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ABSTRACT Traditional intelligent fault diagnosis typically works well when the labeled training data
(source domain) and unlabeled testing data (target domain) are drawn from the same distribution. However,
in many real-world applications, this does not hold as the working conditions can vary between training and
testing time. In this paper, a Domain Adaptive Convolutional Neural Networks called DACNN is proposed
to address the issues of intelligent fault diagnosis when the data at training and test time do not come from
the same distribution as a domain adaptation problem. DACNN consists of three parts: a source feature
extractor, a target feature extractor, and a label classifier. In order to obtain strong fault-discriminative
and domain-invariant capacity, we adopt a two-stage training process. First, to get the fault-discriminative
features, the source feature extractor is pre-trained with labeled source training examples to minimize the
label classifier error. Then, during the domain adaptive fine-tuning stage, the target feature extractor is
trained to minimize the squared Maximum Mean Discrepancy (MMD) between the output of the source and
target feature extractor, such that the instances sampled from the source and target domains have similar
distributions after the mapping. Moreover, the layers between the source and target feature extractors in our
DACNN are partially untied during the training stage in order to take both training efficiency and domain
adaptation into consideration.
Experiments on the bearing and gearbox fault data showed that DACNN can achieve high fault diagnosis
precision and recall under different working conditions, outperforming other intelligent fault diagnosis
methods. We also demonstrate the ability to visualize the learned features and the networks to better
understand the reasons behind the remarkable performance of our proposed model.

INDEX TERMS convolutional neural networks, domain adaptation, deep learning, intelligent fault
diagnosis, transfer learning

I. INTRODUCTION

MACHINE health monitoring is of great importance in
modern industry. Machine failures could cause great

economic loss, and sometimes even pose threats to the people
who work with the machines. There is, therefore, an unceas-
ing need to keep the industrial machines working properly
and reliably through better and more intelligent machine
health monitoring technique [1], [2].

In recent years, deep learning techniques have achieved

huge successes in computer vision [3], [4] and speech recog-
nition [5], [6]. Some deep learning techniques have recently
found their way into machine health monitoring systems. For
example, Jia et al. took the frequency spectra generated by
fast Fourier transform (FFT) as the input of a stacked au-
toencoder (SAE) with three hidden layers for fault diagnosis
of rotary machinery components [7]. Zhu et al. proposed
a SAE model for hydraulic pump fault diagnosis that used
frequency features generated by Fourier transform [8]. Liu
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et al. used the normalized spectrum generated by the Short-
time Fourier transform (STFT) of sound signals as the input
of a SAE model consisting of two layers. Multi-domain
statistical features including time domain features, frequency
domain features, and time-frequency domain features have
also been fed into the SAE model as a way of feature fusion
[9], [10]. While there were some researchers focusing on
deep belief networks (DBN) [11]–[13], the convolutional
neural networks (CNN) [14], [15], which is popular for deep
learning for image recognition, is also becoming popular for
intelligent fault diagnosis of mechanical parts. For example,
1-D raw time vibration signals were used as the inputs of the
CNN model for motor fault detection in [16], which success-
fully avoided the time-consuming feature extraction process.
Guo et al. [17] proposed a hierarchical CNN consisting of
two functional layers, where the first part is responsible for
fault-type recognition and the other part is responsible for
fault-size evaluation.

Most of the above proposed methods work well in the
situation when the data used to train classifier and the data
for testing are under the same working condition, in other
words, under the common assumption that the labeled train-
ing data (source domain) and unlabeled testing data (target
domain) are drawn from the same distribution. However,
this assumption does not hold in practice. As the working
condition varies in real-world applications, the labeled data
obtained in one working condition may not follow the same
distribution in another different working condition. When the
distribution changes, most fault diagnosis models need to be
rebuilt from scratch using newly recollected labeled training
data. However, it is very expensive, if not impossible, to
annotate huge amounts of training data in the target domain
to rebuild a new model.

As one of the important research directions of transfer
learning, domain adaptation (DA) typically aims at min-
imizing the differences between distributions of different
domains in order to minimize the cross-domain prediction
error by taking full advantage of information coming from
both source and target domains. DA has recently been intro-
duced into the field of fault diagnosis, such as [18]–[22]. For
instance, Zhang et al. [20] took 1-D raw time vibration signal
as the input of the CNN model, which realize fault diagnosis
under different working loads. The domain adaptation capac-
ity of this model originates from the method named Adaptive
Batch Normalization (AdaBN). Lu et al. [19] and Wen et al.
[22] separately integrated the maximum mean discrepancy
(MMD) as the regularization term into the objective func-
tion of the deep neural networks (DNN) and the three-layer
sparse auto-encoder (SAE) to reduce the differences between
distributions cross domains. In general, the main problem for
domain adaptation is the divergence of distribution between
the source domain and the target domain. We need to learn
a feature representation that is both fault-discriminative and
simultaneously domain-invariant. The fault-discriminative
ability means that the learned feature representation should
minimize the label classifier error, i.e., has a good ability to

identify different faults. The domain-invariant ability means
that instances sampled from the source and target domains
should have similar distributions in the learned feature space.

We designed a Domain Adaptive model based on CNN
named DACNN, which simultaneously satisfied the above
fault-discriminative and domain-invariant requirements. The
details of the model will be shown in Section IV.

The main contributions of this work are summarized as
follows:

The proposed DACNN consists of three parts, namely,
a source feature extractor, a target feature extractor, and a
label classifier. We adopt the two-stage training process to
train our DACNN to ensure its strong fault-discriminative
and domain-invariant capacity. In particular, unlike other
existing deep domain adaptation models, we partially untied
the layers between the source and target feature extractors in
the proposed DACNN to ensure both training efficiency and
domain adaptation capability.

The rest of paper is organized as follows. Section II
shows the influence of the change in working conditions on
the fault diagnosis model. In Section III, some preliminary
knowledge that will be used in our proposed framework is
briefly reviewed. Section IV introduces the construction of
our proposed DACNN. A series of experiments on the classic
CWRU bearing fault data and the 2009 PHM gearbox fault
data are conducted in Section V and Section VI respectively.
Finally, we conclude this paper in Section VII.

II. THE INFLUENCE OF THE CHANGE IN WORKING
CONDITIONS
Most of the fault diagnosis models work well only under a
common assumption: The training and test data are drawn
from the same distribution. However, in real-world applica-
tions of fault diagnosis, the working conditions (e.g. motor
load and speed) may change from time to time according
to the requirements of the production. The distributions of
data collected from different working conditions are similar
but nonetheless different. For example, the training samples
for building the classifier may be collected from the work
condition without motor load, while the resulting classifier
is used to classify the defects of a bearing system under
different motor load states. The target data distributions with
various motor load states will be different from the source
data distribution for training the fault diagnostic classifier,
even though the categories of defects to be detected have
remained unchanged.

In order to show the influence of the change in working
conditions on the fault diagnosis model, the motor bear-
ing signals provided by Case Western Reserve University
(CWRU) [23] and the state-of-the-art two-stage intelligent
fault diagnosis method proposed by Lei [24] are analyzed in
this section.

The vibration signals were collected from the drive end
of a motor in the test rig under four different conditions:
1) normal condition; 2) inner-race faults (IF); 3) outer-race
faults (OF); and 4) ball fault (BF). For IF, OF, and BF
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cases, vibration signals for three different severity levels
(0.007 inches, 0.014 inches, and 0.021 inches) were sepa-
rately collected. The sampling frequency was 12 kHz and
the signals were all collected under four working conditions
with different motor load and rotating speed, i.e., Load0 =
0hp/1797rpm, Load1 = 1hp/1772rpm, Load2 = 2hp/1750rpm
and Load3 = 3hp/1730rpm. Further details regarding the data
description can be found in section V.

According to the description given by Lei [24], there are
100 samples for each health condition under one load, where
each sample is a vibration signal of bearings containing
1200 data points. Therefore, the motor bearing dataset totally
contains 4000 samples, namely DAll, which consists of four
working conditions.

In the first learning stage, local discriminative features are
extracted from raw vibration signals from DAll by whiten-
ing, sparse filtering and local feature averaging. PCA is
implemented on the learned features, and their first three
PCs are shown in Figure 1. As illustrated in Figure 1(a),
without considering the working conditions of the samples,
most samples of the same health condition are gathered in
the corresponding cluster and most samples of the different
health conditions are separated. However, in order to show
the influence of the change in working conditions on the
distributions of the data, we mark the samples collected from
working condition Load3 and Load1 separately in Figure
1(b). From Figure 1(b), we can find that the change in
working conditions obviously affected the distributions of the
samples of partial health conditions, such as 0.007/IF (Inner-
race Faults with severity level of 0.007 inches), 0.007/BF,
0.007/OF, 0.014/BF and 0.021/IF.
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FIGURE 1: Scatter plots of PCs for the learned features. Ten
different kinds of faults are denoted by ten different colors
respectively. (a) the motor bearing dataset DAll consists
of four working conditions. (b) the motor bearing dataset
consists of two working conditions, where cross symbols
represent the working condition Load3 and square symbols
represent the working condition Load1.

In the second stage, the soft-max regression model is
applied by Lei [24] to classify mechanical health conditions
using the learned features. We implement the soft-max re-

gression model using the Tensorflow toolbox of Google and
keep all the parameter settings the same as Lei [24] did.
Similarly, in order to demonstrate the effect of the change
in working conditions on the fault diagnosis accuracy, two
models are trained separately. The first soft-max regression
model is trained by 10% of samples randomly selected from
DALL, and the testing accuracy is 99.6% with a small stan-
dard deviation. The accuracy’s and loss’s trends are visual-
ized in Figure 2. Then, 10% of samples collected from the
working condition Load3 are randomly selected to train the
second soft-max regression model and tested by all of the
samples collected from the working condition Load1. Figure
3 shows the corresponding accuracy’s and loss’s trends. The
validating accuracy is 99%, but the testing accuracy is merely
78.02%.
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FIGURE 2: The first soft-max regression model trained by
10% of samples randomly selected fromDALL. (a) The train-
ing accuracy’s and test accuracy’s trends. (b) The training
loss’s and test loss’s trends.
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FIGURE 3: The second soft-max regression model trained
by randomly selecting 10% of samples collected from the
working condition Load3 and tested by all of the samples
collected from the working condition Load1. (a) The training
accuracy’s, validating accuracy’s and test accuracy’s trends.
(b) The training loss’s, validating loss’s and and test loss’s
trends.

From the above-mentioned experimental results, we can
conclude that the change in working conditions does change
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the distribution of the data and affect the accuracy of the
fault diagnosis model severely. Therefore, the goal of this
paper is to be able to predict labels given a sample from one
working condition correctly while the classifier is trained by
the samples collected from another working condition.

III. PRELIMINARY KNOWLEDGE
A. DOMAIN ADAPTATION
The above practical problem of varying working conditions
for fault diagnosis can be regarded as a domain adaptation
(DA) problem. According to the survey on domain adap-
tation for classification [25], a domain D consists of two
components: a feature space X and a marginal probability
distribution PX , where X ∈ X . Given a specific domain, a
task T consists of two components: a label space Y and a
prediction function f(X). Given a source domain DS and a
corresponding learning task TS , a target domain DT and a
corresponding learning task TT , domain adaptation aims to
improve the learning of the target predictive function fT in
DT using the knowledge in DS and TS , where DS 6= DT
and TS = TT , i.e., the tasks are the same but the domains are
different.

The problem of fault diagnosis under varying working
conditions can be framed as a domain adaptation problem
by regarding samples collected from different working con-
ditions as different domains:

• The feature spaces between domains are the same,
XS = X T (e.g. the fast Fourier transform (FFT) spec-
trum amplitudes of raw vibration temporal signals) , but
the marginal probability distributions of the input data
are different, PSX 6= PTX .

• The label spaces between domains are the same, YS =
YT = {1, ...,K}, where K is the number of fault types.

B. DOMAIN DIVERGENCE MEASURE
The main problem in domain adaptation is the divergence of
distribution between the target domain and source domain.
Ben-David et al. [26], [27] defines a divergence measure
dH∆H(PSX , P

T
X) between two domains DS and DT , which

is widely used in the theory of nonconservative domain
adaptation. Using this notion, they established a probabilistic
bound on the performance εT (h) of some label classifier h
evaluated on the target domain DT given its performance
εS(h) on the source domain DS . Formally,

εT (h) ≤ εS(h) +
1

2
dH∆H(PSX , P

T
X) + λ, (1)

where λ is supposed to be a negligible term and dose not
depend on classifier h.

Eq. 1 tells us that to adapt well, one has to learn a
label classifier h which works well on source domain while
reducing the dH∆H(PSX , P

T
X) divergence between DS and

DT .

C. MAXIMUM MEAN DISCREPANCY
Many criteria can be used to estimate the divergence of
distribution between different domains, such as Kullback-
Leibler (K-L) divergence and Maximum Mean Discrepancy
(MMD) [28]. Different from K-L divergence, which needs
an intermediate density estimation, MMD is a nonparametric
estimation criterion for comparing distributions of data sets
based on Reproducing Kernel Hilbert Space (RKHS).

Given observations XS = {xiS}|
NS
i=1 and XT = {xiT }|

NT
i=1,

drawn independently and identically distributed (i.i.d.) from
PSX and PTX respectively, the empirical estimate of the
squared MMD in a reproducing kernel Hilbert space H with
associated continuous kernel k(·, ·) can be formulated as
follows:

MMD2 (XS , XT ) =
1

NS
2

NS∑
i,j=1

k(xSi , x
S
j )

− 2

NSNT

NS∑
i=1

NT∑
j=1

k(xSi , x
T
j )

+
1

NT
2

NT∑
i,j=1

k(xTi , x
T
j ).

(2)

MMD(XS , XT ) vanishes if and only in PSX = PTX , when
NS , NT →∞.

IV. PROPOSED DOMAIN ADAPTIVE CNN
A. PROBLEM FORMALIZATION
Let the labeled source domain data beDS = {(xiS , yiS)}|NS

i=1,
where xiS ∈ Rm×1 is the data instance, yiS ∈ {1, ...,K}
is its corresponding class label, and DT = {(xiT )}|NT

i=1 is
the unlabeled target domain data. Here, NS and NT are the
numbers of instances in DS and DT .

The overall framework of the proposed Domain Adaptive
CNN (DACNN) is shown in Figure 4. It includes a source
feature extractor MS , a target feature extractor MT and a
label classifier C, which together form a deep feed-forward
architecture that maps each input sample xiS (resp. xiT ) to a
K-dimensional feature vector MS(xiS) (resp. MT (xiT )) (K
equals to the number of class label) and predicts its class label
y ∈ {1, ...,K}.

We use the following two-stage training procedure to
enhance the domain adaptation ability of our model:

1) Pre-training the source feature extractor MS to min-
imizes the label prediction loss εS(C) for the labeled
source domain samples.

2) Initialize the parameters of the target feature extractor
MT with the pre-trained source feature extractor MS ,
then perform domain adaptive fine-tuning to ob-
tain fault-discriminative and simultaneously domain-
invariant feature extractors by partially untying higher
layers between MS and MT .

During testing, unlabeled target examples are mapped
with the target feature extractor MT to the latent feature
space and classified by the source label classifier C.
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FIGURE 4: The proposed Domain Adaptive CNN (DACNN) includes a source feature extractor MS , a target feature extractor
MT and a label classifier C.

Our work is primarily motivated by the probabilistic bound
in Eq. 1 proposed by Ben-David et al. in 2010. Based on
this bound, to adapt well, one has to learn a label classifier
which works well on source domain while reducing the di-
vergence of distribution between domains. This inspired the
current proposed two-stage training procedure. Firstly, the
pre-training stage corresponds to learning a label classifier
C which works well on the source domain using the labeled
source domain samples. Then, the domain adaptive fine-
tuning stage corresponds to making a trade-off between
reducing the divergence between domains and maintaining
classifier’s performance on the labeled source domain data.
The divergence is measured by the squared MMD between
domains in our proposal.

Moreover, similar to our model, the Deep Adaptation
Networks (DAN) [29] applies the multiple kernel variant
of MMD (MK-MMD) for the purpose of minimizing the
difference between the source and target feature distributions
under the higher layers of CNN. Different from our two-stage
training procedure, the DAN chooses to simultaneously fine-
tune the CNN on the source labeled examples and update
the higher fully connected layers for the source and target
examples respectively by adding an MK-MMD-based multi-
layer adaptation regularizer to the CNN risk. However, we
choose to separately train the feature extractor MS and MT

in the two-stage procedure. Because the target domain has no
labeled samples, and the feature extractor MT may quickly
learn a degenerate solution if we don’t initialize those higher
untied layers in MT by the parameters of the pre-trained
source feature extractor MS . Actually, the DAN also faces
the problem of how to initialize the parameters of the higher

fully connected layers for the unlabeled target domain. Un-
like our model, they choose to start with an AlexNet model
pre-trained on ImageNet 2012.

We are now ready to present each step of the proposed
framework.

B. PRE-TRAINING
As shown in Figure 5, we compose the source feature
extractor MS from multiple convolutional layers and fully-
connected layers. The input of the first convolution layer can
be the fast Fourier transform (FFT) spectrum amplitudes of
vibration signals, which is the most widely used approach
of fault detection. The last fully-connected layer is called
label layer [30] with an output of K neurons (equals to the
number of the class label), which is fed to label classifier
C to estimate the posterior probability of each class. It is
common to add a pooling layer after each convolution layer
in the CNN architecture separately. It functions as a down-
sampling operation which results in a reduced-resolution
output feature map, which is robust to small variations in
the location of features in the previous layer. The most com-
monly used pooling layer is the max-pooling layer, which
performs the local max operation over the input features. In
order to capture the useful information in the intermediate
and low-frequency bands, the wide kernels should be used in
the first convolutional layer which can better suppress high-
frequency noise [20]. The following convolutional kernels
become gradually smaller which make the networks deeper
to acquire good representations of the input signals and
improve the performance of the networks.

For an source domain instance xiS , the output feature
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FIGURE 5: First training step - Pre-training.

vector MS(xiS) ∈ RK×1 mapped by the source feature
extractor MS is the input of the label classifier C. Here, the
soft-max regression model [31] is used as the label classifier
on the source domain to incorporate label information. The
soft-max regression model is a generalization of the logistic
regression model for multi-class classification problems. We
can estimate the probabilities of each class that xiS belongs
to as follows,

C
(
MS(xiS)

)
=


p
(
y = 1|xiS

)
p
(
y = 2|xiS

)
...

p
(
y = K|xiS

)
 =

1∑K
j=1 e

uj


eu1

eu2

...
euK

 ,
(3)

where uj = MS(xiS)j is the j-th value of MS(xiS),∑K
j=1 e

uj is a normalized term, and p
(
y = j|xiS

)
represent

the distribution of the class j ∈ {1, 2, ...,K} given the
instance xiS .

The details of the pre-training step are shown in Algorithm
1. Give the source domain data DS , the parameters of the
source feature extractor MS can be derived by minimizing
the following cost function,

Lcls(DS) =
1

NS

NS∑
i=1

K∑
j=1

1{yiS = j}
[
logC

(
MS(xiS)

)
j

]
,

(4)
where 1{yiS = j} is an indicator function, whose value is 1
if yiS = j, otherwise 0.

C. DOMAIN ADAPTIVE FINE-TUNING
Given that the target domain is unlabeled, we first initialize
the parameters of the target feature extractor MT with the
pre-trained source feature extractor MS .

As shown in Figure 6, we choose to learn the parameters
of the target feature extractor MT by partially untying higher
layers between the source and target mappings, which is
based on the following two reasons.

Firstly, the approaches of most published domain adapta-
tion models can be summarized into two categories: sym-
metric transformation and asymmetric transformation. For
many prior symmetric transformation methods [32], [33],

Algorithm 1: Pre-training

Function Pretrain():
Data: Given one source domain

DS = {(xiS , yiS)}|NS
i=1.

Result: The parameters in the source feature
extractor MS .

begin
for number of training iterations do

Sample minibatch of m instances
{(x1

S , y
1
S), ..., (xmS , y

m
S )} from the source

domain DS ;
Update the domain discriminator MS by

ascending its stochastic gradient;
5MS

1
m

∑m
i=1

∑K
j=1 1{yiS =

j}
[
logC

(
MS(xiS)

)
j

]
.

end
end

end

all layers are constrained, thus enforcing exact source and
target mapping consistency. Although learning a symmetric
transformation can reduce the number of parameters in the
model, this may make the optimization poorly conditioned,
since the same networks must handle samples from two sep-
arate domains [34]. The intuitive idea behind the asymmetric
transformation is to constrain a subset of the layers. Rozant-
sev et al. [35] showed that partially shared weights can lead
to effective adaptation in both supervised and unsupervised
settings.

Second, in the standard CNN, deep features must eventu-
ally transition from general to specific by the last layer of the
networks, and the transferability gap grows with the domain
discrepancy and becomes particularly large when transferring
the higher layers.

For an instance xiS (resp. xiT ), the output feature vector
MS(xiS) (resp. MT (xiT )) mapped by the feature extractor
MS (resp. MT ) is denoted by ξiS (resp. ξiT ). Since there are
no labeled data in the target domain, we propose to learn the
divergence between domains by the squared MMD distance
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FIGURE 6: Second training step - Domain adaptive fine-tuning. Solid lines indicate tied layers and dashed lines indicate untying
adaptive layers.

between their marginal distributions PMS(xS) and PMT (xT ).
So, a good trade-off between reducing the divergence be-
tween domains and maintaining classifier’s performance on
the labeled source domain data can be achieved by adding
the following squared MMD based domain adaptation regu-
larizer (2) to the cost function of label classifier C (4),

min
MS ,MT

Lcls + λMMD2(ξS , ξT ), (5)

where λ > 0 is a trade-off parameter. We then assume that
suchMS andMT satisfy PY |MS(xS) ≈ PY |MT (xT ) [36]. The
details are shown in Algorithm 2.

On the other hand, the output of the last fully-connected
layer could be regarded as a type of conditional distribution
over the classes, and the output of other layers could be taken
as the marginal distribution of features. Although the MMD
matching is only done on the last layer of the networks in our
current model, all the parameters of the untied layers of the
target feature extractor MT are updated during the process of
back-propagation in the domain adaptive fine-tuning stage.
Therefore, in the process of parameter updating, the domain
discrepancy underlying both the marginal distribution and the
conditional distribution could be essentially reduced.

D. TESTING
After all the parameters are learned, we can construct a
classifier for the target domain by directly using the output
of the last fully connected layer of the target feature extractor
MT . As shown in Figure 7, for any instance xiT in the target
domain, the output of the target feature extractor MT (xiT )
can compute the probability of instance xiT belonging to the
label j ∈ {1, ...,K} using Eq. 3. We choose the maximum
probability using Eq. 6, and the corresponding label j as the
prediction,

yiT = max
j

euj∑K
m=1 e

um

, with uj = MT (xiT )j . (6)

V. CASE STUDY 1: FAULT DIAGNOSIS OF ROLLING
BEARING USING THE PROPOSED METHOD
Rolling bearings are the most commonly used components in
rotating machinery, and bearing faults may result in signif-
icant breakdowns, and even casualties [37], [38]. However,
learning an effective fault diagnostic model is challenging as
the training vibration signals used for bearing fault diagnosis
might be collected under the work condition without the mo-
tor load, while the actual application is to classify the defects
from a bearing system under different motor load states. As
the target data distribution changes with varying motor loads,
the machine learning model must be able to use unlabeled
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FIGURE 7: Third training step - Testing.

Algorithm 2: Domain adaptive fine-tuning
,
Function Finetune():

Data:
Given one source domain DS = {(xiS , yiS)}|NS

i=1, and
one target domain DT = {(xiT )}|NT

i=1.
The parameters of the pre-trained source feature
extractor MS .
The number of adaptive layers, l.
The number of trade-off parameter, λ.
Result: The parameters in the source feature

extractor MS . The parameters in the target
feature extractor MT .

begin
Initialize the parameters of the target feature

extractor MT with the pre-trained source
feature extractor MS .

for number of training iterations do
Sample minibatch of m instances
{(x1

S , y
1
S), ..., (xmS , y

m
S )} from the source

domain DS .
Sample minibatch of m instances
{x1

T , ..., x
m
T } from the target domain DT .

Update the final l adaptive layers of the
source feature extractor MS by ascending
its stochastic gradient:
5MS

(
Lcls + λMMD2(ξS , ξT )

)
.

Update the final l adaptive layers of the
target feature extractor MT by ascending
its stochastic gradient:
5MT

λMMD2(ξS , ξT ).
end

end
end

data under any load condition to rebuild the classifier trained
with samples collected in one load condition. In this section,
we demonstrate the effectiveness of the proposed DACNN
method for fault detection under this scenario on the bearing
fault dataset provided by Case Western Reserve University
(CWRU) Bearing Data Center.

A. DATASETS AND PREPROCESSING
The basic layout of the test rig is shown in Figure 8. It
consists of a 2 hp motor (left), a torque transducer/encoder
(center), a dynamometer (right), and control electronics (not
shown). The test bearings support the motor shaft. Further
details regarding the test rig can be found at the CWRU
Bearing Data Center website [23].

Drive end bearing faulty data are adopted in this study.
Subjected to electro-sparking, inner-race faults (IF), outer-
race faults (OF) and ball fault (BF) with different sizes (0.007
inches, 0.014 inches, and 0.021 inches) are introduced into
the drive-end bearing of the motor. Outer-race faults are sta-
tionary faults, therefore placement of the fault relative to the
load zone of the bearing has a direct impact on the vibration
response of the motor/bearing system. In order to quantify
this effect, the outer-race faults themselves are grouped into
three categories according to the fault position relative to
the load zone: ’centered’ (fault in the 6 o’clock position),
’orthogonal’(3 o’clock) and ’opposite’ (12 o’clock). The vi-
bration signals were sampled by the accelerometers attached
to the rack with magnetic bases under the sampling frequency
of 12 kHz and were post-processed in a Matlab environ-
ment. The experimental scheme simulates three working
conditions with different motor load and rotating speed, i.e.,
Load1 = 1hp/1772rpm, Load2 = 2hp/1750rpm and Load3 =
3hp/1730rpm. The vibration signals of normal bearings (NO)
under each working condition are also gathered. All data files
released by the CWRU Bearing Data Center are in Matlab
(*.mat) format. Each data file corresponds to one kind of fault
data under one working condition and is defined by a unique
file ID. For example, the file ’106.mat’ contains the data of
the fault type ’0.007/IF’ collected from Load1 (i.e., Domain
A). The details of the chosen data and its corresponding file
ID are described in Table 1.
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FIGURE 8: CWRU bearing test rig [23]

TABLE 1: Details of chosen data and its corresponding file ID

Category labels 1 2 3 4 5 6 7 8 9 10
Fault location None IF BF OF (Centered @6:00)

Fault diameter (in.) 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021
Domain File ID

A (Load1) 98 106 170 210 119 186 223 131 198 235
B (Load2) 99 107 171 211 120 187 224 132 199 236
C (Load3) 100 108 172 212 121 188 225 133 200 237

In this paper, a vibration signal with length 4096 is ran-
domly selected from the raw vibration signal. Then, the
fast Fourier transform (FFT) is implemented on each signal
and the 4096 Fourier coefficients are generated. Since the
coefficients are symmetric, the first 2048 coefficients are used
in each sample. The samples collected from the above three
different conditions form three domains, namely A, B, and
C, respectively. There are ten classes under each working
condition, including nine kinds of faults and a normal state,
and each class consists of 800 samples. Therefore, each
domain contains 8000 samples of ten classes collected from
the corresponding working condition.

To construct domain adaptation problems, we randomly
choose two from the three domains, where one is considered
as the source domain and the other is considered as the target
domain. Therefore, we construct six (P 2

3 ) domain adaptation
problems. Take the domain adaptation problemA→ B as an
example. The examples of domain A are used as the source
domain data DS , and the examples of domain B are used as
the target domain data DT .

B. EXPERIMENTAL SETUP
1) Baseline Methods
We compare our methods with the following state-of-the-art
fault diagnosis methods:

1) The deep neural networks (DNN) system with fre-
quency features [7] proposed by Lei et al. in 2016. This
neural networks consists of three hidden layers. The
number of neurons in each layer is 1025, 500, 200, 100
and 10. The input of the networks is the normalized

1025 Fourier coefficients transformed from the raw
temporal signals using FFT.

2) The two-stage intelligent fault diagnosis method pro-
posed by Lei et al. in 2016. [24]. In the first learning
stage, local discriminative features are extracted from
raw vibration signals by whitening, sparse filtering and
local feature averaging. In the second stage, the soft-
max regression model is applied to classify mechanical
health conditions using the learned features.

3) The Deep Convolution Neural Networks with Wide
first-layer kernels (WDCNN) system [20] proposed
by Zhang et al. in 2017. The WDCNN system works
directly on raw temporal signals. It contains five con-
volutional layers and batch normalization layers. The
domain adaptation capacity of this model originates in
the domain adaptation method named Adaptive Batch
Normalization (AdaBN).

2) Parameters of the proposed DACNN
The feature extractors MS and MT used in our experiments
are composed of five convolutional layers and pooling layers
followed by two fully-connected hidden layers. The pooling
type is max pooling and the activation function is ReLU.

The principles of selecting the hyperparameters of the fea-
ture extractors MS and MT are introduced in Section IV-B,
i.e., the wide kernels should be used in the first convolutional
layer which can better suppress high-frequency noise and the
following convolutional kernels become gradually smaller
which make the networks deeper to acquire good representa-
tions of the input signals and improve the performance of the
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networks. Based on these principles and extensive parameter
tuning, we determine the parameters of the convolutional and
pooling layers detailed in Table 2. In order to minimize the
loss function, the Adam Stochastic optimization algorithm
is applied to train our CNN model. The final l (l ∈ [1, 7])
layers of the target feature extractor MT is untied and used
as adaptive layers.

The experiments are implemented using the Tensorflow
toolbox of Google and a sum of m multiple Gaussian
kernels {ki(x, x′) = exp(−‖x−x

′‖2
2σ2

i
)} is applied as the

kernel function k(x, x′) to train the parameters of the tar-
get feature extractor MT , i.e., k(x, x′) =

∑m
i=1 ki(x, x

′)
1. Exponentially growing sequence of the parameter σi
is used for each Gaussian kernel ki (for example, σi =
10−3, 10−2, 10−1, 10, 101, 102, 103).

During the pre-training stage, we randomly select 75% of
the source labeled instances to train the MS and remaining
is for validation. Then, during the domain adaptive fine-
tuning stage, we use A-distance as a measure of domain
discrepancy which is suggested by Ben-David et al. [27], and
automatically select the parameter of l and λ by assessing the
A-distance. It involves the following steps:

1) Pseudo-labeling the output feature vectors ξS and ξT
with 0 and 1.

2) Randomly sampling two sets of instances from
(ξis, 0)|NS

i=1 and (ξiT , 1)|NT
i=1 as the training and testing

set.
3) Learning a two-sample classifier (SVM in our case)

as domain classifier to distinguish the input instances
between the source and target domains on the training
set and verifying its performance on the testing set.

4) Estimating the A-distance as dA = 2(1− 2ε), where ε
is the test error.

It’s obvious that if two domains perfectly overlap with each
other, ε ≈ 0.5, and dA ≈ 0. On the contrary, if two domains
are completely distinct from each other, ε ≈ 0, and dA ≈ 2.
Therefore, dA ∈ [0, 2]. The lower the value is the smaller two
domains divergence.

To compare the effectiveness of domain adaptation, for an
instance from the target domain xiT , we use the correspond-
ing output of the pre-trained source feature extractorMS(xiT )
to compute the probability of the instance xiT belonging to
a label j ∈ {1, ...,K} using Eq. 3, which is denoted as
DACNNS .

C. ACCURACY ACROSS DIFFERENT DOMAINS
As Table 3 shows, DNN performed poorly in domain adap-
tation, with average accuracies in the six scenarios being
around 78.05%, which prove that samples under different
working conditions draw from the different distributions and
existing models trained under one working condition is not
suitable for fault classification under another working load
condition.

1https://github.com/tensorflow/models/blob/master/research/domain_
adaptation/domain_separation/utils.py

Compared with the two-stage fault diagnosis method us-
ing sparse filter and WDCNN with AdaBN with average
accuracy being 96.37% and 95.95% respectively, DACNN
achieves the best accuracy in the average of 99.60%. This
result proves that the features learned by DACNN are more
domain invariant than the features learned by the other meth-
ods.

In addition, by comparing DACNN with DACNNS , we
can find that in every scenario, the performance of DACNN is
superior to DACNNS . This means that the domain adaptation
fine-tuning stage can significantly improve the fault diagnosis
under varying working conditions

It is also interesting that when adapting from Domain
A to B, from B to A, from B to C, and from C to B,
the fault diagnosis accuracy of the proposed DACNN is a
bit better than WDCNN (AdaBN). However, when adapting
from domain A to C and C to A, the proposed DACNN is
significantly better than the other methods.

D. SENSITIVITY ANALYSIS OF FAULTS
Accuracy has been widely used as the metric to evaluate
the fault diagnosis model. However, fault diagnosis is by
definition an imbalanced classification problem where the
positive class (machine faults) is greatly outnumbered by
the negative class. The accuracy metric is therefore not an
appropriate measure for assessing model performance - a
classifier with a focus on merely getting all the negative
instances correct will have a high accuracy by definition, but
it will not be useful for identifying the few positive instances
(i.e. machine faults) when it really matters. We need a metric
that assesses the model’s ability to find all the relevant cases
in the dataset so that a good model does not miss the relevant
cases. Also, in the case of fault diagnosis, the cost of false
positives (e.g. halting the production line for unnecessary
maintenance) can be quite high. As such, we need another
useful metric that tells us out of those predicted positive,
precisely how many of them are actually positive. As such,
in this work we propose to employ two additional evaluation
indicators, i.e. precision and recall, which have been widely
used in other fields such as pattern recognition, information
retrieval, and binary classification, to assess the two aspects
of the model performance respectively.

In the fault diagnosis context, the precision and recall for
a fault type f can be calculated as below,

precision(f) =
TP

TP + FP
, recall(f) =

TP

TP + FN
, (7)

where true positives (TP ) means the number of faults cor-
rectly identified as f , false positives (FP ) means the number
of faults incorrectly labeled as f and false negatives (FN )
means the number of faults f incorrectly labeled as not
belonging to f .

A precision score of 1.0 for a fault type f means that every
sample labeled as belonging to class f does indeed belong to
class f (i.e. there is no false alarm), but it can’t tell us about
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TABLE 2: Details of the feature extractor MS and MT used in experiments.

No. Layer type Layer name Kernel stride Channel Output Padding

1 Convolution Conv1 32× 1 2× 1 8 1009× 8 Yes
&MaxPool 2× 1 2× 1 8 504× 8 No

2 Convolution Conv2 16× 1 2× 1 16 245× 16 Yes
&MaxPool 2× 1 2× 1 16 122× 16 No

3 Convolution Conv3 8× 1 2× 1 32 58× 32 Yes
&MaxPool 2× 1 2× 1 32 29× 32 No

4 Convolution Conv4 8× 1 2× 1 32 11× 32 Yes
&MaxPool 2× 1 2× 1 32 5× 32 No

5 Convolution Conv5 3× 1 2× 1 64 2× 64 Yes
&MaxPool 2× 1 2× 1 64 1× 64 No

6 Fully-connected FC1 500 1 500
7 Fully-connected FC2 10 1 10

TABLE 3: Accuracy (%) on six domain adaptation problems.

A→B A→C B→A B→C C→A C→B AVG
DNN [7] 82.20% 82.60% 72.30% 77.00% 76.90% 77.30% 78.05%

Two-stage using Sparse Filter [24] 99.70% 89.62% 99.80% 99.89% 78.02% 96.37% 96.37%
WDCNN(AdaBN) [20] 99.40% 93.40% 97.50% 97.20% 88.30% 99.90% 95.95%

DACNNS 99.86% 98.40% 97.89% 89.46% 89.65% 99.14% 95.73%
DACNN 100.00% 99.69% 100.00% 99.90% 97.98% 100.00% 99.60%

the number of samples from class f that were not labeled
correctly (i.e. how many failures are missing ?).

Whereas a recall of 1.0 means that every item from a fault
type f was labeled as belonging to class f (i.e. there is no
missing alarm), but says nothing about how many other items
were incorrectly also labeled as belonging to class f (i.e. how
many false alarms are there ?).

The precision and recall of every class processed by
DACNN and DACNNS are detailed in Table 4 and Table 5.

In Table 4, for the 3rd kinds of fault (i.e. IF with fault size
being 0.014 in.), DACNNS has low precision when adapting
from domain B to C and from C to A, which are 49.63% and
57.55% respectively. This means that about half of that kind
of fault alarms are unreliable.

Meanwhile, in Table 5, for the 2nd kinds of fault (i.e. IF
with fault size being 0.007 in.), DACNNS has very low recall
when adapting from domain B to C and from C to A, which
are 1.13% and 26.75% respectively. This means that about a
large number of that kind of failures are not detected.

In general, the precision and recall of DACNN are higher
than that of DACNNS , which implies that DACNN has fewer
false alarms (i.e. high precision score ) and missed alarms
(i.e. high recall score ). Smith et al have pointed out that the
ball fault cases are the most difficult to diagnose [39]. This
is consistent with our experimental results. We can find that
DACNN can make almost all class classified into right class,
except BF with fault size being 0.014 in and BF with fault
size being 0.021 in. This result shows that after the domain
adaptive fine-tuning stage, the classification performance on
every class achieves remarkable improvement.

E. PARAMETER SENSITIVITY
In this section, we investigate the influence of the parameter
l, which represents the number of untied layers in the target
feature extractor MT during the domain adaptive fine-tuning
stage.

Given that the target feature extractor MT contains five
convolutional layers and pooling layers and two fully-
connected hidden layers, l is selected from {1, ..., 7} in our
experiment. We use DACNNl to denote the DACNN model
with the parameter l. For example, DACNN1 indicates that
only the last fully-connected hidden layer is untied (i.e. FC2
in Figure 4), and DACNN7 means all the seven layers in MT

are untied (i.e. from ’Conv1’ to ’FC2’ in Figure 4). Figure 9
reports the results.
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FIGURE 9: The Parameter influence of the number of untied
layers l on DACNN.

According to figure, when adapting from domain B to C,
untying the last fully-connected hidden layer (i.e., DACNN1)
amounts to only have the conditional distributions over the
classes that are similar across domains, which is not enough
for the domain adaptation problem of large distribution dis-
crepancy. We have to untie more layers so that we can reduce
both the marginal distribution and the conditional distribution
simultaneously during the process of parameter updating to
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TABLE 4: precision of the proposed DACNNS and DACNN on six domain adaptation problems.

Fault location None IF BF OF (Centered @6:00)
Fault 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021diameter (in.)

Category 1 2 3 4 5 6 7 8 9 10labels
precision of DACNNS

A→B 100% 100% 100% 100% 100% 100% 98.64% 100% 100% 100%
A→C 92.27% 100% 100% 100% 99.75% 92.82% 99.46% 100% 100% 100%
B→A 100% 100% 100% 100% 87.43% 93.68% 100% 100% 100% 100%
B→C 96.74% 100% 49.63% 100% 100% 99.49% 100% 100% 100% 100%
C→A 100% 100% 57.55% 100% 83.33% 95.40% 100% 95.12% 100% 100%
C→B 100% 100% 93.13% 99.88% 98.89% 100% 100% 100% 100% 100%

precision of DACNN
A→B 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
A→C 96.97% 100% 100% 100% 100% 100% 100% 100% 100% 100%
B→A 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
B→C 100% 100% 99.01% 100% 100% 100% 100% 100% 100% 100%
C→A 100% 100% 100% 100% 90.91% 90.81% 100% 100% 100% 100%
C→B 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

TABLE 5: recall of the proposed DACNNS and DACNN on six domain adaptation problems.

Fault location None IF BF OF (Centered @6:00)
Fault 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021diameter (in.)

Category 1 2 3 4 5 6 7 8 9 10labels
recall of DACNNS

A→B 100% 100% 100% 100% 98.63% 100% 100% 100% 100% 100%
A→C 100% 100% 99.75% 100% 99.50% 92.13% 92.88% 100% 99.50% 100%
B→A 100% 100% 100% 100% 100% 100% 78.88% 100% 100% 100%
B→C 100% 1.13% 100% 100% 100% 96.63% 99.50% 100% 97.38% 100%
C→A 100% 26.75% 100% 100% 100% 96.00% 73.75% 100% 100% 100%
C→B 100% 92.63% 100% 100% 100% 99.88% 98.88% 100% 100% 100%

recall of DACNN
A→B 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
A→C 100% 100% 100% 100% 100% 96.88% 100% 100% 100% 100%
B→A 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
B→C 100% 100% 100% 100% 100% 100% 100% 100% 99.00% 100%
C→A 100% 100% 100% 100% 100% 100% 79.88% 100% 100% 100%
C→B 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

reduce the distribution discrepancy across domains. We can
generally observe that the more untied layers involved in the
domain adaptive fine-tuning stage, the higher the accuracy of
recognition.

However, the sensitivity of different adaptive problems to
parameters l is different. When adapting from domain A
to B, the enhancement of recognition accuracy is limited.
We can use DACNNS directly to achieve the accuracy of
99.86%, which is only a little worse than DACNN7. For the
domain adaptation from A to C, and from C to B, we only
need to untie the last three fully-connected hidden layers
(i.e. DACNN3) to achieve the same highest accuracy as
DACNN7.

Moreover, the distribution differences between domains
are not symmetrical. By contrast, we have to respectively
untie the last six layers (i.e. DACNN6) for the domain adap-
tation from B to A and from C to A and untie the last five
layers (i.e. DACNN5) for the domain adaptation from B to C
to achieve the best accuracy as DACNN7.

F. NETWORKS VISUALIZATIONS

Deep learning is often viewed as an empirical success rather
than a mathematical solution to the learning problem. In

order to understand better why the proposed DACNN model
can achieve the remarkable performance in bearing fault
diagnosis under varying working conditions, the features ex-
tracted by the MS and MT are visualized in this subsection.

t-Distributed Stochastic Neighbor Embedding (t-SNE) is
a technique for dimensionality reduction that is widely used
for the visualization of the deep neural networks. The goal of
t-SNE is to take a set of points in a high-dimensional space
and find a faithful representation of those points in a lower-
dimensional space, typically the 2D plane. In this paper, t-
SNE is used to visualize the features extracted by DACNN.
For more details about t-SNE, we refer to Ref. [40].

Take the domain adaptation task B → C as an example,
t-SNE is used to visualize the high-dimensional features
extracted by the source feature extractor MS and the target
feature extractor MT . The result is shown in Figure 10. In
all subgraphs of Figure 10, features of the source sample
{xiS}|

NS
i=1 are extracted by MS , i.e., MS(xiS)|NS

i=1, which
is represented by square symbols. For the target sample,
features extracted by MS (i.e., MS(xiT )|NT

i=1) are shown in
(a) and features extracted by the fine-tuning MT after 1000
and 2000 iterations are shown in (b) and (c). For conve-
nience, these features are denoted by MS(xS), MS(xT ) and
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M it
T (xT ), where the number of iterations it is selected from
{1000, 2000}.

There are some interesting observations as follows.

1) MS(xS), MS(xT ) and M it
T (xT ) are classifiable when

they are diagnosed separately. This illustrates that the
CNN used for MS and MT has a very strong ability to
distinguish various rolling bearing faults and explains
the reason why DACNNS can even achieve such a
good classification accuracy.

2) In Figure10(a), the distribution of fault ’0.007/IF’ is
completely different between domains. This explains
why DACNNS has the very low recall of 1.13% when
adapting from domain B to C.

3) During the domain adaptive fine-tuning stage, with
the increasing of iterations, the distributions of fea-
tures between MS(xS) and M it

T (xT ) gradually be-
come consistent. When the features M1000

T (xT ) and
M2000
T (xT ) are applied to fault detection, the accura-

cies are 99.75% and 99.90% respectively.

Finally, we visualize all nodes in the entire DACNN
model, including MS , MT and the soft-max outputs of the
label predictor C. We randomly select a sample of the fault
type ’0.007/IF’ from domain C, denoted by x0.007/IF

C , as the
input of the DACNN model trained for adapting from domain
B to domain C. The visualized results are shown in Figure
11(a) and Figure 11(b).

From these visual results, we can find out that the output
of the first three convolutional layers (i.e. ’Conv1’, ’Conv2’
and ’Conv3’) are very similar. Starting from the fourth
layer convolution layer (i.e. ’Conv4’), the extracted features
of MS(x

0.007/IF
C ) and MT (x

0.007/IF
C ) gradually change to

some extent. This observation is consistent with the result
in the section V-E. That is, for the domain adaptation from
B to C, we only have to untie last four layers starting from
’Conv4’ to ’FC2’ as the features extracted from the first three
convolutional layers are almost the same.

The last fully-connected layer (i.e. ’FC2’) has K neurons
(equals the number of the class label). The output of ’FC2’ is
fed to label classifier C to estimate the posterior probability
of each class using soft-max regression model.

According to the results of ’FC2’ and ’Softmax’ in
Figure 11(a), x

0.007/IF
C is misdiagnosed as the fault

type of ’0.014/IF’, based on the extracted features of
MS(x

0.007/IF
C ). As a contrast, in Figure 11(b), x0.007/IF

C is
correctly identified as the fault type of ’0.007/IF’, based on
the extracted features of MT (x

0.007/IF
C ).
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(a) MS(x
0.007/IF
C ) and the corresponding soft-max result.
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(b) MT (x
0.007/IF
C ) and the corresponding soft-max result.

FIGURE 11: Visualization of all nodes in MS , MT and the
soft-max results of the label predictor C. Domain B is the
source domain and domain C is the target domain.

VI. CASE STUDY 2: FAULT DIAGNOSIS OF GEARBOX
USING THE PROPOSED METHOD
In this section, the 2009 PHM data challenge of gearboxes
[41] is used to evaluate the effectiveness of the proposed
method.

A. DATASETS AND PREPROCESSING
The 2009 PHM gearbox fault data are representative of
generic industrial gearbox data, which contains 3 shafts, 4
gears, and 6 bearings. Two geometries are used, one using a
spur gears, the other using helical gears. Data were sampled
synchronously from accelerometers mounted on both the
input and output shaft retaining plates. Another attached
tachometer generates 10 pulses per revolution providing very
accurate zero crossing information. The schematic of the
gearbox used to collect the data is shown in Figure 12.

The experimental dataset is comprised of six different
health conditions. The detailed description of the health
conditions is shown in Table 6. For each health condition,
signals were collected at 30, 35, 40, 45 and 50 Hz shaft speed
under high and low load, with a sampling frequency of 66.67
kHz and acquisition time of 4 s. In this section, only the
input channel of the vibration signals of the helical gearbox
under low load is used to test the performance of the proposed
method.
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FIGURE 10: Visualization of the extracted features of samples collected from the source domain B and target domain C via
t-SNE. Ten different kinds of faults are denoted by ten different colors respectively. Features of the source domain B extracted
by MS are represented by square symbols in all subgraphs. Features of the target domain C extracted by MS (i.e., MS(xT ))
are shown in (a) and features extracted by the fine-tuning MT after 1000 and 2000 iterations are shown in (b) and (c).

TABLE 6: Health conditions of the 2009 PHM data challenge of gearboxes. [42]

Category labels Gear Bearing Shaft
24 T Others Input Shaft : Output Side Idler Shaft : Output Side Others Input Output

1 Good Good Good Good Good Good Good
2 Chipped Good Good Good Good Good Good
3 Broken Good Combination Inner Good Bent Shaft Good
4 Good Good Combination Ball Good Imbalance Good
5 Broken Good Good Inner Good Good Good
6 Good Good Good Good Good Bent Shaft Good

(a) Gearbox Schematic

(b) Gearbox Apparatus (c) Gearbox Inside

FIGURE 12: The gearbox used in PHM 2009 Challenge Data
[41].

Vibration signals are divided into data segments at first
and 6144 sampling points are selected as a segment [42].
Then, the fast Fourier transform (FFT) is implemented on
each data segment and the first 4097 coefficients are used in
each sample. The samples collected from 30, 35, 40, 45 and
50 Hz shaft speed form five domains. There are six classes
under each working condition and each class consists of
800 samples. Therefore, each domain contains 4800 samples
of six classes collected from the corresponding working
condition.

We randomly choose two from the five domains to con-
struct domain adaptation problems, where one is considered
as the source domain and the other is considered as the
target domain. Therefore, we construct twenty (P 2

5 ) domain
adaptation problems. Take the domain adaptation problem
30Hz → 40Hz as an example. The examples collected at
30 Hz shaft speed are used as the source domain data DS ,
and the examples collected at 40 Hz shaft speed are used as
the target domain data DT .

B. EXPERIMENTAL SETUP
1) Baseline Methods

We compare our methods with the convolutional neural net-
works (CNN) system with frequency features [42] proposed
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by Jing et al. in 2017. This CNN consists of one convolutional
layer, one pooling layer and a fully-connected layer with
softmax. Table 7 lists the parameters of the CNN. Neither
overlapping of the convolutional window nor padding is used
in their experiments. The input of the networks is the 4097
Fourier coefficients transformed from the data segments with
length 6144 of the raw temporal signals using FFT.

According to the experimental setting in [42] , the CNN
is trained by 50% of samples randomly selected from the
dataset composed of 6 different health conditions of the
gearbox under low load and 30, 40, 50 Hz speed. PCA is
implemented on the FFT features, and their first three PCs
are shown in Figure 13. As illustrated in Figure 13, without
considering the working conditions of the samples, most
samples of the same health condition are gathered in the cor-
responding cluster and most samples of the different health
conditions are separated. The testing accuracy is 99.33% with
a small standard deviation. The accuracy’s and loss’s trends
of CNN [42] are visualized in Figure 14.

However, we can find that the mean and variance of the
data collected at different speeds have changed significantly.
Then, 50% of samples collected from the 30 Hz speed are
randomly selected to train the other CNN model and tested
by all of the samples collected from the 40 Hz speed. Figure
15 shows the corresponding accuracy’s and loss’s trends of
CNN [42] . The validating accuracy is nearly 100%, but the
testing accuracy is merely 27%.
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FIGURE 13: Scatter plots of PCs for the FFT features.
Six different kinds of health conditions are denoted by six
different colors respectively, where cross symbols represent
the 30 Hz speed, square symbols represent the 40 Hz speed
and dot symbols represent the 50 Hz speed.
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FIGURE 14: The CNN model trained by 50% of samples
randomly selected from the dataset composed of 6 different
health conditions of the gearbox under 30, 40, 50 Hz speed.
(a) The training accuracy’s and test accuracy’s trends. (b) The
training loss’s and test loss’s trends.
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FIGURE 15: The CNN model trained by randomly selecting
50% of samples collected from the 30 Hz speed and tested
by all of the samples collected from the working condition
the 40 Hz speed. (a) The training accuracy’s, validating
accuracy’s and test accuracy’s trends. (b) The training loss’s,
validating loss’s and and test loss’s trends.

2) Parameters of the proposed DACNN
Similar to Case Study 1, the feature extractors MS and MT

are composed of five convolutional layers and pooling layers
followed by two fully-connected hidden layers. The pooling
type is max pooling and the activation function is ReLU.
The parameters of the convolutional and pooling layers are
detailed in Table 8. Also, we apply a sum of m multiple
Gaussian kernels {ki(x, x′) = exp(−‖x−x

′‖2
2σ2

i
)} as the kernel

function k(x, x′) and exponentially growing sequences of the
parameter σi is used to estimate the largest MMD distance
between domains during the domain adaptive fine-tuning.

By comparing Figure 13 and Figure 1, we can find that
the changes in the mean and variance of the gearbox dataset
are more obvious than the bearing dataset. In order to make
the examples of the gearbox dataset more or less look like
standard normally distributed data and accelerate the con-
vergence of the training of the feature extractors MS and
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TABLE 7: Parameters of the CNN used by [42].

No. Layer type Layer name Kernel stride Channel Output Padding

1 Convolution Conv1 64× 1 64× 1 10 64× 10 No
&MaxPool 2× 1 2× 1 10 32× 10 No

2 Fully-connected FC1 30 1 30
3 Fully-connected FC2 6 1 6

TABLE 8: Details of the feature extractor MS and MT used in experiments.

No. Layer type Layer name Kernel stride Channel Output Padding

1 Convolution Conv1 32× 1 2× 1 8 2033× 8 Yes
&MaxPool 2× 1 2× 1 8 1016× 8 No

2 Convolution Conv2 16× 1 2× 1 16 501× 16 Yes
&MaxPool 2× 1 2× 1 16 250× 16 No

3 Convolution Conv3 8× 1 2× 1 32 122× 32 Yes
&MaxPool 2× 1 2× 1 32 61× 32 No

4 Convolution Conv4 8× 1 2× 1 32 27× 32 Yes
&MaxPool 2× 1 2× 1 32 13× 32 No

5 Convolution Conv5 3× 1 2× 1 64 6× 64 Yes
&MaxPool 2× 1 2× 1 64 3× 64 No

6 Fully-connected FC1 100 1 100
7 Fully-connected FC2 6 1 6

MT , the examples collected from each working condition are
standardized by z-score firstly.

C. ACCURACY ACROSS DIFFERENT DOMAINS

Each subgraph of Figure 16 represents the accuracy of four
domain adaptive problems when the examples collected at
the corresponding shaft speed are used as the source domain
data. The solid line in each subgraph represents the difference
of the shaft speed ∆speed between the domains. We can find
that the accuracy of fault diagnosis generally decreases with
the increase of ∆speed.

As Table 9 shows, CNN [42] performed poorly in domain
adaptation, with average accuracy in the twenty domain
problems being around 33.21%. Also, when the ∆speed is
5 Hz, its average accuracy in the corresponding eight domain
problems is merely 50.66%. By contrast, DACNN achieves
82.62% accuracy in average in the twenty domain problems.
And, its average accuracy is 91.22% in the eight domain
problems with the ∆speed being 5 Hz.

TABLE 9: Average Accuracy (%) on ∆speed. The numbers in
parentheses represent the amount of corresponding domain
adaptive problems.

∆speed 5 hz (8) 10 hz (6) 15 hz (4) 20 hz (2) AVG
CNN [42] 50.66% 26.03% 17.33% 16.67% 33.21%
DACNNS 76.06% 66.29% 56.61% 38.46% 65.48%
DACNN 91.22% 81.55% 74.29% 68.02% 82.62%

In addition, by comparing CNN with DACNNS , we can
find that in every scenario, the performance of DACNNS is
superior to CNN. The use of z-score in the training phase
which makes the examples of the gearbox dataset look like
standard normally distributed data plays an important role.
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FIGURE 17: The DACNNS model trained by 50% of sam-
ples randomly selected from the dataset composed of 6
different health conditions of the gearbox under low load
and 30, 40, 50 Hz speed. (a) The training accuracy’s and
test accuracy’s trends. (b) The training loss’s and test loss’s
trends.
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FIGURE 18: The DACNNS model trained by randomly
selecting 50% of samples collected from the 30 Hz speed and
tested by all of the samples collected from the working con-
dition the 40 Hz speed. (a) The training accuracy’s, validating
accuracy’s and test accuracy’s trends. (b) The training loss’s,
validating loss’s and and test loss’s trends.
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30hz->35hz 30hz->40hz 30hz->45hz 30hz->50hz
CNN 69.10% 27.00% 19.27% 16.67%
DACNNs 83.63% 60.71% 46.08% 38.25%
DACNN 99.20% 81.28% 73.00% 68.50%
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(a) 30 Hz shaft speed

35hz->30hz 35hz->40hz 35hz->45hz 35hz->50hz
CNN 53.04% 35.92% 20.75% 16.67%
DACNNs 80.88% 79.54% 73.25% 66.92%
DACNN 95.90% 91.80% 82.50% 76.22%
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(b) 35 Hz shaft speed

40hz->30hz 40hz->35hz 40hz->45hz 40hz->50hz
CNN 28.67% 44.00% 51.58% 33.29%
DACNNs 66.79% 83.13% 74.79% 63.75%
DACNN 81.15% 97.97% 87.45% 81.28%
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(c) 40 Hz shaft speed

45hz->30hz 45hz->35hz 45hz->40hz 45hz->50hz
CNN 16.67% 16.67% 41.50% 56.13%
DACNNs 56.58% 70.71% 67.38% 73.38%
DACNN 76.80% 81.11% 83.69% 86.22%
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(d) 45 Hz shaft speed

50hz->30hz 50hz->35hz 50hz->40hz 50hz->45hz
CNN 16.67% 16.71% 29.83% 54.04%
DACNNs 38.67% 56.88% 62.54% 65.79%
DACNN 67.53% 71.14% 82.01% 87.57%
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(e) 50 Hz shaft speed

FIGURE 16: Accuracy (%) on 20 domain adaptation problems.

Similar to the experimental setting in [42] , the DACNNS
is trained by 50% of samples randomly selected from the
dataset composed of 6 different health conditions of the gear-
box under low load and 30, 40, 50 Hz speed. The accuracy’s
and loss’s trends of the DACNNS are visualized in Figure 17.

Then, 50% of samples collected from the 30 Hz speed are
randomly selected to train the other CNN model and tested by
all of the samples collected from the 40 Hz speed. Figure 18
shows the corresponding accuracy’s and loss’s trends of the
DACNNS . From Figure 17 and Figure 18, we can find that
the training of the DACNNS can converge faster than CNN
[42] and its accuracy’s and loss’s trends are more stable.

VII. CONCLUSION
This paper proposes a domain adaptive model based on CNN
named DACNN to address the fault diagnosis problem under
varying working condition. DACNN contains three parts, a
source feature extractor, a target feature extractor, and a label
classifier. Unlike other existing domain adaptation models,
the layers between the source and target feature extractor in
the proposed DACNN are partially untied during the training
stage to ensure both training efficiency and effective domain
adaptation. In order to obtain strong fault-discriminative and
domain-invariant capacity, we adopt a two-stage training pro-
cess. First, to get the fault-discriminative features, the source
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feature extractor is pre-trained with labeled source training
examples to minimize the label classifier error. Then, during
the domain adaptive fine-tuning stage, the target feature
extractor is initialized and trained to minimize the squared
MMD between the output of the source and target feature
extractor, such that the instances sampled from the source and
target domains have similar distributions after the mapping.

Results on the classic CWRU bearing fault data in Section
V and the 2009 PHM gearbox fault data in Section VI
demonstrate that, compared with the state-of-the-art intelli-
gent fault diagnosis models, the proposed DACNN achieves
higher accuracy under different working conditions. Besides
the commonly used fault diagnostic accuracy, we also em-
ployed in this work two additional evaluation metrics, namely
precision and recall, to analyze the sensitivity of the proposed
for each type of fault detection. A precision score of 1.0 for
a fault type means that there is no false alarm, while a recall
of 1.0 means that there is no missing alarm. Compared with
accuracy, precision and recall can evaluate the reliability of
a model for certain type of fault recognition in more details.

Finally, through visualizing the feature maps learned by
our model, we explored the inner mechanism of our proposed
model in fault diagnosis and domain adaptation and verified
that partially untying of the layers between the source and
target feature extractor can lead to effective adaptation.
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