where
drug (or target) interaction profiles are only partially left out.

Going back to the results, WGRMF performed the best out of
all the methods, followed by CMF. Again, matrix factorization
methods seem to be doing well in general. WGRMF did better
than CMF under S2 thanks to its graph regularization terms,
which shows the usefulness of manifold learning in this less
informative CV setting.

RLS-WNN, which uses network similarity, is able to give a
reasonable prediction performance. This is thanks to the WNN
preprocessing procedure that reinforces the learning process by
inferring temporary profiles for the left-out drugs. Note that
RLS-WNN computes network similarity in the form of GIP ker-
nels that are used later in the algorithm. Naturally, the tempo-
rary profiles are better for computing network similarity than
the initially empty profiles of the left-out drugs, which under-
scores the importance of preprocessing procedures like WNN
when the incorporation of network similarity in training the
classifiers is intended.

Target prediction case, S3
Finally, we reach the results for the S3 setting. As expected, the
AUPR results of S3 are also lower than those obtained under S1,
but they are consistently higher than those obtained under S2.
This leads to the conclusion that target genomic sequence simi-
larities are generally more reliable than drug chemical structure
similarities, a conclusion that has been previously reached in
[48].

As in the S2 case, the matrix factorization methods are gen-
erally superior, with WGRMF performing better than CMF
thanks to its graph regularization terms. RLS-WNN gave a com-
parable performance. As for NBIþ, similar to the S1 and S2

Table 3. AUPR results under S1

NR GPCR IC E

Nearest
Profile

0.496 (0.012) 0.464 (0.009) 0.522 (0.005) 0.621 (0.003)

Weighted
Profile

0.425 (0.012) 0.440 (0.010) 0.756 (0.003) 0.727 (0.001)

RLS-WNN 0.729 (0.032) 0.727 (0.018) 0.856 (0.011) 0.849 (0.006)
CMF 0.639 (0.016) 0.754 (0.002) 0.937 (0.002) 0.883 (0.003)
WGRMF 0.602 (0.038) 0.737 (0.002) 0.923 (0.002) 0.877 (0.002)
NBIþ 0.287 (0.021) 0.255 (0.005) 0.162 (0.002) 0.206 (0.002)

Note: Best and second best AUPR results in each column are bold and italic,

respectively. SDs are given in (parentheses).

Table 4. AUPR Results under S2

NR GPCR IC E

Nearest
Profile

0.417 (0.031) 0.283 (0.017) 0.208 (0.013) 0.223 (0.007)

Weighted
Profile

0.376 (0.022) 0.231 (0.005) 0.187 (0.005) 0.118 (0.002)

RLS-WNN 0.545 (0.023) 0.369 (0.007) 0.334 (0.010) 0.393 (0.013)
CMF 0.521 (0.027) 0.407 (0.011) 0.353 (0.014) 0.384 (0.012)
WGRMF 0.570 (0.014) 0.427 (0.011) 0.367 (0.016) 0.413 (0.017)
NBIþ 0.267 (0.025) 0.201 (0.010) 0.112 (0.007) 0.110 (0.004)

Note: Best and second best AUPR results in each column are bold and italic,

respectively. SDs are given in (parentheses).

Table 5. AUPR Results under S3

NR GPCR IC E

Nearest
Profile

0.393 (0.037) 0.444 (0.025) 0.589 (0.021) 0.647 (0.015)

Weighted
Profile

0.379 (0.024) 0.327 (0.011) 0.721 (0.005) 0.673 (0.007)

RLS-WNN 0.491 (0.032) 0.574 (0.021) 0.763 (0.007) 0.778 (0.018)
CMF 0.478 (0.017) 0.599 (0.033) 0.779 (0.011) 0.782 (0.013)
WGRMF 0.464 (0.018) 0.609 (0.032) 0.813 (0.007) 0.808 (0.018)
NBIþ 0.300 (0.020) 0.203 (0.006) 0.193 (0.006) 0.210 (0.007)

Note: Best and second best AUPR results in each column are bold and italic,

respectively. SDs are given in (parentheses).
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cases, it was unable to outperform the baseline methods,
Nearest Profile and Weighted Profile. Thus, we conclude that,
network-based methods are generally not the best choice for
DTI prediction.

Discussions

Generally speaking, the matrix factorization methods are the
best methods when it comes to predicting DTIs. In addition, the
manifold assumption that points lie on or near to a low-
dimensional manifold [67–69] appears to be successful in
improving DTI prediction performance (as displayed by
WGRMF). However, it seems that when prior information is
available in abundance (the S1 setting), manifold learning
becomes slightly less useful (as shown by CMF that did better
than WGRMF under S1) but still useful nonetheless.

It is important to mention that while RLS-WNN did not beat
the matrix factorization methods in the predictions, it is rela-
tively a much faster algorithm. It is also more robust in terms of
selecting values for its parameters—the matrix factorization
methods have more parameters that are sensitive and need
more fine-tuning. As such, when one goes about the task of pre-
dicting DTIs, it is always good idea to obtain initial predictions
with RLS-WNN first. We also emphasize that all BLMs are gener-
ally fast and memory-efficient algorithms and that they should
be the first algorithms to consider if the data set used is signifi-
cantly larger than the ones used in this study.

Regarding the network-based method, NBIþ, it did not do as
well as the other methods. It may be that the properties of the
DTI networks are not favorable for use with such a network-
based method. Examples of such properties are the low average
number of interactions known per drug or target in the network
and the presence of a considerable number of undiscovered
interactions among the noninteractions (which can negatively
influence predictions). Furthermore, they do not do well in pre-
dicting new interactions for orphan drugs for which no interac-
tions are previously known. The problem is even more
challenging when the interaction that we try to predict is with
an orphan target as well; this is because the path on the net-
work between the orphan drug and target would be too indirect
and would thus be given a low prediction score. Finally, it has
been stated in a previous survey [26] that predictions from
network-based methods tend to be biased toward those drugs
with more associated targets (or targets with more associated
drugs) and that it is generally nontrivial to predict ‘an interac-
tion between a drug in one subnetwork and a target in another’.

On the other hand, network-based methods still have a place
in DTIs prediction. As an example, the pioneering network-
based method, NRWRH [52], generated a heterogeneous net-
work (as in Figure 2) on which a Random Walk was performed
to obtain predictions, which is an elegant idea indeed.
Augmenting the heterogeneous network with more information
(e.g. by adding extra drug and target pairwise similarities) may
help remedy the issues that network-based methods face in
predicting interactions for orphan drugs or targets to some
extent. It may also be helpful to draw inspiration from previous
work on generating functional linkage networks (FLNs) [93–96].
FLNs are networks of functional associations between genes,
and they have been successfully used in research related to
investigating gene-related functions and diseases. Constructing
FLNs requires gathering of information from multiple heteroge-
neous sources of varying quality and completeness and that
may occasionally correlate highly with each other; such experi-
ence in constructing FLNs can be transferred to the generation

of heterogeneous DTI networks on which network-based meth-
ods can be applied to predict new DTIs with better accuracy.

Now, we move on to an issue that is related to experimental
design. As mentioned earlier, drug–target pairs are left out as
test instances to see how well they are predicted by the differ-
ent prediction methods. This is done by setting the values of
the test instances to 0 (i.e. set Yij¼ 0 for test instances). The
issue here is that known noninteractions and test instances
would be both be represented by the same 0 value, which may
not be ideal. However, giving a unique representation for non-
interactions to separate them from test instances is not
straightforward. In [48], it was found via experimentation that
representing noninteractions by any value that is far from 0
(e.g. �1) is generally not a good idea. This is mainly because of
the severe imbalance in the data (i.e. much more non-
interactions than there are interactions); supposing, for exam-
ple, that noninteractions are represented as �1, classifiers
would focus more on predicting noninteractions correctly at the
expense of predicting interactions correctly. While some algo-
rithms (e.g. CMF and WGRMF) partially circumvent the repre-
sentation issue by using a weight matrix W that prevents test
instances from contributing in the predictions, most (if not all)
previous work in DTI prediction has represented test instances
by setting them to 0. Note that this issue does not apply to
feature-based classification methods where test instances are
simply excluded from the training set used to train the classi-
fier, and then the trained classifier is used to perform predic-
tions on the test instances.

Avenues for improvement and further
research

In this section, we give examples on how researchers attempted
to improve DTI prediction performance and occasionally pro-
vide some suggestions of our own for ideas on how to improve
as well.

Using more information

As mentioned in section ‘Data representation and types’, there
are multiple information sources that can possibly be used for
DTI prediction. These sources represent different aspects of the
drugs and targets involved and can help improve prediction
performance if used concurrently. We provide some examples
below of previous work that used more than one source of infor-
mation at once.

One such work was [97] where many drug and target kernels
were used, and a multiple kernel learning method was devel-
oped to take them as input and determine how best to merge
them to provide the best predictions. An interesting thing about
this work is that some of the kernels were produced from the
same information source. From target protein sequences, nor-
malized Smith–Waterman, mismatch and spectrum kernels
were created (via the KeBABS package [98]). From the drug side,
the Rchemcpp [99] package was used to obtain spectrum,
Lambda-k, Marginalized, MinMax and Tanimoto kernels from
drugs’ chemical structures. For more on multiple kernel learn-
ing in general, the reader is referred to [100]. Furthermore,
Table 6 provides a list of software packages that exist for
extracting drug and target features from their chemical struc-
tures and genomic sequences, respectively.

Another work that used multiple kernels was [101]. Drugs
were represented as FP2 fingerprints. As for targets, different
representations were generated including those based on
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autocovariance, entropy, discrete wavelet and substitution
matrices among several others. An ensemble of SVM classifiers
was trained, one classifier for each target descriptor type. Each
drug–target pair was represented by concatenating the FP2 fin-
gerprint of the drug with the target’s descriptor. Predictions
from the different SVM classifiers were summed up to give the
final predictions.

Secondary structure information of proteins [102] is some-
thing that has not been used often. It is a type of information
that can be extracted from protein sequences, which is a good
thing, as genomic sequences are always available for proteins.
Known drug–disease and protein–disease associations may also
be used as other sources of information [103]; however, these
data have also not been used frequently for DTI prediction.

Determination of 3 D structures of membrane proteins (via
wet-lab techniques) is becoming more feasible over time [21], so
we may eventually witness the use of protein structure infor-
mation in global-scale DTI prediction. This would possibly trig-
ger the emergence of software packages that would routinely be
used to generate descriptors for a protein from its structure
(instead of from its sequence). These features may yield better
prediction performance, as it is widely accepted that the pro-
tein’s structure is what dictates its function. Until such software
packages appear, researchers can experiment to find features
that are most useful to extract from proteins’ structures.

Finally, for a comprehensive overview of the different ways
to integrate multiple information sources simultaneously for
improving prediction performance, we refer the reader to [104].

Ensemble learning

There are two types of ensemble methods: heterogeneous
ensembles and homogeneous ensembles.

Heterogeneous ensembles consist of different learners that
have different induction biases. These learners are typically
trained using the same data. A procedure known as stacking is
usually used where the results from the different learners are
concatenated to form feature vectors that are then used to train
yet another meta-learner, which gives the final predictions [80].
The improvement in prediction performance is intended to be
obtained from the diversity induced by the different inductive
biases of the learners constituting the ensemble.

A heterogeneous ensemble for DTI prediction was previously
developed [105] that consisted of four methods: Weighted
Profile, RLS-avg, LapRLS and NBI. After predicting with these
methods, an SVM meta-learner is trained with their results and
then used to give the final prediction. The ensemble showed
improved prediction performance over all the constituent

methods. Another heterogeneous ensemble, DrugE-Rank [106],
also uses a number of different learners as in [105], but instead
of the SVM meta-learner, it uses a ranking algorithm,
LambdaMART [107], to give the final predictions.

In terms of possible future work regarding heterogeneous
ensemble methods, a technique that has not been used in pre-
vious work is ensemble pruning. That is, a subset of the base
learners is used to constitute the ensemble. This would lead to
smaller ensembles and, subsequently, to better computational
efficiency because of the lower number of base learners per-
forming predictions. In addition, it was shown that these
smaller ensembles obtained via ensemble pruning can also
have better generalization performance [108].

Homogeneous ensembles, on the other hand, consist of
learners of the same type. For example, Random Forest [109] is a
homogeneous ensemble method that consists of many decision
trees. To obtain improved prediction performance, the diversity
that would help achieve this can come from different sources.
An example is bagging, which induces diversity by randomly
sampling with replacement; for each learner, a subset of the
training examples is randomly sampled to train it (i.e. each
learner uses a different training set). Another example is feature
subspacing, which induces diversity by randomly sampling a
subset of the features for each learner, and so on.

A homogeneous ensemble method based on decision trees
was introduced in [110]. It randomly projects the features
matrix (representing the different drug–target pairs) into a lower
dimensionality matrix. This reduces the dimensionality of the
data (thus improving computational speed) as well as injects
diversity into the ensemble leading to gains in prediction per-
formance. Examples of other homogeneous ensembles include
[62, 64, 65], which have been described earlier in section
‘Methods’

Besides bagging and feature subspacing, there are other
ways to generate diversity in the base learners that have not yet
been used in homogeneous ensemble methods for DTI predic-
tion. One such way is to use different parameter settings for
each of the base learners [80]. Another way is to randomly flip
the labels of some training examples (i.e. convert from 1 to 0 or
vice versa) [111]. These tricks may be used to enhance the pre-
diction performance further.

Deep learning

The use of deep learning has been steadily increasing in drug
discovery [112, 113]. The reason for this is that deep learning
has the potential to build complex models that are able to learn
difficult concepts and thus outperform other competing meth-
ods. In addition, as it has the ability to extract useful features
from the input features, we believe that deep learning methods
would especially shine when it comes to merging different sour-
ces of information. The two main limitations that were holding
deep learning from being popular were: (1) a lot of training data
are needed to train the complex model being generated, and (2)
a lot of computational power is needed to perform the training.
However, as time goes on, these two issues are becoming less of
drawbacks because of the accumulation of more data to work
with as well as the emerging of more high-performance com-
puting resources.

In [25], the authors suggested the use of a CV setting, S4,
where drugs and targets used in training do not appear in the
test set, and it is known to be a challenging setting indeed. In
the experiments conducted in [25], only trivial interactions were
predicted successfully under S4. We believe that deep

Table 6. Software packages to compute features for drugs and
targets

Package Link

ChemCPP http://chemcpp.sourceforge.net
RDKit http://www.rdkit.org/
PyDPI [36] https://sourceforge.net/projects/pydpicao/
OpenBabel [37] http://openbabel.org/
Rcpi [35] http://bioconductor.org/packages/release/bioc/

html/Rcpi.html
Rchemcpp [99] http://shiny.bioinf.jku.at/Analoging/
KeBABS [98] http://www.bioinf.jku.at/software/kebabs/
PROFEAT [44] http://bidd2.nus.edu.sg/cgi-bin/profeat2016/

main.cgi
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learning—with its ability to obtain useful deep representations
of the drugs, targets and interactions—has the potential to do
much better than other state-of-the-art methods in predicting
interactions under S4. This is yet to be confirmed in future
work.

A number of efforts regarding DTI prediction have made use
of deep learning to improve prediction performance. Deep
learning techniques that have been used in DTI prediction
include restricted Boltzmann machines [114], deep neural net-
works [115, 116, 117], stacked auto-encoders [118, 119] and deep
belief networks [120]. As of yet, none of the deep learning meth-
ods developed for DTI prediction have attempted to simultane-
ously use multiple heterogeneous sources of drug and target
information. It would be interesting to see efforts that attempt
to do so in future work.

Absence of reliable negatives

A prevalent issue in DTI prediction is the absence of a list of reli-
able negatives, i.e. there are no confident noninteractions.
Unfortunately, reporting such noninteractions is not something
that researchers routinely do. However, researchers have made
efforts to deal with this problem.

Biased SVM is a variant of SVM that was used in [121] to give
different weights to the positive and negative classes in the
data. Positive examples, being more reliable, are given higher
weights than the negative examples. The weights are tuned to
give the best possible prediction performance.

PUDT [122] is a DTI prediction method that uses positive
unlabeled learning to deal with the issue of unconfident nega-
tives. Sets of unlabeled drug–target pairs are labeled as reliable
negative and likely negative. An SVM classifier is then trained
where, similar to biased SVM, weights are given to these nega-
tive classes (along with the positive class) and are tuned to give
a good prediction performance.

In [123], multiple drug and target similarities were obtained
and then merged together via the following equation:

Sij ¼ 1�
Y

n

ð1� SðnÞij Þ: (43)

After that, predictions are made using a simple network-
based method. From the set of predictions, a subset is taken as
the reliable negative set that can be used later with any predic-
tion method.

In [124], the BioLip [125] and BindingDB [126] databases are
searched for interactions with a binding affinity < 10lM to be
used as negatives.

Rather than using binary values to represent interactions
and noninteractions, the use of data sets where continuous val-
ues correspond to drug–target affinities has been previously
proposed [25]. Examples of such data sets include those intro-
duced in [127] and [128] which, respectively, contain kinase
disassociation constants and kinase inhibition constants—con-
stants with lower values correspond to higher affinities and
vice versa. It is suggested in [25] that such data sets be used as
benchmarking data sets in future DTI prediction efforts. It is an
idea worth considering, as these data sets provide a more accu-
rate representation of reality than traditional binary-valued
data sets. Using such data sets would also implicitly eliminate
the issue of reliable negatives discussed above. We suspect that
this is a trend that will increase in the future, as data of this
kind become more abundant.

Big data

Over 90 million chemical compounds are currently stored in
PubChem [129], while the conducted BioAssays have only cov-
ered about 2.4 million compounds (i.e. targets are now known
for these compounds) [11]. It is unlikely that future BioAssay
experiments will cover the remaining compounds anytime in
the foreseeable future. Virtual screening of these compounds is
thus inevitable. However, as the size of the data is exceptionally
large, big data technologies (e.g. cloud computing) will need to
be used.

However, adjustments to algorithms (or, possibly, novel
algorithms altogether) will also need to be made to handle data
of such size. For example, the work done in [86] is a step in this
direction—minwise hashing was used to obtain a compact rep-
resentation for the drug–target pairs, which reduces the data
dimensionality, and the reduced dimensionality helps lower
both the space and time complexities. Another work that aims
for scalability is [130] where a memory-efficient tree structure is
developed to query large databases for similar drug–target
pairs.

Recently, new technologies for dealing with big data have
been emerging, and it is becoming easier to process huge
amounts of data. Spark, for example, is one such technology
that can distribute the computational tasks over a cluster of
computers, leading to faster processing of the data. It would be
interesting to see Spark being used to detect new interactions
over large numbers of proteins and compounds and, possibly,
use such detected interactions to guide the BioAssay experi-
ments mentioned earlier, so that they may discover higher
numbers of compound–protein interactions.

Network visualization

As an exploratory analysis aid, network visualization may be
used to display the DTI bipartite network. Inspecting the net-
work visually may provide clues or insights that could other-
wise be difficult to reach.

For example, it may be easier to determine why certain
interactions tend to get low prediction scores by carefully
observing the visualized network for hints. The user may con-
sider using edge width or coloring edges with a color scale to
indicate how high or low their prediction scores are. This partic-
ular example is illustrated in Figure 7.

Many tools exist for visualizing networks. Two tools that are
used in visualizing DTI networks are NodeXL [131] and
Cytoscape [132].

Noncoding RNAs

While this work primarily focuses on target proteins, there is
another type of target—noncoding RNAs (ncRNAs)—for which
drugs have been successfully developed. ncRNAs are RNAs that
do not code for proteins, and they consist of multiple subcatego-
ries including microRNAs (miRNAs), long noncoding RNAs and
intronic RNAs among several others. To give a few examples,
drugs based on miRNAs have been used to treat Hepatitis C
virus [133] and Alport nephropathy [134], while others based on
intronic RNAs have been used to treat Duchenne muscular dys-
trophy [135] and Usher syndrome [136]. Each of the different
types of ncRNAs has unique behaviors and mechanisms, thus
presenting various challenges and opportunities, all of which
are discussed with examples in a recent overview [137].

We are expecting more research involving ncRNAs in the
future. Worthy of mentioning is the NRDTD database [138] that
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has been recently set up to store information on ncRNAs and
their binding drugs. It is likely that research into ncRNAs as
drug targets will witness the frequent use of this database.

Evaluation metrics

An important part of DTI prediction that deserves some atten-
tion is how the prediction performance of the different classi-
fiers is evaluated. We take as an example the AUPR metric,
which was used in this study to compare between the different
prediction methods. The AUPR score was computed by first
pooling the prediction values for all the drug–target pairs and
then sorting them to compute the AUPR.

However, as we may also be interested in how well-ranked
the predictions are for each drug/target separately, computing
the AUPR differently may be worth considering. Specifically, a
per-drug AUPR may be calculated by computing a separate
AUPR for each drug—i.e. sort each drug’s predicted targets and
compute the AUPR for each drug separately—and then average
all the drug AUPRs to get the per-drug AUPR. A per-target AUPR
may also be obtained in a similar fashion. The per-drug and
per-target AUPRs may possibly be better in reflecting the
aspects of the prediction performance that we are really inter-
ested in testing.

Another evaluation metric that has been previously used in
recommender systems is the mean percentile ranking (MPR)
[75, 139]. MPR is typically used in cases where there is a lack of
negative feedback data (which is analogous to the lack of confi-
dent noninteractions in our case). It can also be considered a
per-drug or per-target metric, so it would serve a similar pur-
pose to that of the per-drug and per-target AUPRs. Taking the
per-drug MPR as an example, it is defined as:

MPRd ¼
P

dt YdtrankdðtÞP
dt Ydt

; (44)

where Ydt¼ 1 if drug d and target t interact and Ydt¼ 0 otherwise,
and rankdðtÞ is the predicted rank of target t among all the tar-
gets for likelihood of interaction with drug d. For example, this
metric may be adequately used for testing the prediction per-
formance of classifiers under the S2 CV setting. Similarly, a per-

target MPR may be used in the S3 CV setting as well. For a more
exhaustive discussion of the implications involved in the selec-
tion of the evaluation metric as well as the advantages and dis-
advantages of each of the different metrics, the reader is
referred to [140].

Conclusion and outlook

Drug repositioning involves many computational techniques
that are used in various circumstances depending on the cur-
rent level of available knowledge on the target disease [141].
Comprehensive surveys providing overviews on these computa-
tional approaches have been published previously [142, 143]. Of
these approaches, we gave an overview of DTI prediction, which
is an important task in drug discovery. Indeed, many Web serv-
ers have been developed to facilitate this task for practitioners
who wish to perform it on a global scale [26]. Examples of such
Web servers include DINIES [144], BalestraWeb [145] and
SuperPred [146] among several others [54, 147–150].

In this work, we started by describing the data required for
the task of drug–DTI prediction and gave examples of different
kinds of data that may be used. Next, we gave an up-to-date
overview of the different state-of-the-art methods that are
trained with said data and then used to predict new interac-
tions. We then performed an empirical comparison between a
number of pre-selected methods to show their prediction per-
formances under different scenarios. Finally, we provided a list
of avenues for further improvement of the prediction
performance.

Research on chemogenomic DTI prediction has been con-
ducted for about a decade now, starting with pioneering works
such as [151–153] up until the current day. Research on chemo-
genomic methods for predicting DTIs is expected to continue
for several years with contributions involving deep learning
concepts, multiview learning and possibly unprecedented
clever features for representing drugs and/or targets. In addi-
tion, as algorithms get more sophisticated over time, big data
technologies (e.g. Spark) may enter the picture.

From the data perspective, there is the issue of data sets being
of a binary nature, i.e. given an interaction matrix Y where Yij¼ 1 if
drug di and target tj interact and 0 otherwise. This brings forth a
significant problem. Some of the 0’s in Y may be interactions that
are yet undiscovered, which may throw off the training process for
the different classifiers. Another point is that, in reality, drug–tar-
get pairs have binding affinities that vary over a spectrum (interac-
tions are not binary on/off). Data sets with continuous values
representing drug–target binding affinities (as opposed to discrete
0 and 1 values) have been previously proposed [127, 128], and we
expect the trend of using such continuous-valued data sets to
eventually catch on, as it is more useful and more meaningful (i.e.
better represents reality) than the binary data sets that have been
used in the majority of previous work in DTI prediction.

So far, the majority of the work has been concerned with pro-
tein targets. However, it is expected that ncRNAs will eventually
snatch some of the spotlight. Many ncRNA-targeting drugs have
been developed, and much more are expected to appear as our
understanding of how ncRNAs operate improves [137]. As for
global-scale DTI prediction using machine learning algorithms
(as exemplified in this survey), it is possible that we will witness
efforts that attempt to do so in the near future. Such efforts
would use a repository such as NRDTD [138] that stores exten-
sive information on known drug–ncRNA interactions.

Figure 7. Visualization of the NR DTI network where circles and squares repre-

sent drugs and targets, respectively. An S1 CV experiment was performed, and

the final averaged prediction scores are represented by the thickness of the

edges.
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