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Abstract—Machine remaining useful life (RUL) predic-
tion is vital in improving the reliability of industrial systems
and reducing maintenance cost. Recently, long short-term
memory (LSTM)-based algorithms have achieved state-of-
the-art performance for RUL prediction, due to their strong
capability of modeling sequential sensory data. In many
cases, the RUL prediction algorithms are required to be de-
ployed on edge devices to support real-time decision mak-
ing, reduce the data communication cost and preserve the
data privacy. However, the powerful LSTM-based methods
which have high complexity cannot be deployed to edge
devices with limited computational power and memory. To
solve this problem, we propose a knowledge distillation
framework, entitled KDnet-RUL, to compress a complex
LSTM-based method for RUL prediction. Specifically, it
includes a generative adversarial network based knowl-
edge distillation (GAN-KD) for disparate architecture knowl-
edge transfer, a learning-during-teaching based knowledge
distillation (LDT-KD) for identical architecture knowledge
transfer and a sequential distillation upon LDT-KD for com-
plicated datasets. We leverage simple and complicated
datasets to verify the effectiveness of the proposed KDnet-
RUL. The results demonstrate that the proposed method
significantly outperforms state-of-the-art KD methods. The
compressed model with 12.8 times less weights and 46.2
times less total float point operations even achieves a
comparable performance with the complex LSTM model for
RUL prediction.

Index Terms—Knowledge distillation, model compres-
sion, generative adversarial network, remaining useful life
prediction.

I. INTRODUCTION

Machine remaining useful life (RUL) prediction is of great
importance for real industry [1], [2], [3], [4], [5]. It is able
to reduce the maintenance cost and improve the reliability of
industrial systems. However, accurate prediction of machine
RUL is still challenging, due to the high complexity of
modern industrial systems. To predict machine RUL, many
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advanced methods have been developed. Generally, they can
be divided into two different categories, i.e., model-based and
data-driven. Model-based solutions intend to explicitly model
the relationship between sensory data and RUL [6], [7]. Since
the industrial systems become more and more complex, the
explicit modeling is extremely difficult. Alternatively, data-
driven solutions aim to learn the relationship directly from
data without knowing the physical model of a system [8], [9].
They become very promising techniques for RUL prediction,
especially for complicated industrial systems.

Conventional machine learning algorithms are widely used
data-driven methods to predict machine RUL [10], [8]. For
conventional machine learning-based RUL prediction, the first
step is to perform feature engineering which manually extracts
representative features from the sensory data based on expert
knowledge. Then, machine leaning algorithms, such as support
vector regression, decision tree, random forest, etc., can be
adopted to predict RUL based on the extracted features.
However, conventional machine learning-based RUL predic-
tion requires to extract features based on domain knowledge
which may not be available all the time. Besides, the feature
extraction and RUL prediction cannot be jointly optimized in
conventional machine learning methods, which also hinders
their performance.

Recently, deep learning has achieved great successes in
many challenging domains, including RUL prediction [11],
[12]. The greatest merit of deep learning is that it is able to
automatically learn representative features from data without
human intervention and perform RUL prediction simultane-
ously, leading to a superior performance. One of the most pop-
ular deep learning algorithms is convolutional neural network
(CNN) which has achieved remarkable performance for image
classification [13]. Due to the unique structure of CNN, it is
very efficient for feature learning and can be trained in parallel.
It has also been utilized for RUL prediction and outperformed
conventional machine leaning algorithms [14], [15]. Another
popular deep learning algorithm for RUL prediction is long
short-term memory (LSTM) which is specifically designed for
analyzing sequential data with temporal information [16], [17].
Since the sensory data for machine RUL prediction are typical
time series with temporal information, the LSTM network is
naturally suitable for RUL prediction. Recent studies [16],
[17], [18] have shown that the LSTM outperforms the CNN
for RUL prediction. However, the LSTM generally has much
higher computational complexity than CNN due to its unique
structure of cascade connection.
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In many real-world scenarios, the RUL prediction algo-
rithms need to be deployed on edge devices, which have
limited computational resources and memory, for timely re-
sponse and security concerns. Thus, the industry generally
prefers a learning algorithm which can achieve accurate RUL
prediction and is also very efficient (e.g., small size and fast
inference). The current deep learning algorithms are either too
complicated or with limited performance.

To deal with these issues, model compression techniques
have been proposed to compress deep neural networks for edge
deployment. For instance, parameter quantization methods
[19], [20] compress the original network by using less bits
to represent the weights. They can achieve significant speed-
up but also result in accuracy loss [21]. Another commonly
used method for model compression is weight pruning [22],
which aims to remove unnecessary parameters in a trained
deep neural network. Although the weight pruning is able to
reduce model storage size, it cannot improve the efficiency in
terms of training or inference time. Other methods like matrix
decomposition [23], [24] have also shown the capability of
reducing model size, but they only addresses the storage com-
plexity issue of deep models and have similar drawbacks as
the weight pruning method. Relatively, knowledge distillation
has shown great promise in reducing not only model storage
size but also model efficiency [25], [26].

In this paper, we propose a novel knowledge distillation
framework, entitled KDnet-RUL, to compress deep learning
models for RUL prediction. Specifically, we firstly design
a generative adversarial network based knowledge Distilla-
tion (GAN-KD) for disparate architecture knowledge transfer,
which distills the knowledge from a powerful and complicated
LSTM model to a simple CNN model. Then, a learning-
during-teaching knowledge distillation (LDT-KD) for identical
architecture knowledge transfer is proposed to enhance the
performance of the CNN model learned by GAN-KD. For
complicated RUL prediction scenarios, e.g., data with multiple
operation conditions, we leverage a sequential distillation
scheme upon the LDT-KD for accurate and robust RUL pre-
diction. The performance of the proposed KDnet-RUL method
is evaluated by using both simple and complex datasets.

The main contributions of the proposed method are sum-
marized as follows:

• We propose a knowledge distillation framework, named
KDnet-RUL, which distills knowledge from a compli-
cated LSTM model to a simple CNN model for efficient
RUL prediction. The efficient CNN model can thus be
deployed on resource constrained edge devices.

• For knowledge distillation between disparate architec-
tures, i.e., from LSTM to CNN, a GAN-KD method
is proposed. It attempts to minimize the discrepancy
between the features learned from LSTM and CNN by
using a GAN technique.

• To enhance the performance of CNN, we propose a LDT-
KD method for knowledge distillation between identical
architectures.

• In complicated scenarios where multiple working con-
ditions are involved for RUL prediction, we propose a

sequential distillation scheme upon LDT-KD to further
enhance the performance of the learned CNN model.

The rest of the paper is organized as follows: Section II
reviews some related works on RUL prediction and KD. Sec-
tion III presents the deep neural networks for RUL prediction,
followed by the disparate and identical architecture knowledge
transfer. Section IV firstly describes the data for evaluation
and the experimental setup. Then, the experimental results,
ablation study and sensitivity analysis are introduced. Section
V concludes this paper and shows some potential future works.

II. RELATED WORK

A. RUL Prediction

Deep learning for RUL prediction has gained increasing
attention due to its ability of modelling complex machinery
degradation process [27]. Various deep learning methods, such
as Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM), have been shown to be effective for
RUL prediction tasks. Babu et al. proposed a novel CNN-
based model to estimate RUL of airplane engines by using
sliding windows on the raw sensory data as input samples
[14]. Instead of directly feeding the raw sensory data into CNN
models, Zhu et al. transformed the sensory data to derive the
Time Frequency Representation (TFP) of each sample [15].
Then, a Multiscale Convolutional Neural Network (MSCNN)
was developed with these samples for RUL prediction. Even
though the CNN-based models have already outperformed
traditional methods, such as Multilayer Perceptron (MLP)
and Support Vector Machines (SVM), they are not naturally
designed for sensory data with temporal information.

To better capture the temporal information of sensory data,
Zheng et al. employed a LSTM network to model the long-
term dependency characteristic of data for RUL prediction
[16]. Hence, such a LSTM method achieved a better per-
formance than traditional machine learning and CNN ap-
proaches. Thereafter, several LSTM-based approaches, such
as bidirectional LSTM [17] and attention-based LSTM [18],
were proposed to further improve RUL prediction accuracy.
However, LSTM-based models often have high computational
complexity, and thus it is very difficult to deploy them on
edge devices with limited computing resources. To address
this problem, model compression methods can be adopted for
LSTM models to reduce their complexity and preserve the
performance as much as possible.

B. Knowledge Distillation

Knowledge Distillation (KD), also known as a teacher-
student strategy, is widely applied for model compression.
It was firstly introduced by [28], which refers to training a
shallow network (i.e., Student) by mimicking the output of a
larger and deeper network (i.e., Teacher). Hinton et al. further
generalized it by introducing a temperature variable to soften
the logits from the cumbersome model as “soft target” [29].

Subsequently, various methods have been proposed for effi-
cient knowledge transfer between the teacher and student for
model compression. To improve the generalization capability
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of thin but deep student, Romero et al. introduced a hint-based
pre-training strategy to guide the student to learn intermediate
feature representations close to the teacher’s [30]. The authors
in [31] proposed to transfer the attention maps with different
levels from a teacher network and showed significant improve-
ments. Tian et al. proposed a contrastive learning approach
to force the student to generate close representations as the
teacher for the same inputs, while generating distant represen-
tations for different inputs [32]. The GAN-based architectures
were also adopted to align the source of logits [33] or feature
maps [26] for knowledge transfer.

Note that the softened logits output of the teacher in
the aforementioned classification tasks can provide additional
knowledge about the correlations of class labels [29]. There-
fore, most of previous KD studies focus on the classifica-
tion tasks. In fact, KD is also suitable for regression tasks.
Chen et al. introduced a bounded regression loss for knowl-
edge distillation on bounding-box regression problems [34].
Combining with hint-based learning, the proposed distillation
framework can significantly improve the accuracy compared
to the baselines. The authors in [25] proposed an Attention
Imitation Loss (AIL) which intended to use the teacher loss
as a confidence score for camera pose regression problem. It
allows to attentively learn from the predictions in which the
teacher has more confidence.

However, most of previous KD studies focus on transferring
knowledge between networks with similar architectures, i.e.,
the student is a simplified version of teacher with less layers
or hidden units. It is not clear whether those KD methods
are also suitable for disparate architectures, e.g., a LSTM-
based teacher and a CNN-based student. Therefore, to fill
this gap, we propose a method named GAN-KD for this
scenario. Moreover, due to the inherent difference between
LSTM and CNN, we propose a method named LDT-KD to
further optimize CNN-based student learned from GAN-KD.

III. METHODOLOGY

In this section, we present a framework called KDnet-RUL
to transfer knowledge between disparate and identical network
architectures for RUL prediction. The overall KDnet-RUL
pipeline is depicted as Fig. 1. To be specific, a GAN-KD
approach is proposed to transfer knowledge between different
network structures, i.e., from LSTM to CNN. A LDT-KD
approach is proposed to transfer knowledge between identical
network structures, i.e., from CNN to CNN. Moreover, a
sequential self-distillation scheme upon LDT-KD is designed
to further improve the performance of RUL prediction on
complex datasets with multiple operating conditions.

A. Deep Neural Networks for RUL Prediction
To precisely estimate the RUL for mechanical systems, it

is desirable to design deep neural networks (e.g., LSTM or
CNN) that are capable of modeling the temporal dependency
of multivariate sensory data. Such networks normally consist
of a feature extractor and a regression module. In particular,
the feature extractor extracts the features from the input
sensor data. The extracted feature maps are then fed into the

regression module to predict the RUL. The regression module
generally contains several fully-connected (FC) layers.

To demonstrate the effectiveness of our proposed pipeline,
we first design a LSTM-based network that serves as a
powerful but luxurious teacher, considering that it achieves
state-of-the-art performance for RUL prediction [16], [17],
[18]. Subsequently, a dilated CNN-based network is adopted
as the student, which ideally can maintain comparable per-
formance as the teacher but with much less complexity. This
dilated CNN-based structure has shown promising capability
on handling sequential data [35], and thus we use it as the
student network as shown in Fig. 2.

B. Disparate Architecture Knowledge Transfer
As aforementioned, LSTM networks are too complex to

be deployed on resource-constrained edge devices. Simple
CNN networks are suitable for edge deployment. However,
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Fig. 1: The proposed KDnet-RUL framework: (a) GAN-KD
for disparate network architectures; (b) LDT-KD for identical
network architectures.
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Fig. 2: Dilated CNN-based Student Architecture. Conv1D(3,
2, 1) refers to a 1D convolution layer with kernel size as 3,
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they are usually not able to achieve desirable performance as
LSTM models. To address this dilemma, we firstly propose
a GAN-based knowledge distillation method called GAN-KD
for knowledge transfer between disparate architectures, i.e.,
from LSTM to CNN. Particularly, as shown in Fig. 3, we distill
the knowledge from a complicated LSTM structure to a simple
CNN structure in GAN-KD to improve the performance of the
CNN model. In our GAN-KD, both the teacher (LSTM) and
student (CNN) consist of a feature extractor and a regression
module for RUL prediction. We thus adopt a two-stage training
scheme for our GAN-KD. Specifically, we train the feature
extractor by feature distillation and the regression module
by knowledge distillation separately. Next, we introduce the
feature distillation and knowledge distillation in details.
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Fig. 3: GAN-KD for disparate network architectures. All
network blocks with dash lines are trainable and those with
solid lines are locked during training.

1) Feature Distillation: We design a GAN, which con-
tains a Generator (G) and a Discriminator (D), for feature
distillation. In particular, the feature extractor of the CNN-
based student is considered as the generator G in the GAN as
shown in Fig. 3. Meanwhile, the discriminator D is designed
to maximize the similarity between the CNN-based and the
LSTM-based feature extractors and thus improve the CNN-
based feature extractor.

Given that x is the input sensory data, and x ∈ RT×n, where
T is the window size and n is the number of sensors, φ(x)
is the output of feature extractor in teacher network, while
G(x) is the output of feature extractor in student network.
The discriminator D, as a binary classification network, aims
to identify if the feature map is from the teacher’s or student’s
feature extractor. Here, D and G play a two-player mini-
max game in which D aims to maximize the probability of
correctly classifying φ(x) and G(x) from teacher and student
respectively, and G aims to minimize the probability that D
will predict G(x) from student. The objective function can be
expressed as follows:

min
G

max
D

V (D,G) = Ex[log(D(φ(x))) + log(1−D(G(x)))]

(1)
At each iteration of training stage, we firstly fix the G and

train D by maximizing the following loss function LD:

LD = log(D(φ(x))) + log(1−D(G(x))) (2)

Then, we fix D and start to train G by minimizing the
probability log(1 − D(G(x))). We further mix this GAN
objective with the L1 distance between student’s and teacher’s
features, denoted as LG:

LG = log(1−D(G(x))) + λ ∗ ‖φ(x)−G(x)‖1, (3)

where λ is a hyper-parameter to control the contribution of L1

distance in the final loss LG. Minimizing LG can thus help to
easily achieve the equilibrium of G generating perfect features
as teacher’s and D guessing with 50% accuracy.

We alternately repeat the above generator and discriminator
training process, i.e., iteratively minimizing LD and maximiz-
ing LG. Eventually, the student is able to generate the feature
maps similar to the teacher’s.

2) Knowledge Distillation: Knowledge distillation by logits
or soft labels has already been proved to be effective for
training the student in classification tasks. In this paper, we
deal with the regression task for RUL prediction. Hence, we
attempt to utilize predictions from the teacher for knowledge
distillation, similar to the logits or soft labels in classification
tasks. In particular, we define the Soft Loss LSoft as the differ-
ence between student’s prediction and teacher’s prediction in
Equation (4). We also have the Hard Loss LHard which is the
difference between student’s prediction and ground truth (i.e.,
real labels) in Equation (5). The loss function for knowledge
distillation LKD is then defined as the weighted combination
of LSoft and LHard in Equation (6).

LSoft = ‖ŷS − ŷT ‖2, (4)
LHard = ‖ŷS − y‖2, (5)
LKD = α ∗ LSoft + (1− α) ∗ LHard. (6)

Here, ŷS , ŷT represent predictions of student and teacher
networks, respectively, and y is the ground truth. α is a hyper-
parameter to adjust the weight of hard and soft losses. By
minimizing the loss for knowledge distillation LKD, we learn
the regressor module in the student for RUL prediction.

C. Identical Architecture Knowledge Transfer

In the above section, GAN-KD can help to learn a simple
CNN model by distilling the knowledge from LSTM for RUL
prediction. However, the learned CNN may not be optimal in
terms of prediction performance, due to the inherent difference
between CNN and LSTM. In this section, we aim to further
improve the CNN learned by our GAN-KD via knowledge
distillation between identical network structures.
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1) Learning-during-teaching: A few previous studies [36],
[29] have already proven the feasibility of transferring knowl-
edge between models with identical architectures. Hinton et
al. demonstrated the effectiveness of distilling knowledge
from an ensemble of models into a single model with the
same architecture [29]. However, pre-training a set of models
for ensemble is often time-consuming. On the other hand,
Yim et al. proposed a Flow of Solution Procedure (FSP)
matrix (relationship of outputs from two layers) to transfer
the knowledge flow between two identical DNN networks [36].
However, it is not straightforward on how to choose the proper
layers to calculate FSP.

In this paper, we propose a method called learning-during-
teaching knowledge distillation (LDT-KD) to update both the
student and teacher in a closed-loop process as shown in Fig.
4. Here, the teacher and student in Fig. 4 have the same
network structure and the same set of model weights. The
teacher in LDT-KD is directly copied from the student learned
by GAN-KD. To accelerate the convergence of the teacher
model, we pre-train the student in LDT-KD for several epochs
with conventional KD strategy before performing the closed-
loop process in Fig. 4. At each training step, we first update
the weights of the student with gradient descent under the
supervision of ground truth and soft labels from the teacher,
i.e., by minimizing the KD loss in Equation (6). Second, we
update the weights of the teacher using the exponential moving
average of the student weights, inspired by the mean teacher
model in [37]. It can be expressed as follows:

W i+1
T = β ∗W i

T + (1− β) ∗W i
S , (7)

where W i
T and W i

S represent the weights of the teacher
and student at training step i, respectively. β is a smoothing
parameter determining how much historical information of the
teacher model will be carried forward for the update. Once the
teacher weights are updated, we repeat the above two steps
until the stopping criteria is satisfied, e.g., the performance of
the teacher on the validate data starts to drop.

2) Sequential distillation: Our empirical study shows that
the performance of LDT-KD is superior and stable for simple
datasets. However, its performance is not consistently good for
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Fig. 5: Sequential Distillation upon LDT-KD

complex datasets, such as datasets for RUL prediction with
multiple operating conditions. To stabilize the model training
for RUL prediction, we present a sequential distillation scheme
upon the LDT-KD. The sequential distillation was firstly
proposed by Furlanello et al. in [38] where they sequentially
distilled the knowledge from a teacher with identical structure
to a student. And in each generation, a new student is required
to be initialized with a different random seed. At the end of
the procedure, they employed an ensemble of student models
from each generation and achieved a remarkable performance.

We adopt this sequential training idea upon the LDT-KD
module as shown in Fig. 5. However, our method differs from
[38] (denoted as BAN) in several aspects. First, the weights of
the teacher model are simultaneously updated with these of the
student model in our proposed LDT-KD. While the BAN fixes
the weights of the teacher model. Second, the BAN applies
an ensemble of multiple students from different generations
for final prediction. However, this ensemble version is too
luxurious for edge devices due to the requirement of more
storage memory and longer inference time. For our proposed
approach, either the final single student or teacher can be
used for RUL prediction. And both teacher and the final
student can generalize well. Third, we empirically show that
the implementation of sequential training depends on datasets.
It is only compulsory to perform sequential distillation for
complicated datasets, e.g., datasets with multiple operation
conditions.

IV. EXPERIMENTS

In this section, we evaluate the performance of our pro-
posed KDnet-RUL method to distill the knowledge for RUL
prediction.

A. Experimental Data and Setup

1) C-MAPSS Dataset: In our experiments, we used the
public C-MAPSS dataset for evaluation, which has been
widely used in many previous studies for RUL prediction [14],
[18], [17]. This dataset simulates the degradation process of
turbofan engines. It consists of four sub-datasets under varying
operating conditions and fault modes. For each sub-dataset, it
can be further divided into training and testing data, as shown
in Table I.

Each trajectory in training and testing data corresponds to an
engine and consists of 21 sensor measurements for this engine.
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TABLE I: Details of C-MAPSS Dataset

Dataset Conditions Fault Modes Train Traj. Test Traj.
FD001 1 1 100 100
FD002 6 1 260 259
FD003 1 2 100 100
FD004 6 2 248 249

The training trajectories include all run-to-failure measure-
ments for the engine units, while the testing trajectories only
contain the measurements of certain period during degradation.
The object is to accurately predict the RUL for the testing
engines given their test trajectories.

2) Data Prepossessing: We randomly split each original
training data into training and validation by the ratio of 9:1
in terms of engine units. For instance, we randomly select 90
trajectories from the total 100 trajectories in FD001 for model
training and the rest 10 trajectories for validation. Then, we
applied the following data preprocessing methods to all the
training, validation and test data.

First, 7 out of 21 sensors with constant readings (sensor
indices 1, 5, 6, 10, 16, 18, and 19) are removed and the rest
14 sensor measurements are utilized to predict the RUL [18],
[17]. A min-max normalization is applied to restrict the mea-
surement values within [0,1] to speed up the training process.
Particularly, FD002 and FD004 have 6 working conditions and
we normalize the data in each working condition for these
two datasets. A sliding window with window size T and step
size s is adopted to segment the data. For the training and
validation data, a sliding window moves with a step size s
from the starting cycle to the life-end cycle. For the test data,
we extract the last segment with the same window size. As
illustrated in Fig. 6, the RUL for the first sample is L − T ,
and the (i+ 1)th sample has a RUL of L− T − s ∗ i, where
L is the total engine life cycle.

S
e
n
s
o
r d

a
ta

Window size T

Step size s
RUL=L-T-s*i

RUL=L-T-s*(i+1)

Total Cycle Life L

Fig. 6: Data Preprocessing.

In practice, the degradation of system components at the ini-
tial stage is not significant and can be negligible. Meanwhile,
the system’s health degrades along with time when it is getting
to the end-of-life. Therefore, we follow the previous studies
[18], [39], [40] and apply piece-wise RUL. In particular, if the
true RUL is larger than the maximal RUL, it is set to RULmax

instead, as shown in Equation 8.

RUL =

{
L− T − s ∗ i, if RUL < RULmax,

RULmax, otherwise.
(8)

Following the previous studies [18], [39], [40], T , s, and
RULmax are set to be 30, 1 and 130 in our experiments,
respectively.

3) Experimental Setup: In our experiments, the teacher of
our GAN-KD is a 5-layer LSTM model with 32 hidden units in
each layer as feature extractor and 2 FC layers as regression
module. After properly training and hyperparameter tuning,
we can obtain a decent performance for the teacher on the
RUL prediction task. Subsequently, we develop a compact
student, which consists of a feature extractor with dilated
CNN structure and a regression module with 2 FC layers.
We denote the student model, which is firstly trained from
scratch under the supervision of ground truth only, as “Student
Only”. The proposed GAN-KD is evaluated by training a new
student under the supervision of both pre-trained LSTM-based
teacher and ground truth. We use the validation set to choose
the student model and validate its performance on the test set.
The selected student is further employed as the teacher at the
open-loop pre-train stage of identical architecture knowledge
transferring by using the LDT-KD. Similarly, for the sequential
self-distillation, we use the teacher selected by the validation
set in previous generation as the teacher for next generation.

For the proposed KDnet-RUL, it consists of GAN-KD,
LDT-KD and sequential distillation. Some hyper-parameters
need to be determined. Specifically, we set the batch size of
256, learning rate of 1e-3, optimizer of Adam, training epochs
of 160 for the proposed method. For GAN-KD, we choose
λ = 1.0 for Equation (3). A grid search is adopted to identify
the α in Equation(6) from the range α ∈ [0.0, 1.0] with a step
size of 0.1. For LDT-KD, we use β = 0.99 for the smoothing
parameter. Considering the randomness of model initialization,
all reported results are the average of 5 repeats.

The FD001 and FD003 are relatively simple datasets with
only one working condition. The empirical study shows that
the sequential distillation scheme upon LDT-KD is not re-
quired on these simple datasets. While for the complicated
FD002 and FD004 datasets with multiple working conditions,
we adopt the sequential distillation upon LDT-KD to further
improve the performance. Specifically, in experiments, we
empirically find that three generations are adequate to achieve
a satisfactory performance on FD002 and FD004.

4) Evaluation Metrics: Same as previous works, two com-
monly used metrics are adopted to validate the proposed
method, i.e., Root Mean Square Error (RMSE) and Score
function. The RMSE is a standard way to measure the error
of model predictions, which is defined as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2, (9)

where ŷi and yi are the predicted RUL and true RUL,
respectively. N is the total number of samples. The Score
function, defined as Equation (10), was designed to place
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TABLE II: Performance comparison among various approaches on four datasets

RMSE Score
Methods FD001 FD002 FD003 FD004 FD001 FD002 FD003 FD004

Student Only 15.4 17.03 15.68 17.08 446.12 1575.42 605.90 1601.93
Teacher 13.17 14.47 13.57 16.11 276.39 982.53 349.30 1288.88

Standard KD 15.33 16.51 15.49 16.85 401.53 1198.37 675.38 1361.24
L1-KD 15.12 16.13 17.60 17.12 390.12 1082.43 831.13 1423.88
L2-KD 15.14 16.21 15.39 16.99 396.78 1111.07 610.84 1369.45

MMD-KD 14.82 16.42 16.88 17.01 381.39 1104.46 778.39 1339.75
CORAL-KD 14.88 16.53 17.53 17.52 386.53 1229.30 884.68 1564.14

BAN 15.13 15.05 14.86 16.15 440.96 1045.45 546.55 1315.21
KDnet-RUL 13.68 14.47 12.95 15.96 362.08 929.20 327.27 1303.19

more penalization on late predictions than early predictions,
as late predictions may lead to more serious catastrophic
consequences. Same as RMSE, the lower the Score is, the
better performance the model can achieve.

Score =

{∑N
i=1(e

− ŷi−yi
13 − 1), if ŷi < yi,∑N

i=1(e
ŷi−yi

10 − 1), otherwise.
(10)

B. Comparison with Benchmark Approaches
To verify the effectiveness of the proposed method, we have

compared with some benchmark approaches, including the
standard KD [29], L1-KD [34], L2-KD [30]. To demonstrate
the effectiveness of proposed sequential distillation upon LDT-
KD, we also compare it with the BAN in [38] which is
also sequentially trained with self-distillation. Particularly, we
use ‘Student Only’ as the teacher in the 1st generation for
the BAN. Note that the BAN does not have the ability of
model compression. It can only improve model generalization
performance at the expense of model complexity in terms
of memory and inference time. In experiments, we use the
ensemble of multiple students with five generations for the
BAN on RUL prediction. Moreover, considering the disparate
network architectures between teacher and student, the feature
distillation step can also be treated as a domain alignment
task which intends to minimize the discrepancy of feature
distributions between teacher and student. In order to further
validate the effectiveness of the proposed method, we also
explore several domain alignment techniques, combined with
our framework, such as Maximum Mean Discrepancy (MMD)
[41] and Correlation Alignment (CORAL) [42].

Table II shows the evaluation results of different methods
on the four sub-datasets. The “Student Only” which imple-
ments a dilated CNN performs the worst due to its compact
network structure. The teacher model which is built upon
the LSTM structure performs much better than the ‘Student
Only’. All the KD methods improve the performance of the
student. This indicates the effectiveness of the KD algorithms
for improving the performance of the student network. The
BAN can effectively improve the performance of the student
model, especially on the complicated scenarios, i.e., FD002
and FD004. Among all the methods, the proposed KDnet-RUL
performs the best in terms of both RMSE and Score. Besides,
it achieves a comparable performance to the teacher model.
In particular, the proposed method outperforms the teacher
network on FD002 and FD003 in terms of both RMSE and

Score. For FD004, the proposed KDnet-RUL has a superior
performance over the teacher model in terms of RMSE.

To verify the effectiveness of dilated CNN as the student,
we further compare dilated CNN with conventional CNN
[14] under two different scenarios as shown in Table III. In
Case I, we train them from scratch for RUL prediction (i.e.,
Student Only). In Case II, we train them as the students in our
KDnet-RUL framework, under the guidance of LSTM-based
teacher. Comparing with conventional CNN [14], the dilated
CNN is capable of modeling temporal information in time
series sensory data, which is vital for RUL prediction. We can
observe that dilated CNN performs better than conventional
CNN under two different scenarios as shown in Table III.
Moreover, our KDnet-RUL can also improve the performance
of conventional CNN via knowledge distillation from LSTM,
further demonstrating the effectiveness of our proposed knowl-
edge distillation framework.

Table IV compares the complexities of the teacher and
student models. Here, we consider the number of weights
and total floating-point operations (TFPO) when comparing
model complexity. More weights and TFPO refer to a more
complex model. Note that, for the proposed KDnet-RUL, the
final model is the student network after training. It can be
found that the number of weights of the student model is
12.8 times less than the teacher model. During inference, the
student model only requires 52,400 TFPO which is 46.2 times
more efficient than the teacher model.

In conclusion, the proposed KDnet-RUL can achieve a
comparable performance to a very complex LSTM network,
but with a much more efficient structure, i.e., 12.8 times less
weights and 46.2 times less TFPO.

C. Ablation Study

Recall that our KDnet-RUL consists of three components,
namely, GAN-KD, LDT-KD and sequential distillation. In this
section, we conduct an ablation study to analyze how each
component affects the model performance. In particular, we
derive the following model variants for ablation study.

• LDT-KD: the teacher of this variant is a CNN trained
from scratch, i.e., “Student Only”.

• GAN-KD: the teacher of this variant is a 5-layer LSTM.
• GAN-KD+LDT-KD: LDT-KD in this variant uses the

student learned by GAN-KD as its teacher.
Note that, our empirical study shows that the sequential dis-

tillation upon LDT-KD does not present further improvement
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on the relatively simple datasets, i.e., FD001 and FD003 with
one working condition. One possible reason is that there is
a performance threshold for student due to the limited model
capability and such threshold can be easily reached for those
relatively simple datasets. Therefore, we don’t perform the
sequential distillation upon LDT-KD on FD001 and FD003,
i.e., KDnet-RUL refers to GAN-KD+LDT-KD on FD001 and
FD003. For the complicated datasets, i.e., FD002 and FD004
with six working conditions, the sequential distillation upon
LDT-KD can further enhance the performance of the KDnet-
RUL model. KDnet-RUL refers to the combination of three
components on FD002 and FD004.

Fig. 7 illustrates the experimental results of the ablation
study on FD001 and FD003. It is clear that both the LDT-KD
and GAN-KD can significantly improve the performance of
the student network. The KDnet-RUL with both GAN-KD and
LDT-KD is able to further enhance the performance, especially
on the FD003 dataset, in terms of both RMSE and Score. It
even outperforms the powerful and complex teacher network
on FD003. This indicates that the proposed GAN-KD and
LDT-KD are effective for RUL prediction on simple datasets.

The experimental results on the complicated FD002 and
FD004 are shown in Fig. 8. In this scenario, the KDnet-RUL
is the combination of all the three components. Similarly, the
performance of the student network can be enhanced by the
proposed GAN-KD and LDT-KD, except for the RMSE on
FD004. When combining the GAN-KD and LDT-KD (i.e.,
GAN-KD+LDT-KD in 8), the performance improvement is
marginal. For the Score values on FD004, including LDT-
KD even degrades the performance of the model. However,
when combining sequential distillation upon LDT-KD (i.e.,
with multiple generations of LDT-KD), the performance of
model is consistently improved. With several generations (i.e.,
three generations of LDT-KD in this paper), the performance
of the model becomes stable and even better than the teacher
network in terms of the RMSE on FD004 and the Score on
FD002.
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Fig. 7: The results of the ablation study on FD001 and FD003.
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Fig. 8: The results of the ablation study on FD002 and FD004.

In a word, the proposed KDnet-RUL does not require
sequential distillation upon LDT-KD (i.e., only one LDT-KD)
to ensure a superior performance for simple datasets. While the
sequential distillation upon LDT-KD (i.e., several generations
of LDT-KD) is compulsory for complex datasets.

D. Parameter Sensitivity Analysis
In this subsection, we conduct the sensitivity analysis for

parameters α, λ and β. In particular, we adopt the grid search
method on the validation set for parameter tuning.

a) Parameter α: Fig. 9 shows the impact of a key hyper-
parameter α in Equation (6), which controls the contribution
of truth labels and soft labels when supervising the training
of the student network. Two special cases are α = 0.0 and
α = 1.0, which respectively means only using the ground truth
and only using the soft labels for training. However, α = 1.0
will gradually mislead the student in LDT-KD and Sequential
distillation process, such that the performance of teacher and
student will degrade rapidly over generations due to the error
accumulation if there is no correction from truth labels. Hence,
we omit the result of α = 1.0 in Fig. 9. As we can see, the
soft labels produced by teacher are more contributive to the
performance than the ground truth. In most cases, a higher α
value tends to yield better performance. In our experiments,
we set α as 0.7 on FD001, FD002 and FD003, and 0.8 on
FD004. Empirically, we would recommend α = 0.7 for our
proposed model.

b) Parameter λ: Fig. 10 illustrates the impact of hyper-
parameter λ in Eq. (3) on model performance for the four sub-
datasets. As we can see, λ = 0.0 performs worst in terms of
RMSE and Score. It demonstrates that integrating L1 distance
during training the generator G can help to improve model
performance as aforementioned. With λ increasing from 1
to 10, model gradually performs worse since the training of
generator relies more on L1 distance, which is harmful for
disparate architecture knowledge transfer.

TABLE III: Performance Comparison between Conventional CNN and Dilated CNN

Scenarios RMSE Score
FD001 FD002 FD003 FD004 FD001 FD002 FD003 FD004

Case I:
Student Only

Conventional-CNN 17.24 22.79 20.23 23.17 638.92 1481.48 1128.55 2387.43
Dilated-CNN 15.4 17.03 15.68 17.08 446.12 1575.42 605.90 1601.93

Case II:
KDnet-RUL

Conventional-CNN 16.15 19.65 18.22 20.96 491.94 1209.54 797.96 1968.64
Dilated-CNN 13.68 14.47 12.95 15.96 362.08 929.20 327.27 1303.19
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TABLE IV: Comparison of model complexity.

Teacher
(LSTM-based)

Student
(CNN-based) Rate

No. of weights 114,753 8,949 12.8×
No. of TFPO 2,423,360 52,400 46.2×
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Fig. 9: Sensitivity analysis of parameter α.
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Fig. 10: Sensitivity analysis of parameter λ.

c) Parameter β: Fig. 11 shows the performance of the
teacher learned by LDT-KD with different values for the
hyper-parameter β in Eq. (7). Small β will dramatically update
teacher’s model parameters and will make the model hard to
converge. Empirically, we would recommend β = 0.99 for our
proposed model.

E. Results on PHM2008 Challenge Dataset

PHM2008 Challenge dataset was used for prognostics chal-
lenge competition at the International Conference on Prog-
nostics and Health Management (PHM2008) [4]. It is also
widely used to evaluate the performance of models for RUL
prediction. Since the true RUL values of the challenge dataset
are not released, the results need to be uploaded to NASA Data
Repository website, where the RUL Score will be generated
for performance evaluation.
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Fig. 11: Sensitivity analysis of parameter β.

TABLE V: Results on PHM 2008 Challenge Dataset

Methods Score
MLP [14] 3212
SVR [14] 15886
RVR [14] 8242
CNN [14] 2056

LSTM [16] 1862
Attention-LSTM [18] 1584

Teacher 1602
Student Only 3136
Standard KD 2124

L1-KD 1766
L2-KD 1704

MMD-KD 1580
CORAL-KD 1962
KDnet-RUL 1489

Table V shows the results on the PHM2008 Challenge
Dataset. In addition to various KD baselines, we also included
the results of various RUL prediction methods (e.g., CNN
[14], LSTM [16] and Attention-based LSTM [18]) in Table
V. It is clear that various KD methods can effectively help
to improve the performance of a compact student (“Student
Only”). The proposed KDnet-RUL has a superior performance
over not only state-of-the-art RUL prediction approaches but
also various benchmark KD methods.

V. CONCLUSION

In this paper, we proposed a deep model compression
framework based on knowledge distillation (KD), named
KDnet-RUL, for machine remaining useful life prediction.
The KDnet-RUL consists of three components, i.e., generative
adversarial network based KD (GAN-KD), learning-during-
teaching based KD (LDT-KD) and sequential distillation. A
complicated LSTM based model was adopted as a powerful
teacher and a dilated convolutional neural network (CNN)
was utilized as an efficient student. By using the proposed
KDnet-RUL, the student network can achieve comparable
performance with the teacher network, but with 12.8 times
less weights and 46.2 times less total float point operations.

In the future, we will consider a more real and challenging
scenario where the data for training and testing may come from
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different distributions, caused by the changing environments or
varying machines. For instance, we have built a model based
on the collected dataset A from machine A. When directly
using this RUL prediction model on a new Machine B which
may have different data distributions due to different operation
conditions, the performance of the model will significantly
degrade. While collecting a new dataset from machine B to
re-train the model is tedious and requires lots of efforts. Instead
of doing that, we intend to transfer the knowledge learned from
dataset A to the new machine B without collecting labeled data
from machine B, which is also known as domain adaptation
[43], [44]. In this practical scenario, both model compression
and domain adaptation need to be considered.
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