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Abstract—In this paper, we propose an attention based convo-
lutional neural network long short-term memory (CNN-LSTM)
approach for sleep-wake detection with heterogeneous sensor
data, i.e., acceleration and heart rate variability (HRV). Since
the three-dimensional acceleration data was sampled with a
high frequency, we firstly design a CNN-LSTM structure to
effectively learn latent features from the acceleration. Meanwhile,
considering the unique format of the HRV data, some effective
features are extracted based on domain knowledge. Next, we
design a unified architecture to efficiently merge the features
learned by CNN-LSTM approach from the acceleration and the
extracted features from the HRV, which enables us to make full
use of all the available information from these two heterogeneous
sources. Taking into consideration that these two heterogeneous
sources may have distinct contributions for the sleep and wake
states, we propose an attention network to dynamically adjust
the importance of features from the two sources. Real-world
experiments have been conducted to verify the effectiveness of
the proposed approach for sleep-wake detection. The results
demonstrate that the proposed method outperforms all existing
approaches for sleep-wake classification. In the evaluation of
leave-one-subject-out (LOSO) cross-validation which is more
challenging and practical, the proposed method achieves remark-
able improvements ranging from 5% to 46% over the benchmark
approaches.

Index Terms—Sleep-wake detection, CNN-LSTM, attention,
acceleration, HRV.

I. INTRODUCTION

SLEEP is a critical physiological function for human as
it affects both physical and mental health. Inadequate

sleep increases the risk of heart disease, stoke and type 2
diabetes. Mental health issues, such as depression, are also
strongly linked to poor sleep quality. Therefore, it is highly
desirable to identify the sleep quality and duration through
sleep monitoring and sleep-wake detection.

Polysomnography (PSG) is the gold standard for sleep
stage detection and sleep quality measurement [1]. Based on
its electroencephalography (EEG) data, sleep specialists or
even computational approaches can distinguish different sleep
stages [2]. Recently, researchers demonstrate that they are able
to accurately recognition multiple sleep stages, such as wake,
Rapid Eye Movement (REM), 3 non-REM stages N1, N2 and
N3, with EEG data [3], [4]. However, PSG (or even EEG
only) is considered to be costly, labour-intensive and invasive
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for sleep monitoring and thus is not feasible to be widely used
in daily life and long-term monitoring applications.

Wearable sensors [5] which are cost effective and easy-to-
use have become popular for long-term sleep tracking [6],
[7], as they can easily collect different types of data from
human body, e.g., acceleration, respiratory, electrocardiogram
(ECG), heart rate variability (HRV), etc. Since these sensors
can only obtain movement or heart rate related information,
they are hard to detect multiple sleep stages. Instead, they can
be good indicators for detecting sleep/wake states. And long-
term monitoring of sleep/wake states is also crucial [7], [8].
How to accurately detect sleep/wake states by only using some
low-cost and easy-to-use wearable sensors is attracting great
attention recently.

With the data collected by wearable sensors, various tra-
ditional machine learning methods can be employed for the
classification of sleep and wake states, e.g., linear discriminant
(LD) classifier [9], [10], support vector machines (SVM) [11],
[12], decision tree (DT) [13], random forest (RF) [14] and
artificial neural network (ANN) [13], [15]. However, it is
compulsory to extract representative features from complex
sensor measurements before applying these machine learning
methods for sleep-wake classification, while this feature ex-
traction requires strong domain knowledge [16].

Recently, deep learning, which is capable of learning fea-
tures, has achieved great successes in many challenging ap-
plications, such as image classification [17], natural language
understanding [18], and time series prediction [19]. It also has
been widely used for biomedical applications [20], [21], [22].
Several deep learning algorithms have also been proposed for
sleep-wake classification based on wearable sensor data. In
[23], the authors adopted the convolutional neural network
(CNN) to identify sleep and wake states on two public
datasets. Chen et al. presented a bidirectional long short-term
memory (Bi-LSTM) approach for sleep-wake detection with
multimodal data, such as skin temperature, skin conductance
and acceleration.

Here, we adopt the wearable sensor data of acceleration and
HRV for accurate sleep-wake classification. Both acceleration
and HRV data have been shown to be effective for sleep-wake
classification. Meanwhile, they can be treated as two different
indicators, i.e., physical and physiological, for the detection of
sleep and wake states. Therefore, the combination of these two
types of data is expected to boost the performance of sleep-
wake detection. There are some key technical challenges in
this problem. Firstly, acceleration and HRV are considered as
heterogeneous sensor streams, as they have different nature
and format. In particular, the acceleration has a high sampling
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rate, meaning that the sequence is uniform, but very long. The
HRV data contains values of R-R intervals, which is typical
non-uniform data. It is challenging to effectively integrate the
two heterogeneous sources for the detection of sleep and wake
states.

Secondly, sensor streams are typical time series and thus
LSTM based methods with strong sequential modeling ca-
pability are naturally suitable. However, it is infeasible to
train LSTM on the raw acceleration data with high sampling
frequency, with the general constraints on the memory and
computational power.

Finally, the acceleration and HRV may have distinct contri-
butions for sleep-wake classification. It is thus very important
to design a method which is able to dynamically adjust the
significance of features from these two heterogeneous sources
within the deep learning framework.

To effectively address the above challenges, we propose
a novel attention based CNN-LSTM approach for sleep-
wake classification with acceleration and HRV data. First,
we design a CNN to learn sequential local features on the
acceleration streams. Then, we adopt LSTM to encode the
temporal dependencies of the learned local features and further
learn high-level representations. Such a CNN-LSTM inte-
gration framework can automatically learn features from the
raw acceleration data (high sampling frequency). Second, we
extract features (e.g., features in time domain and frequency
domain) for HRV data based on domain knowledge. We then
design a unified architecture to integrate the features from both
the acceleration and HRV. Lastly, to boost the performance
of sleep-wake detection, we develop an attention network to
dynamically adjust the importance of the features from the
two different sources. Real experiments have been conducted
to verify the effectiveness of the proposed method for sleep-
wake detection.

The main contributions of this work are summarized as
follows:
• We propose a novel unified deep learning framework for

sleep-wake detection by combining two heterogeneous
sensors, i.e., acceleration and HRV, with different prop-
erties and formats.

• We develop an innovative CNN-LSTM structure to ef-
fectively learn latent features from long acceleration
sequences, which cannot be directly handled by existing
LSTM based methods.

• Considering that the two heterogeneous sensors may have
distinct contributions for classifying the sleep and wake
states, we design an attention network to dynamically
adjust the importance of features from the two hetero-
geneous sensors to boost the performance for sleep-wake
detection.

• We perform extensive experiments to evaluate the effec-
tiveness of the proposed approaches. The results show
that the proposed approaches outperform all benchmark
approaches.

This paper is a little bit similar to our previous work in [24].
However, the differences are quite obvious. We summarize the
main differences as follows: 1) The work in [24] requires to
extract local features from acceleration and combines local

features with LSTM network, which is a labor-intensive and
tedious process. In this paper, we design a CNN-LSTM
network which is an end-to-end architecture for automatic
feature learning from acceleration without human intervention.
2) The work in [24] does not adjust the weights for two types
of features, i.e., features from acceleration and HRV, which
may have different contributions for sleep-wake detection. In
this paper, we develop an innovative attention network to
dynamically adjust the weights of the two types of features,
which has been shown to be effective.

II. RELATED WORKS

In this section, we review some existing algorithms for
sleep-wake classification. The algorithms can be divided into
shallow models and deep models.

A. Shallow Models

For shallow models, they generally consist of two steps: 1)
feature extraction from sensory data, and 2) sleep-wake clas-
sification by applying traditional machine learning algorithms.

For instance, in [9], various features were extracted from
actigraphy, ECG and respiratory data, and then a linear
discriminant (LD) classifier was employed for sleep-wake
classification. Similarly, the LD classifier was also used for the
same purpose on dynamic frequency warping (DFW) features
which were extracted from actigraphy and respiratory data
[10]. Power spectral density scores were extracted from ECG
and respiratory signals by using the Fast Fourier Transform
(FFT), followed by an ANN model for classifying sleep and
wake states [15]. In [11], firstly, HRV data was extracted from
the raw ECG, and then various features from time domain,
frequency domain and detrended fluctuation analysis (DFA)
were extracted from the HRV data. After that, the classifier
of SVM was then employed for sleep-wake classification and
sleep efficiency estimation. Note that feature extraction from
the raw sensory data is an essential step in shallow models,
which usually requires expert knowledge and may inevitably
miss some implicit useful features, leading to an unsatisfactory
performance.

B. Deep Models

Currently, deep learning methods have achieved great suc-
cesses for healthcare and biomedical applications [20], [21].
For sleep analysis, many algorithms have been proposed for
automatic sleep staging based on the EEG data. For example,
the CNN was presented to work on single-channel EEG [25].
SLEEPNET [26] and DeepSleepNet [4] leveraged on the
LSTM model for sleep stage classification based on the EEG
data. Meanwhile, several deep learning algorithms have also
been proposed for sleep-wake classification based on wearable
sensor data. Phan et al. applied the CNN to identify sleep and
wake states with the actigraphy data [23]. In [27], a Bi-LSTM
model performed very well for sleep-wake classification with
multimodal data, i.e., skin temperature, skin conductance, and
acceleration. Note that the sensor sampling rate is relatively
low in [27] and it will be infeasible to learn the Bi-LSTM
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model if the sensors are with very high sampling frequency.
Our previous work in [24] proposed a local feature based
LSTM (LF-LSTM) method to extract features from acceler-
ation and developed a fusion framwork to combine features
from acceleration and HRV for sleep-wake classification.

Existing studies that either adopt one sensor or simply
combine several sensors (equal importance) using conventional
machine learning or deep learning methods have limited
performance for sleep-wake classification. In this study, we
design an innovative deep learning framework for sleep-
wake classification with wearable sensor streams, including
acceleration and HRV data. The proposed method can effective
learn features from these two heterogeneous sensors and
dynamically adjust the importance of features from the two
sensors to boost the performance of sleep-wake classification.

III. METHODOLOGY

A. Feature Learning on Acceleration via CNN-LSTM

The three-dimensional acceleration data was collected by
using a FAROS sensor with a sampling rate of 100 Hz in
this work. Due to the varying orientations of the sensor in
use, we also include the magnitude of the acceleration as
the fourth dimension to overcome the issue of orientation
changing. To segment the data for model learning, we use
a sliding window with a window size of 5 minutes which
is widely used [28], [29]. Thus, the sample size of a 5-
min segment/window is 30, 000 × 4. As aforementioned, it
is compulsory for conventional shallow models to extract
informative features from the acceleration in each window
based on strong domain knowledge which may not be available
all the time. Besides, the feature extraction will inevitably miss
some useful and implicit features and thus limit the sleep-wake
classification performance.

Recently, deep learning has achieved great successes in
many challenging areas and the biggest merit of deep learn-
ing is the ability of automatic feature learning from data.
Therefore, it can be adopted for feature learning upon the
acceleration. Owing to the sequential property of acceleration,
recurrent neural network (RNN) is naturally suitable for this
task. However, the traditional RNN may suffer from the
issue of gradient vanishing or exploding, resulting a limited
performance for long-term dependencies. To solve this issue,
the LSTM network which intends to use some gates to control
the information has been developed in [30]. It has been
successfully used in many applications with time series sensor
data. For example, it has been explored for human activity
recognition with inertial sensors [31], [32], [33]. In addition, it
has also been used for acoustic novelty detection with acoustic
sensors [34] and occupancy detection with environmental
sensors [35].

As mentioned above, each sample has a size of 30, 000× 4
in our experiments. If the LSTM network is directly used to
learn features on this acceleration sequence which is extremely
long, we need to use 30, 000 LSTM cells to learn features.
It is computationally infeasible with the general constrains
on memory and computational capability. To address this
issue, we firstly design a 1D-CNN to learn local features on

each sensor dimension. Assume a sample X = {xi}, i ∈
{1, 2, 3, 4}>,xi ∈ RL×1 where > is the transpose operation
and L = 30, 000 in this work, the 1D convolutional operation
on each sensor dimension for the r-th filter can be expressed
as

crl = fr(xi
l:l+s−1 ∗wr) + br, l ∈ {1, 2, ..., L− s+ 1} (1)

where s is the filter size, f(·) is the activation function, w is
the weight vector, and b is the bias. Then, the output of the 1D
convolutional operation can be expressed as C ∈ R(L−s+1)×4.
To get more compact representations, a pooling operation
can be adopted. Here, we apply 1D max-pooling on the
outputs of 1D convolutional operation. The output of the
1D max-pooling operation is to take the maximal value over
consecutive features from one sensor dimension, which can be
expressed as

hr
k = max(crkd+1, ..., c

r
(k+1)d), (2)

where d is the pooling size, k ∈ {1, 2, ..., b(L− s+ 1)/dc},
and b·c is the rounding down operation.

By performing one 1D convolutional operation and one 1D
max-pooling operation, the raw data sample at one sensor
dimension x ∈ RL×1 has been transferred to the feature matrix
h ∈ Rb(L−s+1)/dc×R where R is the number of filters in 1D
convolutional operation. Since the convolution window moves
step by step from the beginning to the end of the raw signal
at one sensor dimension, the first dimension of the feature
matrix will preserve the temporal dependency. At the same
time, the second dimension of the feature matrix indicates
the high-level representations learned by the CNN at each
sequential step of the feature matrix. In this way, we can
learn features from the raw sequential acceleration data and
preserve the temporal dependency of the raw data. Stacking
multiple operation layers, i.e., 1D convolutional layers and
1D max-pooling layers, has been shown to be powerful for
representation learning [36]. Here, we stack multiple operation
layers for feature learning on raw acceleration time series.

The outputs of the CNN are high-level features of raw
acceleration with temporal dependency, which can also be
treated as local features with temporal dependency. Then,
these local features will be fed into the LSTM to encode
temporal dependency for feature learning. The final outputs
of the LSTM are the efficient features learned from the big
and complex acceleration data. In summary, instead of feature
engineering, we design an efficient CNN-LSTM network to
automatically learn representative features from the accelera-
tion that is collected under high sampling frequency.

B. Feature Extraction from the HRV

The collected HRV shows the variation of time intervals
(i.e., R-R intervals) between heart beats. Given its special
format, we are not able to feed it into deep learning algorithms
for automatic feature learning. Instead, we extract features
from HRV data based on domain knowledge. In particular, 4
types of features are computed from HRV data [37], namely,
time-domain features, frequency-domain features, Poincaré
plots features and DFA features.
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Firstly, we directly drive 8 time-domain features from the
R-R interval values, i.e., meanHR, meanRR, StdRR, cvRR,
RMSSD, SDSD, pRR50 and RR50. Given a 5-min window,
meanRR is the average of all the R-R interval values in
this window, while meanHR is the average heart rate in
the 5 minutes. StdRR is the standard deviation of the R-R
interval values and cvRR is the coefficient of variance (i.e.,
the ratio between meanRR and StdRR). RMSSD and SDSD
are root mean square and standard deviation of the successive
differences of R-R interval values, respectively. RR50 (pRR50)
refers to the number (portion) of R-R interval values larger
than 50 ms.

Second, we perform Fast Fourier Transform (FFT) on the
R-R interval values. And then, 7 features from frequency
domains are extracted with the power spectrum generated
by FFT. In particular, we calculate the power for different
frequency bands. For instance, VLF is the power for very low
frequency (0.003-0.04 Hz), LF for low frequency (0.04-0.15
Hz), HF for high frequency (0.15-0.4 Hz) and TP for the total
power. In addition, the ratios LF/(LF+HF), HF/(LF+HF) and
LF/HF are also adopted as frequency-domain features.

Third, we obtain 3 features from the Poincaré plot (i.e., SD1,
SD2 and SD1/SD2) and 3 slope coefficients based on DFA.
Please refer to [38] and [39] for more details about these 2
types of features. In total, we extract 21 features from HRV
data.

C. Attention Network

To make full use of all the available information from
two heterogeneous sensors, we apply a concatenate layer to
combine the features from the acceleration and HRV. The
extracted representations (features) from these two modalities
(i.e., HRV and acceleration) may have different contributions
for the detection sleep and wake states. To achieve that,
we design an attention network to dynamically adjust the
importance of features from the two modalities.

The attention mechanism was firstly designed for image
processing [40]. It is inspired by human vision systems,
claiming that human always pay attention to a certain region
of an image during recognition and adjust the focus over time.
Here, an attention network is designed to adjust the weights
for the features from the two different modalities. Note that,
no prior information is available for the attention network to
assign the weights. Hence, we design a self-attention scheme
where the inputs to the attention network are all the features
from the two modalities. Assume that the feature vector is
z = zACC ⊕ zHRV , where zACC and zHRV are the features
from the acceleration and HRV respectively, and ⊕ is the
concatenation operation, the self attention network can be
expressed as

softmax
(
ω> ∗ z+ β

)
, (3)

where softmax(·) is the softmax activation function for the
attention network, ω and β are the weights and bias respec-
tively, and > is the transpose operation. Let η = ω> ∗ z + β
be a vector with N elements (equivalent to the number of

features), the i-th attention output (weight) can be expressed
as

$i = softmax(ηi) =
exp(ηi)∑N
i=1 exp(ηi)

. (4)

Given that $ = [$1, $2, ..., $N ] are the final attention out-
puts, i.e., attention weights, of the attention network. Finally,
we assign these attention weights to the features by using a
element-wise multiplication, which can be expressed as

z̃ = z�$, (5)

where z̃ are the final features for sleep-wake classification,
and � is the element-wise multiplication operation. Specif-
ically, given vectors a =

[
a1 a2 ... an

]>
and b =[

b1 b2 ... bn
]>

, a� b =
[
a1b1 a2b2 ... anbn

]>
.

D. Proposed Framework for Sleep-wake Detection

Fig. 1. shows the proposed attention based CNN-LSTM
framework for sleep-wake classification with two heteroge-
neous sensor data. Firstly, a sliding window of the four-
dimensional acceleration (including the magnitude) is fed into
a 1D-CNN to learn local features with temporal dependency.
Then, these sequential local features is passed into a LSTM
network to learn latent feature representations. The outputs
of the LSTM are normalized in batch by using a batch
normalization (BN) layer, followed by a dropout layer to
prevent over-fitting. Then, a fully connected layer (FCL) is
applied to get more abstract features. In the meantime, we
extracted some features from the HRV data due to its unique
structure. Similarly, a FCL is used on these extracted features
to get more abstract representations. Next, to make full use
of the available information from these two heterogeneous
sensors, we concatenate the features from these two modalities
into a feature vector. Then, an attention network is leveraged
to dynamically adjust the significance of features from the
two modalities. The final features, i.e., the outputs of the
attention network, are fed into a BN layer for normalization
and a dropout layer to prevent over-fitting. Eventually, we use
a softmax layer for binary classification between sleep and
wake states.

Since the problem method in Fig. 1 is an end-to-end
trainable architecture, all the model parameters including the
weights of CNN-LSTM, FCLs, attention layer and softmax
layer can be jointly trained. Specifically, given the predicted
sleep/wake states and the true ones, the cross-entropy losses
over training data can be calculated and back-propagated to
generate the error gradients for each layer (including the
attention layer). Then, the optimization method of Adam is
adopted to optimize model parameters at each layer based on
the error gradients.

The hyperparamters of the proposed method which are
specified using cross-validation on the training data are shown
as follows. In particular, we use 4 1D-convolutional-pooling
layers with a kernel size of 10, a step size of 1 and a pooling
size of 5, where the number of filters are 16, 32, 64 and 128
respectively. The LSTM has one layer with 100 hidden nodes.
The both FCLs have 100 hidden nodes and the both dropout
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Raw Acceleration

Fig. 1. The proposed attention based CNN-LSTM framework.

layers have a dropout rate of 0.5. The activation functions for
the convolutional layers, FCLs and the LSTM are ReLU, ReLU
and tanh, respectively.

IV. EXPERIMENTS

A. Data Acquisition

A dataset was collected from 11 subjects for 28 sleep
nights (NUS-IRB Ref Code: B-15-276). Each subject wore
three types of sensors, i.e., a Zeo sleep monitor headband, a
CamNtech MotionWatch and a FAROS device, that are shown
in Fig. 2. Specifically, we use the FAROS device to collect
both the acceleration (a sampling rate of 100 Hz) and HRV
data (shown as R-R intervals). The CamNtech and the Zeo
can report the sleep-wake states of subjects. In particular,
CamNtech Watch provides a sleep/wake label per 1 minute.
Zeo provides a sleep stage label (i.e., wake, REM, light sleep
and deep sleep) per 5 minutes. In this work, we consider REM,
light sleep and deep sleep from Zeo as sleep. Here, we used the
time shown in FAROS sensor as a reference to synchronize
both MotionWatch and Zeo, so that the data from these 3
types of sensors are matched. Note that, the subjects are also
requested to record some major events in the night.

In order to perform sleep-wake detection, we split the
time series sensor data into 5-min segment which is widely
adopted for sleep detection [28], [29]. Three sleep-wake labels
are derived for each segment from MotionWatch, Zeo and
subjects’ event logs. We only keep the segments that three
labels are consistent to avoid wrong labelling. Considering
that the quality of labels from MotionWatch [41] and Zeo
[42] is good, such a consensus process will further improve

the quality of labels. Finally, we obtain 1,658 sleep samples
and 200 wake samples in this work. For model evaluation,
we randomly select about 30% of data for testing and the
remaining for training. Note that this dataset is naturally
imbalanced and the number of sleep segments is larger than
that of wake segments.

Fig. 2. The devices for data acquisition.

B. Experimental Setup

To verify the performance of the proposed method, a
comparison has been made with some benchmark approaches
which include some traditional machine learning methods,
such as DT [13], LD [9], [10], SVM [11], ANN [15] and
RF [14], and the deep learning method of CNN [23], [43]
and LF-LSTM [24]. Here, the traditional machine learning
methods use both the HRV features and the same local features
extracted from the acceleration. The CNN in [43] can only
use the acceleration data as input (the HRV data cannot be
employed due to its special format). The empirical study shows
that the CNN with acceleration has very limited performance.
We have included the features from HRV into the CNN by
using the same feature fusion architecture that we developed
in this work, such that the comparison with the CNN can be
fair enough. Because of the extremely sequence of acceleration
(30,000 time steps), we cannot implement the conventional Bi-
LSTM in [27] due to the general constrains on computational
power and memory.

The hyperparamters of the benchmark approaches, i.e.,
ANN, SVM, RF and CNN, are determined by using cross-
validation on the training data. Specifically, the number of
hidden neurons is set to be 100 and the activation function
is chosen to be Rectified Linear Unit (ReLU) for the ANN.
The Radial Basis Function (RBF) kernel is adopted for the
SVM. The RF algorithm contains 10 decision trees. The CNN
consists of four 1D convolutional operations with kernel size
of 10 and step size of 2, and four 1D pooling layers with
pooling size of 3. The activation function of ReLU is applied
for all convolutional layers.

Since sleep-wake detection is a highly imbalanced clas-
sification problem, the detection accuracy will overlook the
minority class that is “wake”. Therefore, we adopt the eval-
uation criterion of G-mean that is popular for evaluating the
performance of a model on imbalanced datasets [44]. Given
the True Positives (TP), False Positive (FP), False Negative
(FN), and True Negative (TN) values, the G-mean is defined
as follows:
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precision = TP/(TP + FN)

recall = TN/(TN + FP)

G-mean =
√

precision ∗ recall

(6)

In experiments, we randomly choose 30% of data for the
test, and the rest for model training. To give a more compre-
hensive evaluation, we also perform a leave-one-subject-out
(LOSO) cross-validation. Specifically, we use the data from
one subject for test, and the remaining for training. This cross-
subject test is more challenging as the test data is unseen by
the models and thus it is a more realistic scenario to validate
the generalization capability of the models.

In this work, in order to handle the imbalanced issue of
the data, the widely used technique of SMOTE (Synthetic
Minority Over-sampling Technique) [45] is adopted for data
augmentation on the training data, such that the number of
samples for the two classes, i.e., sleep and wake, is the same.

C. Results and Discussions

1) Comparison with State-of-the-arts: Table I shows the
evaluation results of all the methods. Note that, due to the
randomness of the neural network based algorithms, we run
ten times of the algorithms and the average results are shown.
It can be found that the RF method has a superior performance
over the other traditional methods of DT, LD, SVM and ANN,
and the deep learning method of CNN. The CNN has limited
performance. Because it cannot model long-term dependencies
in the long sequence of the acceleration.

The proposed approach and the LF-LSTM approach out-
perform all the other methods under the two criteria, i.e.,
accuracy and G-mean. These two approaches achieve compa-
rable performance. However, the LF-LSTM method requires
a tedious feature engineering process for acceleration data.
The proposed method does not contain this tedious process.
It is able to automatically learn features from acceleration
without human intervention. More importantly, the proposed
method outperforms the LF-LSTM in the more challenging
and practical evaluation of Leave-One-Subject-Out Cross-
Validation, which will be shown later.

TABLE I
EVALUATION RESULTS

Methods Accuracy (%) G-mean
DT [13] 89.6 0.718
LD [10] 86.9 0.802

SVM [11] 82.4 0.816
ANN [15] 91.4 0.817
RF [14] 92.3 0.854

CNN [23] 90.0 0.850
LF-LSTM [24] 95.1 0.884

Proposed 94.5 0.887

We also show the confusion matrices of all the approach in
Table II. Obviously, the proposed approach performs well on
the detection of both sleep and wake states. The conclusion is
consistent with our previous analysis.

TABLE II
CONFUSION MATRICES OF ALL THE APPROACHES.

(a) DT [13]
Predicted Wake Predicted Sleep

True Wake 34 28
True Sleep 30 466

(b) LD [10]
Predicted Wake Predicted Sleep

True Wake 45 17
True Sleep 56 440

(c) SVM [11]
Predicted Wake Predicted Sleep

True Wake 50 12
True Sleep 86 410

(d) ANN [15]
Predicted Wake Predicted Sleep

True Wake 44 18
True Sleep 30 466

(e) RF [14]
Predicted Wake Predicted Sleep

True Wake 48 14
True Sleep 29 467

(f) CNN [23]
Predicted Wake Predicted Sleep

True Wake 40 12
True Sleep 72 434

(g) LF-LSTM [24]
Predicted Wake Predicted Sleep

True Wake 51 11
True Sleep 21 475

(h) Proposed
Predicted Wake Predicted Sleep

True Wake 50 12
True Sleep 12 484

2) Ablation Study: We perform an ablation study to show
the effectiveness of each part in our method, i.e., the SMOTE,
the attention and the HRV data. Table III presents the results
of the ablation study. We can find that the model without
SMOTE has a higher accuracy and lower G-mean than that
with SMOTE. This is because that if without SMOTE for
imbalance data augmentation, the classifier outputs will tend
to the majority class to enhance classification accuracy, which
will influence the detection of the minority class negatively,
resulting a lower G-mean. Since the detection of both majority
and minority classes is important, the G-mean can be more
reliable for the evaluation of imbalanced data [44]. Thus, we
will compare the G-mean of various settings for evaluation.
It is clear that the model with SMOTE performs much bet-
ter, which indicates the usefulness of data augmentation for
sleep-wake classification which is a typical imbalanced data
problem.

According to Table III, the including of the HRV data will
improve model performance. This indicates that the HRV data
is useful for the task of sleep-wake classification. By using
the attention network to dynamically adjust the importance
of features from the acceleration and HRV, the proposed
approach is further enhanced. We also show the attention
weights for the two classes by averaging over all the testing
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samples in Fig. 3. Since the both FCLs of the proposed unified
framework (See Fig. 1) have 100 hidden nodes. The number
of concatenated features is 200. It can be found that the
corresponding 200 attention weights for the two states have
distinct patterns. This means that the significance of different
features is varying during the detection of these two states.
Thus, the attention network will be useful for this case with
two different modalities.

TABLE III
THE RESULTS OF ABLATION STUDY. HERE, “ACC” STANDS FOR THE

ACCELERATION DATA.

SMOTE Sensors Attention Accuracy (%) G-mean
No ACC - 94.4 0.811
No ACC + HRV No 95.7 0.830
No ACC + HRV Yes 96.0 0.846
Yes ACC - 90.0 0.870
Yes ACC + HRV No 94.5 0.881
Yes ACC + HRV Yes 94.5 0.887
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Fig. 3. Attention weights for the two classes.

3) Leave-One-Subject-Out Cross-Validation Results: To
test the robustness of the proposed approach, we perform a
LOSO cross-validation. The results are shown in Table IV.
Compared with Table I, the performances of all the approaches
degrade. In LOSO evaluation, all the approaches are tested
on the data from an unseen subject. Considering that different
subjects may have different behaviors (e.g., movement patterns
and HRV patterns), it is reasonable that all the approaches
obtain degraded performance.

In this challenging LOSO setting, thanks to the efficient
the CNN-LSTM network and the attention mechanism, the
proposed method achieves significant improvements over the
benchmark approaches, including our previous method of LF-
LSTM. This clearly shows the robustness of the proposed
approach in the more challenging and practical cross-subject
evaluation.The improvements of the proposed approach over
the benchmark approaches range from 5% to 46%.

4) Discussion on Multi-modality in Sleep-Wake Detection:
How to handle multi-modality is a common issue for detecting
sleep/wake states with multiple heterogeneous sources. Sano
et al. adopted the multi-modal data collected from wearable

TABLE IV
EXPERIMENTAL RESULTS FOR LOSO CROSS-VALIDATION.

Models Accuracy (%) G-mean
DT 82.8 0.542
LD 77.8 0.679

SVM 79.4 0.687
ANN 83.4 0.709
RF 87.5 0.717

CNN 86.6 0.685
LF-LSTM 89.1 0.804
Proposed 91.8 0.845

sensors and a smartphone for sleep detection [6]. By analyzing
each modality, specific features are extracted based on domain
knowledge. Finally, they leveraged a bi-directional LSTM
model with the extracted features to detect sleep/wake states.
Chambon et al. proposed a sleep stage classification system
with multi-modal data of EEG and EMG (electromyogram)
[1]. They utilized two parallel CNN models to deal with the
two modalities separately, and then combined the features
learned from these two modalities for classification. Similar
idea can be found in [46] where the authors performed sleep
detection based on multi-modalities including EEG, EOG
(electrooculogram), EMG, Airflow and SaO2 signals. They
applied a CNN model for each modality to learn features and
combined all the learned features using fully connected layers
for sleep detection.

Our proposed method is different with existing approaches
in two main aspects: 1) We consider both physical and phys-
iological sensors, i.e., acceleration and HRV respectively, for
sleep-wake detection. By analyzing the properties of these two
modalities, we designed a CNN-LSTM network to learn fea-
tures from acceleration with high sampling rate and extracted
features from HRV with unique format. 2) Instead of simply
combining the features learned from these two modalities,
we proposed an attention network to automatically learn the
importance of features and assign larger weights to more
important ones. With the designed deep learning architecture,
we are able to effectively combine these two modalities and
achieve the best performance for sleep-wake classification in
real experiments.

V. CONCLUSION

In this paper, we proposed an attention based convolutional
neural network long short-term memory (CNN-LSTM) ap-
proach with two heterogeneous sensors, that are heart rate
variability (HRV) and acceleration, for sleep-wake detection.
Firstly, a CNN-LSTM network was designed to learn repre-
sentative features from the big and complex acceleration data.
The learned features are combined with the features extracted
from the HRV data to make full use of all the information from
the two heterogeneous sources (modalities). To dynamically
adjust the significance of features from the two modalities,
we developed an attention network for efficient sleep-wake
classification.

The performance of the proposed method was verified
by using real experimental data. The results showed that
the proposed method achieved the best performance over
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all existing approaches including shallow and deep learning
algorithms. In addition, the experimental results demonstrated
that the data imbalance correction (i.e., SMOTE), the attention
network and the HRV data will boost the model performance.
Lastly, to show the robustness of the proposed approach,
we conduct a leave-one-subject-out (LOSO) cross-validation
for all the approaches. This clearly indicates the robustness
of the proposed approach in this challenging and practical
scenario. The proposed approach significantly outperforms all
the benchmark approaches with the improvements ranging
from 5% to 46%. In future works, we intend to work on
cost-sensitive learning [47] for sleep-wake detection which is
typical imbalance classification problem. Another future work
is to collect more data from subjects with more diversities,
such as age, race, health states, etc., to further evaluate the
generalization performance of models.
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