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ABSTRACT
Traditional supervised keyphrase extraction models depend on
the features of labelled keyphrases while prevailing unsupervised
models mainly rely on structure of the word graph, with candi-
date words as nodes and edges capturing the co-occurrence infor-
mation between words. However, systematically integrating all
these multidimensional heterogeneous information into a uni�ed
model is relatively unexplored. In this paper, we focus on how to
e�ectively exploit multidimensional information to improve the
keyphrase extraction performance (MIKE). Speci�cally, we propose
a random-walk parametric model, MIKE, that learns the latent rep-
resentation for a candidate keyphrase that captures the mutual
in�uences among all information, and simultaneously optimizes
the parameters and ranking scores of candidates in the word graph.
We use the gradient-descent algorithm to optimize our model and
show the comprehensive experiments with two publicly-available
WWW and KDD datasets in Computer Science. Experimental re-
sults demonstrate that our approach signi�cantly outperforms the
state-of-the-art graph-based keyphrase extraction approaches.

KEYWORDS
Keyphrase extraction; multidimensional information; graph-based
keyphrase extraction approach; parametric model

1 INTRODUCTION
Automatic keyphrase extraction extracts a set of representative
phrases that are related to the main topics discussed in a docu-
ment [27]. Since keyphrases can provide a high-level topic descrip-
tion of a document, they are useful for a wide range of natural
language processing tasks such as text summarization [22], infor-
mation retrieval [25] and question answering [44]. However, the
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performance of existing methods is still far from being satisfac-
tory [17, 26]. �e main reason is it is very challenging to determine
if a phrase or set of phrases accurately capture main topics that are
presented in a document.

Existing methods for keyphrase extraction can be broadly di-
vided into supervised or unsupervised approaches. �e supervised
approaches generally treat the keyphrase extraction as a binary
classi�cation task, in which a learning model is trained on the
features of labelled keyphrases to determine whether a candidate
phrase is a keyphrase. Current state-of-the-art supervised models
include Naı̈ve Bayes [8, 9, 13], Decision Trees [34, 37], Maximum En-
tropy [45], Random Forest [1], Multi-layer Perceptron [28], Support
Vector Machines (SVM) [28], Conditional Random Fields [15], Inte-
ger Linear Program [7, 10], Deep Recurrent Neural Networks [46]
etc. Although these classi�cation approaches can achieve good
results given su�cient training data for model building, they do not
incorporate information about which candidates are be�er than the
others. Hence, ranking-based supervised approaches, such as rank-
ing SVM [21] and CoRankBayes [39], were shown to outperform
the conventional binary classi�cation approaches on the keyphrase
extraction task [21].

In contrast, unsupervised approaches directly treat keyphrase
extraction as a ranking problem, scoring each candidate using dif-
ferent kinds of techniques such as language modelling [36], cluster-
ing [27] or graph-based ranking [12, 14, 26, 31, 35, 38]. In particular,
the graph-based algorithms are widely used in the unsupervised
scenario. �ese approaches �rst build a word graph (as illustrated
in Fig. 1(2)) in which each node denotes a candidate word and
each edge/link prepresents a relevant relation (e.g., co-occurrence
relation) between candidates within a document. Subsequently, var-
ious centrality measures [6] or random walk techniques (e.g., Page-
Rank [32]) are used on the word graph to rank candidate words.
Note that PageRank-based models (i.e., random-walk models) were
shown to be state-of-the-art in previous research involving word
graphs for keyphrase extraction [14]. �e main reason is that the
PageRank score for a node provides a measure of importance for the
node in the graph by taking into account global information com-
puted recursively from the entire word graph [32]. Furthermore,
in order to extract good keyphrases relevant to the major topics of
the document and cover the document’s major topics, Liu [2010]
proposed the Topical PageRank (TPR, as shown in Fig.1(3)), which



decomposes traditional Page-Rank into multiple PageRanks speci�c
to various topics and obtains the importance scores of words under
di�erent topics.

As summarized above, current supervised approaches only rely
on candidate features without considering the structure of word
graph, whereas graph-based approaches mainly rely on the structure
of the word graph and edge features to rank candidates. In particular,
as illustrated in Fig.1(1-2), four categories of candidate features (node
features) are commonly used in supervised approaches (shown in
Fig.1(1)), and structural information and edge features are used in
graph-based unsupervised approaches (such as TextRank [31]) to
rank candidate words (shown in Fig.1(2)). It is obvious to see that
one major limitation for both supervised approaches and graph-
based approaches is they utilize candidate features and structural
information separately. �at is to say, there is a lack of a general
e�ective way to integrate these di�erent types of information into
a uni�ed model for keyphrase extraction.

Furthermore, in contrast to TextRank (as shown in Fig.1(2)), the
TPR [26] (as shown in Fig. 1(3)) integrates topical information of
candidate words and documents into the TextRank. Fig.1 from (2)
to (3) illustrates an intuitive research line that di�erent types of
information are progressively fused to extract good keyphrases
in the graph-based approaches (�e details of this research line
will be described in the next section.). Besides, multidimensional
information has been e�ectively used to bene�t various data mining
tasks in previous works, such as air quality forecasting [49], tra�c
congestion estimation [42].

Motivated by these two observations, we propose MIKE, a graph-
based approach to leverage multidimensional heterogeneous infor-
mation to gain be�er performance in keyphrase extraction. Speci�-
cally, MIKE (as shown in Fig.1(4)) integrates �ve di�erent types of
information, i.e., features of candidate words, topical information of
the document, structure of the word graph, features of co-occurrence
between candidates and prior knowledge, and captures the latent
in�uences among all these information on a candidate word.

�ree features that distinguish MIKE from many other graph-
based keyphrase extraction approaches are as follows:

(1) MIKE integrates �ve di�erent types of information men-
tioned above. To our best knowledge, our model includes
almost all of the types of information which have been used
for extracting keyphrases in previous works, and none of
the existing approaches incorporates these di�erent types
of information into a uni�ed model.

(2) MIKE is a random-walk optimization model based on the
word graph. It can automatically learn the weights of
node features and edge features. In pervious graph-based
keyphrase extraction approaches, the weights of edges are
usually given in advance.

(3) MIKE is a scalable method. Any new node features and
edge features can be easily added to our model to rank
candidate words with other information.

�e remaining of this paper is organized as follows. In the fol-
lowing section, we summarize related, state-of-the-art approaches
to keyphrase extraction, especially, the graph-based approaches.
Preliminaries are given in Section 3. MIKE is described in detail

Figure 1: Di�erent approaches for keyphrase extraction
with di�erent information

in the “Proposed Model” section. Finally, we present our datasets,
experiments and results before concluding the paper.

2 RELATEDWORKS
In addition to the keyphrase extraction methods discussed in In-
troduction Section, a recent trend toward further improvement is
to incorporate external knowledge to enhance the e�ectiveness of
existing models. More speci�cally, in the supervised approaches,
many external knowledge-based features, such as the number of
times that candidate is retrieved in search engine [11], Wikipedia-
based keyphrasenes [30], Wikipedia-based category hierarchy and
a list of multiword expressions [3], Wikipedia-based semantic cor-
relations among candidate phrases [40], citation context-based fea-
tures [9] and expert knowledge [15], are proposed and used in
conjunction with traditional candidate features.

In the existing graph-based approaches, TextRank [31] is the
�rst to rank keyphrases based on the co-occurrence links between
candidate words. Following this approach, numerious studies use
di�erent background knowledge to enhance the accuracy of the
word graph. ExpandRank [38] leverages a small number of nearest
neighbor documents to compute more accurate co-occurrences in
word graph. TPR [26] �rst incorporates topical information into
TextRank model which increases the weight of important topics
generated by a topical model. Zhao [2011] also proposed a context-
sensitive topical TextRank method for extracting keyphrases in mi-
croblogs. CiteText-Rank [14] incorporates evidence from a citation
context to enhance co-occurrences in word graph. Zhang [2013]
proposed a supervised random walk model which combines the
semantic relations between words and words’ intrinsic a�ributes.
Bellaachia [2014] replaced conventional word graph with a hyper-
graph, which is capable of integrating temporal and social features



into the ranking for short document (e.g. messages and tweets).
Wang [2015b] integrated information provided by word embedding
vectors into a graph-based ranking approach. Additionally, two al-
gorithms were recently proposed to rank web pages by taking into
account metadata associated with nodes and edges within Page-
Rank [43, 50]. However, these methods didn’t consider the topical
information of web pages. Our proposed model MIKE is a uni�ed
random-walk model that not only incorporates candidate features,
link features and structure of the word graph but also considers the
in�uence of di�erent topics of nodes and prior knowledge on our
ranking scores.

3 FRAMEWORK AND PRELIMINARIES
3.1 Framework
Algorithms for graph-based keyphrase extraction commonly in-
volve four steps: candidate word selection, word graph construction,
candidate word ranking and keyphrase extraction [14, 26, 38, 47].
In this work, our framework illustrated in Fig.1(4) consists of the
following �ve steps:

(1) Candidate word selection. In this step, candidate words
or lexical units are extracted from the textual content of
the target document by applying stopword and parts-of-
speech (POS) �lters. Only nouns and adjectives are selected
as candidate words because most of keyphrases are noun
phrases and they commonly consist of nouns and adjec-
tives [14, 20, 27].

(2) Word graph construction. Similar to the TextRank fam-
ily of algorithms for keyphrase extraction, a word graph
is built according to the co-occurrence relation between
candidate words within the target document. Note that
some graph-based methods construct the word graph on a
set of documents that are related to the the target, such as
neighbor documents [38] and citation contexts [14].

(3) Multidimensional information integration. Features
of candidate words and their co-occurrences (i.e., node fea-
tures and edge features), topic distributions of candidates
and relative importance relation between candidates (i.e.,
prior knowledge) are collected and then integrated into
a uni�ed model. Compared to previous works in which
node features and edge features are exploited in super-
vised methods and unsupervised methods separately, our
work integrates these di�erent types of information into a
random-walk parametric model.

(4) Candidate word ranking using a learning model. In
this step, our model de�nes a loss function that is used
to learn the parameters and simultaneously compute the
ranking score of each candidate word, and optimizes it
using gradient descent. Di�erent from previous graph-
based models in which the weights of edges are usually
assigned in advance, our model automatically learns the
weights of node features and edge features.

(5) Keyphrase extraction. Finally, consecutive words, phrases
or n-grams are scored by using the sum of scores of individ-
ual words that comprise the phrase [14, 38]. �e formula

used for computing the sum of scores is given as follows:

R (p) = ψp
∑
w ∈p

R (w ), (1)

where R (w ) represents the ranking score of candidate word
w , andψp is a weight of p according to the length of phrase
p. �e top-scoring phrases are output as the �nal results
(the keyphrases for the document).

Our main contributions lie in the Step 3 to Step 4. We now brie�y
summarize Topic Discovery and Topical PageRank which provide
the essential background for our own model.

3.2 Topic Discovery
We �rst describe how we discover a set of topics. Topics can be
automatically extracted from a set of documents using di�erent sta-
tistical methods. Latent Dirichlet Allocation (LDA) [5], a Bayesian
generative probabilistic model for latent topic layer is widely used
to model scienti�c text corpora. Compared to Latent Semantic Anal-
ysis (LSA) [23] and probabilistic LSA (pLSA) [19], LDA has more
feasibility for inference and can reduce the risk of over-��ing [26].
In LDA, for each document d , a multinomial distribution θd over
K topics is sampled from a Dirichlet with parameter α . For each
word w , a topic z is chosen from the topic distribution. �e word
w is generated from a topic-speci�c multinomial distribution ϕz ,
which is drawn from a Dirichlet with parameter β . �e generating
probability of the word w from a document d is denoted as follows:

Pr (w |d,α , β ) =
∑K
z=1 Pr (w |z, β )Pr (z |d,α ). (2)

Using LDA, we can obtain the probability that the wordw occurs
in a given topic z (i.e., Pr (w |z)) and the topic distribution of a
document d (i.e., Pr (z |d )). �ese values will be used for ranking
keyphrases for di�erent topics.

3.3 Topical PageRank (TPR) Models
TPR [26] �rst embeds topics into the TextRank and performs the
biased TextRank for each topic separately to ensure that the ex-
tracted keyphrases cover the main topics of the document. �e
�nal score of a word is computed as the sum of its scores for each
of the topics, weighted by the probability of that topic in the given
document. More speci�cally, for each word wi in the word graph,
its TPR score in the topic z can be computed as follows:

Rz (wi ) = λ
∑

j :w j→wi

(
e (w j ,wi )

O (w j )
Rz (w j )

)
+ (1 − λ)Prz (wi ). (3)

where e (w j ,wi ) is the weight of edgew j→wi ,O (w j )=
∑
w ′ e (w j ,

w ′) is the number of outbound edges, λ is a damping factor indicat-
ing the probability of a random jump to another node, and Prz (wi )
is a topic speci�c preference for a topic z and can be further cal-
culated by Pr (wi |z) (which is calculated by formula (2)) with the
constraint ∑

w Prz (w )=1. �e �nal ranking score R (wi ) of word
wi in document d is computed as the expected PageRank score
over that topic distribution, R (wi )=

∑K
z=1 Rz (wi )Pr (z |d ) (Pr (z |d )

is calculated by formula (2)).
Because TPR requires running a TextRank for each topic, the

total amount of TextRank is K×c , where c is the size of the set of
text documents. In order to avoid this large computational cost,
Sterckx [2015] proposed a single global weight value (Single-TPR),



which represents the full topical importance of each word in the Tex-
tRank, to replace K topic-speci�c values and sum all results. Specif-
ically, let Wz (wi ) be the full topical importance of each word wi

over K topics in the TextRank, −→Pr (wi |Z ) = (Pr (wi |z1), Pr (wi |z2),
..., Pr (wi |zK )) be the vector of word-topic probabilities for the
word wi , and −→Pr (Z |d ) = (Pr (z1 |d ), Pr (z2 |d ), ..., Pr (zK |d )) be the
vector of document-topic probabilities of the document d . �en,
theWz (wi ) per word wi and document d can be calculated by the
cosine similarity between −→Pr (wi |Z ) and −→Pr (Z |d ),

Wz (wi ) =

−→
Pr (wi |Z ) ·

−→
Pr (Z |d )

‖
−→
Pr (wi |Z )‖ · ‖

−→
Pr (Z |d )‖

. (4)

As a result, the TPR score R (wi ) becomes

R (wi ) = λ
∑

j :w j→wi

(
e (w j ,wi )

O (w j )
R (w j )

)
+ (1 − λ) Wz (wi )∑

wWz (w )
. (5)

Di�erent from these topic-dedicated reset probability shown in
the TPR [26] and Single-TPR [35], we �rst integrate the full topical
importance mentioned in the formula (4) and many features of
candidate words into the reset probability.

4 OUR PROPOSED MODEL: MIKE
4.1 Problem Formulation

De�nition 4.1. (Keyphrase Extraction) Let D= {d1,d2, ..., dm }
be a set ofm text documents. Each document di∈D includes a set of
candidate wordsWi = {wi1,wi2, ...,wiin }. �e goal of a keyphrase
extraction model is to �nd a function to map each wi j ∈Wi into a
score, and then extract a ranked list of phrases (which consist of
consecutive words) that best represents di .

4.2 RandomWalk for Keyphrase Extraction
A word graph is de�ned as a six-tuple G (V ,E,AV ,AE ,Z ,B), where
V is a set ofn nodes, E is a set ofm edges,AV = (−→a Vi , i ∈V ) is a matrix
composed of feature vectors of nodes (−→a Vi = (a

V
i j , i ∈V , 1≤ j ≤ l ) is

an l-dimensional feature vector of node i), AE = (−→a E
i j , i, j ∈V ) is a

matrix composed of feature vectors of edges (−→a E
i j = (a

E
i jk , i, j ∈V ,

1≤k ≤h) is an h-dimensional feature vector of edge wi→w j ), Z =
(−→z i , i ∈V ) is a matrix composed of topic vectors of nodes (−→z i =
(zi j , i ∈V , 1≤ j ≤K ) is an K-dimensional topic vector of node i), B
is a q-by-n supervision matrix encoded by the prior knowledge
(where q is the number of samples of prior knowledge).

In contrast with existing graph-based keyphrase extraction al-
gorithms, MIKE leverages the features of co-occurrence between
candidates, features of candidate and topics of candidate by sub-
stantially modifying the transition probability matrix and reset
probability vector corresponding to the underlying word graph.

Features of edges are integrated into the transition probability.
�e function f (−→ω ,wi→w j ) =<

−→ω ,−→a E
i j > parameterized by vector

−→ω = (ω1,ω2, ...,ωh ) is de�ned to assign a weight to each edge in E.
�erefore, each entry pi j (

−→ω ) of the transition probability matrix
P (−→ω ) in MIKE is calculated as follows:

pi j (
−→ω ) =

(−→ω )T−→a E
i j∑

j (
−→ω )T−→a E

i j
=

∑
k ωka

E
i jk∑

j
∑
k ωka

E
i jk

. (6)

Similarly, features of nodes are combined into the reset probability.
�e function д(−→φ ,wi ) =<

−→φ ,−→a Vi > parameterized by vector−→φ =
(φ1,φ2, ...,φl ) is de�ned to assign a weight to each node inV . �en,
each element ri (−→φ ) of the reset probability vector −→r (−→φ ) in MIKE
is calculated as follows:

ri (
−→φ ) =

(−→φ )T−→a Vi∑
i (
−→φ )T−→a Vi

=

∑
k φka

V
ik∑

i
∑
k φka

V
ik

. (7)

In order to further consider the e�ect of all topics of a node on
the reset probability, the topics of a node are merged into the reset
probability. Accordingly, the element ri (−→φ ) of the reset probability
vector −→r (−→φ ) is replaced by the rzi (

−→φ ) of the new reset probability
vector −→rz (−→φ ) in MIKE. rzi (

−→φ ) can be calculated as follows:

rzi (
−→φ ) =

Wzi
∑
k φka

V
ik∑

i
(
Wzi

∑
k φka

V
ik

) , (8)

where Wzi is the same as Wz (wi ) given in formula (4) and is
used to indicate the full topical importance of the word wi over all
K topics.

�en, we employ the loss function ‖−→π (s+1)−−→π (s ) ‖
2 as the ob-

jective function of MIKE, where −→π = (π1,π2, ...,πn )T is a ranking
score vector of all nodes and is iteratively calculated according to
the principle of PageRank during the Markov random process,

−→π (s+1) =λP (−→ω (s ) )−→π (s )+ (1−λ)−→rz (−→φ (s ) ) ‖−→π (s ) ‖1=1. (9)

At the same time, we simultaneously optimize the parameter −→ω
and −→φ during this process. Consequently, the objective function of
MIKE is de�ned as follows:

‖
−→π (s+1) − −→π (s ) ‖2 =

‖λP (−→ω (s ) )−→π (s ) + (1 − λ)−→rz (−→φ (s ) ) − −→π (s ) ‖2.
(10)

�e relative importance relation between nodes is treated as prior
knowledge in MIKE. Speci�cally, for two given nodes wi and w j ,
we assume wi has higher relative importance than w j , without loss
of generality. In other words, there exists a partial ordering, such
as wi <w j , which is represented in the row x (1 ≤ x ≤ q) of B as
follows:

bxi = 1, bx j = −1, bxy = 0(y , i, j ). (11)
In order to supervise the learning process, the constraints of

MIKE are de�ned based on the relative importance relation between
nodes. If the wi has higher relative importance than w j , we hope
the score of nodes wi and w j in the �nal ranking list is πi−πj ≥ 0.
�e constraint function is thus de�ned as

S (−→π ;B,−→µ ) = −−→µ (−→1 − B−→π ) > 0. (12)

where −→µ = (µ1, µ2, ..., µq ) denotes weights on samples of super-
vision information, −→1 is a column vector of 1. Finally, the objective
function in (9) can be transformed as the following optimization
problem:

min
−→ω ≥0;−→φ ≥0;−→π ≥0

L (−→ω (s ) ,−→φ (s ) ,−→π (s ) ) = ‖−→π (s+1) − −→π (s ) ‖2

= δ ‖λP (−→ω (s ) )−→π (s ) + (1 − λ)−→rz (−→φ (s ) ) − −→π (s ) ‖2

+ (1 − δ )−→µ (−→1 − B−→π ).

(13)



4.3 Optimization Problem Solution
To solve the optimization problem stated in formula (13), we use the
gradient descent algorithm to minimize function L. Each element
∇ω

(s )
k (1 ≤ k ≤ h) of the partial derivatives of L with respect to ω

can be calculated as

∇ω
(s )
k =

∂L

∂ω
(s )
k

= 2δλ
(
−→π (s )

)T


∂P (−→ω (s ) )

∂ω
(s )
k



T

[(
λP (−→ω (s ) ) − In

)
−→π (s ) + (1 − λ)−→rz (−→φ )

]
.

(14)

In formula (14), each entry of the partial derivative can be further
calculated as

∂pi j (
−→ω (s ) )

∂ω
(s )
k

=
aEi jk∑

j
∑
k ω

(s )
k aEi jk

−

(
∑
k ω

(s )
k aEi jk )

∑
j a

E
i jk

[∑
j
∑
k ω

(s )
k aEi jk

]2 . (15)

Each element ∇φ (s )k (1 ≤ k ≤ l ) of the partial derivatives of L
with respect to φ can be calculated as

∇φ
(s )
k =

∂L

∂φ
(s )
k

= 2δ (1 − λ)
(
−→π (s )

)T


∂−→rz (
−→φ (s ) )

∂ω
(s )
k



T

[(
λP (−→ω (s ) ) − In

)
−→π (s ) + (1 − λ)−→rz (−→φ )

]
.

(16)

In formula (16), each element of the partial derivative can be
further calculated as

∂rzi (
−→φ (s ) )

∂φ
(s )
k

=
Wzia

V
ik∑

i (Wzi
∑
k φ

(s )
k aVik )

−
Wzi (

∑
k φ

(s )
k aVik )

∑
iWzia

V
ik[∑

i (Wzi
∑
k φ

(s )
k aVik )

]2 .

(17)

Each element∇π (s )
k (1≤k ≤n) of the partial derivatives ofL with

respect to π can be calculated as

∇π
(s )
k =

∂L

∂π
(s )
k

= 2δ


∂
((
λP (−→ω (s ) ) − In

)
−→π (s )

)
∂π

(s )
k



T

[(
λP (−→ω (s ) ) − In

)
−→π (s ) + (1 − λ)−→rz (−→φ (s ) )

]

− (1 − δ )∑q
i=1 bik µi .

(18)

In formula (18), the partial derivative can be calculated as

∂
((
λP (−→ω (s ) ) − In

)
−→π (s )

)
∂π

(s )
k

=
(
λP1k (

−→ω (s ) ) − 1, ..., λPnk (−→ω (s ) ) − 1
)T
.

(19)

4.4 Algorithm
�is detailed algorithm is shown in Algorithm 1, where ρ is the
learning rate and ϵ is an error estimator which indicates the stop-
ping condition. From steps 2 to 4, we �rst initialize all static pa-
rameters (including δ , λ, ρ, ϵ), iteration variable s and optimizing
parameters (including −→π (s ) ,−→ω (s ) ,−→φ (s ) ). Steps 6 and 7 calculate
respectively the transition probability matrix P (s ) by formula (6),
reset probability −→rz (s ) by formula (8) and objective function L (s )

by formula (13). From steps 8 to 10, the partial derivatives ∇−→π (s ) ,
∇
−→ω (s ) and ∇−→φ (s ) of L are calculated by formula (18), (14) and

(16), respectively. Steps 12 and 13 present the update equations for
−→ω (s+1) , −→φ (s+1) , and−→π (s+1) . Steps 15 and 16 normalize each element
of the vectors −→ω (s+1) , −→φ (s+1) , and −→π (s+1) , respectively. In step 18,
the objective function L (s+1) is updated on the above mentioned
parameters by formula (13). From steps 19 to 23, we �rst compare
|L (s ) − L (s+1) | to ϵ , and then determine whether to continue this
algorithm through the loop or stop. Finally, the results are returned
in the step 24.

Algorithm 1 MIKE Algorithm

Input: (1) Word Graph G = (V ,E); (2) Features of nodes AV ; (3)
Parameter vector of node −→φ ; (4) Features of links AE ; (5) Parame-
ter vector of link −→ω ; (6) Topical importance vector of nodes

−→
W z

; (7) Supervision matrix B; (8) Parameter vector of supervision
information −→µ ; (9) Parameters λ, δ , ρ, and ϵ .

Output: Ranking score vector of nodes −→π ∗.
1: Initialize:
2: δ ; λ; ρ; ϵ ;
3: s = 0;
4: −→π (s ) ;−→ω (s ) ;−→φ (s ) ;
5: Calculate:
6: P (s ) = P (−→ω (s ) );−→rz (s ) = −→rz (−→φ (s ) );
7: L (s ) = L (−→ω (s ) ,−→φ (s ) ,−→π (s ) );
8: ∇−→π (s ) = (∇π

(s )
1 ,∇π

(s )
2 , ...,∇π

(s )
n );

9: ∇−→ω (s ) = (∇ω
(s )
1 ,∇ω

(s )
2 , ...,∇ω

(s )
h );

10: ∇−→φ (s ) = (∇φ
(s )
1 ,∇φ

(s )
2 , ...,∇φ

(s )
l );

11: Update:
12: −→ω (s+1) = −→ω (s ) − ρ∇ω (s ) ;−→φ (s+1) = −→φ (s ) − ρ∇φ (s ) ;
13: −→π (s+1) = −→π (s ) − ρ∇π (s ) ;
14: Normalize:
15: π (s+1)

i =
π (s+1)
i∑n

j=1 π
(s+1)
j

;ω (s+1)
i =

ω (s+1)
i∑l

j=1 ω
(s+1)
j

;

16: φ (s+1)
i =

φ (s+1)
i∑h

j=1 φ
(s+1)
j

;

17: Calculate:
18: L (s+1) = L (−→ω (s+1) ,−→φ (s+1) ,−→π (s+1) );
19: if |L (s ) − L (s+1) | < ϵ then
20: stop ; −→π ∗ = −→π (s+1) ;
21: else
22: s = s + 1; go to step 5;
23: end if
24: return −→π ∗

In general, the time complexity of MIKE is only of order O (nl +
mh), wherem is the number of edges and n is the number of nodes
in the graph. In the practical applications, l or h is far less than n.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup

5.1.1 Datasets and Preprocessing. We evaluate our models using
the research paper datasets collected by recent works on keyphrase
extraction [8, 14, 15]. To the best of our knowledge, these datasets



Table 1: Summary of Datasets

Dataset #Abs. #ACdCtx. #ACgCtx. #AKPs #uni-grams #bi-grams #tri-grams #>tri-grams
WWW 425 15.45 18.78 4.87 680 1036 247 110
KDD 365 12.68 19.74 4.03 363 853 189 66

consist of the largest, publicly-available benchmark datasets of
research paper abstracts containing both author-labeled keyphrases
and citation network information (cited and citing contexts). �e
two research paper datasets are from two top-tier machine learning
conferences: the ACM World Wide Web (WWW) and the ACM
Knowledge Discovery and Data Mining (KDD). �e cited and citing
contexts for each paper were obtained from CiteSeerx , the digital
library portal for Computer Science related literature [24]. �e
datasets are summarized in Table 1 along with the number of papers
(#Abs.), the average number of cited and citing contexts per paper
(#ACdCtx. and #ACgCtx.), the average number of keyphrases per
paper (#AKPs), and the number of unigrams, bigrams, trigrams
and more than three grams (#>tri-grams), in each collection. Other
details of these datasets are provided in the previous works1. For the
evaluation phase, we used the author-labeled keyphrases obtained
from the PDFs of the papers as our gold standard.

For data preprocessing, we use Python and the Natural Lan-
guage Toolkit (NLTK) [4] package2 to tokenize the raw text string,
and then assign parts of speech (POS) to each word. �irdly, we
retain only nouns and adjectives based on POS �ltering. Finally,
we use Porter’s stemmer [33]3 to stem all the words in order to
remove words’ su�x. �us, the candidate words, which are used
to construct the word graph, are obtained.

5.1.2 Evaluation Metrics. Almost all previous works on key-
phrase extraction use precision (P), recall (R), F1-score (F1) and
mean reciprocal rank (MRR) to evaluate the results [29]. Hence, we
also keep our evaluation metric consistent. P, R and F1 are de�ned
as follows:

P =
#c
#e
, R =

#c
#s
, F1 = 2PR

P+R
, (20)

where #c is the number of correctly extracted keyphrases, #e is the
total number of extracted keyphrases, and #s is the total number of
author-labeled standard keyphrases.

MRR is used to evaluate how the �rst correct keyphrase for each
document is ranked. For a document d , MRR is de�ned as

MRR =
1
|D |

∑
d ∈D

1
rankd

, (21)

where D is the set of target documents and rankd refers to the
rank of the �rst correct keyphrase with all extracted keyphrases.
For the evaluation scores in our experiments, we �rst examine the
average top-p predictions (average p), which refers to the average
number of keyphrases for a particular above-mentioned dataset.
For instance, average p=5 for WWW and 4 for KDD. Besides, to
make the comparison more convincing, we conduct experiments
on top@5, top@10 and top@15 extracted keyphrases.
1h�p://www.cse.unt.edu/∼ccaragea/keyphrases.html
2h�p://www.nltk.org/
3h�p://tartarus.org/martin/PorterStemmer/

5.1.3 Comparative Methods. To evaluate the performance of
our method, we compare our method with following unsupervised
methods (four of the �ve methods are graph-based methods):

(1) TF-IDF. TF-IDF method directly ranks each candidate
word according to its tf-idf score (i.e., the term frequency-
inverse document frequency). Although TF-IDF is the sim-
plest of these comparative approaches, it can achieve good
performance on some speci�c datasets, as introduced in
the previous work [16].

(2) TextRank [31]. TextRank model computes the score of
each candidate word (i.e., the score of node, which re�ects
its importance) using structure information of word graph
only from the target document. For each candidate word
wi , its score R (wi ) is computed in an iterative manner until
convergence using the following recursive formula:

R (wi ) = λ
∑

j :w j→wi

e (w j ,wi )

O (w j )
R (w j ) + (1 − λ), (22)

where e (w j ,wi ) is the weight of edgew j→wi , andO (w j )=∑
w ′ e (w j ,w

′) is the number of outbound edges. In our
repeated experiments, e (w j ,wi ) is the co-occurrence fre-
quency of wi and w j in the target document.

(3) ExpandRank [38]. ExpandRank is a TextRank extension
that exploits a small textual neighbourhood in addition to
the target document to enhance co-occurrence relations in
the word graph. For a target document d , this approach
�rst �nds its nearest neighboring documents Dn using a
similarity measure (e.g., cosine similarity). �en, the graph
for d is built, where the candidate words are collected from
the d and Dn . Finally, a modi�ed TextRank model is used
to compute the score of each candidate word, in which the
weight of an edge e (w j ,wi ) is recomputed as follows:

e (wi ,w j ) =
∑

dl ∈Dn

cos (d,dl ) · f reqdl (wi ,w j ), (23)

where cos (d,dl ) is the cosine similarity between the tf-
idf vectors of d and dl [29], and f reqdl (wi ,w j ) is the co-
occurrence frequency of wi and w j in document dl .

(4) CiteTextRank [14]. CiteTextRank is recently proposed
by Gollapalli [2014] and uses the citation context in addition
to the target document to enhance co-occurrence relations.
�is method is also a TextRank extension and similar to
ExpandRank, in which the weight of an edge e (w j ,wi ) is
recomputed as follows:

e (wi ,w j ) =
∑
k ∈T

∑
c ∈Ck

γk ·cos (d, c ) · f reqc (wi ,w j ), (24)



where Ck is the set of contexts of type k ∈T , and γk is the
weight for contexts of type k . �e types of contexts of d
include the set of cited, citing contexts and itself.

(5) Single-TPR [35]. Single-TPR, proposed by Sterckx [2015]
and described in subsection 3.3 in detail, integrates the
full topical information into the reset probability of Page-
Rank. �e recursive formula is represented in formula (5).
Di�erent from ExpandRank and CiteTextRank in which
the transition probability of PageRank is rede�ned for ex-
ploiting di�erent background knowledge to enhance the
accuracy of the word graph, Single-TPR modi�es the re-
set probability for using topical distribution of candidate
words and documents.

Based on recent studies, these baselines comprise the state-of-the-
art for keyphrase extraction [14]. Compared with these graph-based
approaches, MIKE substantially modi�es the both transition proba-
bility and reset probability. �e TF-IDF, TextRank and ExpandRank
are earlier representative methods. In order to clearly represent the
experimental results, we select the best-performing method (BL∗)
from these three baselines with best-performing parameters for
each dataset to compare with our method.

5.2 Used Multidimensional Information
In previous works on supervised methods, lots of traditional fea-
tures of candidate words have been de�ned. �ese candidate fea-
tures can be classi�ed into four major categories, as shown in Fig.
1(1). Recently, a representative supervised method, proposed by
Caragea [2014], designed some e�ective features based on citation
context and used them in conjunction with traditional features for
keyphrase extraction. �ese selected features include frequency
features (such as tf-idf, tf-idf over a certain threshold), position
features (such as �rst position, relative position), syntactic features
(such as POS) and citation-context-based features (such as citation
tf-idf, inCited, inCiting), around which many candidate features
are checked by our experiments. Finally, the tf-idf (which is widely
used, such as by Frank [1999], Caragea [2014]), citation tf-idf (used
by Caragea [2014], Bulgarov [2015]) and citation frequency are cho-
sen according to the variation coe�cient of weights of a feature
(i.e., values of φi∈−→φ ), which are obtained from the MIKE model. In
particular, we choose the feature with a relatively small variation
coe�cient because it means that the in�uence of this feature is less
variable and more stable in the MIKE. �e experimental results also
show that this feature selection strategy is e�ective. Note that our
proposed citation frequency is de�ned as the number of times that
this candidate occurs in citation contexts divided by the total in
citation contexts and given research paper, and used to determine
how important a given word is in the citation context.

In the experiments, we consider three edge features which are
based on the co-occurrence frequency between candidate word
pairs in the word graph. �ese three features have been used in the
recent representative work [14], in which the weights of them are
given in advance. In comparison, the weights are learned in our
model. �ese three edge features are computed as follows:

aEi jk =
∑
c ∈Ck

cos (d, c ) · f reqc (wi ,w j ). (25)

�is formula is the part of formula (24). Note that when c is equal
to d , we can get aEi jk = f reqd (wi ,w j ), which is the co-occurrence
frequency of wi and w j in document d .

�is work gets the topic distribution of candidate word w in a
given topic z (i.e., Pr (w |z)) and the topic distribution of a document
d (i.e., Pr (z |d )) in the corpus through LDAModel [18]4.

�e prior knowledge (i.e., supervised matrix B shown in the
formula (11)) is represented with the pairwise preferences (i.e.,
relative importance relation between keyphrase and candidate).
Speci�cally, we �rst randomly select a number of research papers
with the author-annotated keyphrases for each paper. For a given
paper, we then randomly choose some of words from it excluding
words in keyphrases. Finally, a pairwise preference is composed
of one word in keyphrases and the other word which is not in
keyphrases, and corresponds to a row of the supervised matrix B,
in which 1 represents the word in keyphrases and -1 represents the
other word which is not in keyphrases.

5.3 Parameter Setting
Some parameters of MIKE are empirically set as follows:

(1) Damping factor λ. �e factor λ is used to balance the
probability of random jumping from the given node to a
random node in the graph. �e value of λ is empirically set
to 0.85 in both Web sur�ng (PageRank [32]) and keyphrase
extraction(graph-based methods, such as TextRank [31],
TPR [26] and CiteTextRank [14]), and this is the value we
are also using in our implementation.

(2) Learning rate ρ. �e parameter ρ determines the conver-
gence speed of parameters in learning process. A large ρ
may speed up the learning process but it may also cause
failures to converge to an optimal solution. In our experi-
ments, we choose ρ=0.1 as a tradeo�.

(3) Tolerance ϵ . �e tolerance ϵ is used to determine whether
to continue the Algorithm 1 through the loop or stop. We
choose ϵ =0.001 in our experiments.

(4) Weight ψp . �e weight ψp , in formula 1, used to adjust
the �nal ranking score R (p) of n-gram p. According to
the ratio of the number of n-grams to total of keyphrases
shown in Table 1, ψp is set as follows: ψp = 1, if |p | = 1;
ψp =0.6, if |p |=2;ψp =0.3, if |p | ≥ 3.

Besides empirical parameters mentioned above, others will be
introduced as follows.

In the word graph, each edges of graph is represented by the
co-occurrence relation. �at is to say, two candidate words (nodes)
are connected if their corresponding lexical units co-occur within a
window of maximum window words. Co-occurrence links express
relations between syntactic elements, and represent cohesion in-
dicators for a given text [31]. In our experiments, to illustrate the
in�uence of the co-occurrence window window , we test values of
this parameter window in the range of 2 to 10 and plot the results
in Fig.2. �e best-performing se�ing is window =2 (which is the
same in TextRank) on two datasets, which is �nally used in the
comparison experiments. From the Fig.2, compared with a larger
window, a smaller window can help to improve performance of
keyphrase extraction. �is is probably explained by the fact that
4h�ps://radimrehurek.com/gensim/



Table 2: �e Comparison of MIKE with other Approaches at average p=5 on WWW and 4 on KDD Datasets.

Method WWW KDD
Precision Recall F1-score MRR Precision Recall F1-score MRR

MIKE 0.1480 0.1505 0.1492 0.3705 0.1607 0.1600 0.1603 0.3364
CiteTextRank 0.1398 0.1433 0.1415 0.3314 0.1448 0.1434 0.1441 0.3155
Single-TPR 0.1310 0.1336 0.1323 0.2962 0.1289 0.1278 0.1283 0.2792
BL∗ 0.1243 0.1259 0.1251 0.2984 0.1256 0.1237 0.1247 0.2751

Figure 2: �e in�uence of the co-occurrence windowwindow

a weak semantic relation between words is not strong enough to
de�ne a connection in the text graph [31].

To illustrate the in�uence of the number of topics in MIKE, we
test values of this parameter K in the range of 0 to 100 and plot
the results in Fig. 3. Note that the K = 0 means that the topical
information has not been added to our model. We observe that the
performance of MIKE is in�uenced by changes on the number of
topics K . In general, the performance increases and then slowly
decreases on both WWW and KDD datasets as K grows. �e best-
performing se�ing is K = 10 on both WWW dataset and KDD
dataset, which is �nally used in the comparison experiments.

In addition, the prior knowledge mentioned in formula (12) has
been integrated into our model, which can be used to �nd the best-
performing values of learning parameters −→ω and −→φ in learning
process and to help to choose the e�ective node features and edge
features from lots of existing candidate features and edge features.
In order to make the compared experimental results fairer, the prior
knowledge is only used to help to choose the e�ective node features
and edge features. In this choosing process, we set δ =0.8, which is
used to balance the importance of modi�ed PageRank (formula (9))
against of prior knowledge (formula (12)).

Finally, when the condition |L (s )−L (s+1) | < ϵ (i.e., Step 19 in
Algorithm 1) is satis�ed in this algorithm, themaximum and average
number of iterations are 34 and 20.1 on WWW, and 33 and 19.8 on
KDD, respectively.

5.4 Performance Comparison
We �rst compare the BL∗, Single-TPR and CiteTextRank from pre-
vious researches with MIKE at average p (p = 5 on WWW and 4
on KDD datasets) and the results are shown in Table 2. Note that

Figure 3: �e in�uence of the number of topics K

the average p are very close to the average numbers of keyphrases
AKPs in given research papers (AKPs=4.87 on WWW and 4.03 on
KDD datasets), as shown in Table 1. �e bene�t is that the exper-
iment can re�ect real application environment. �e results show
that MIKE substantially outperforms other comparative approaches
in terms of all performance measures on two datasets.

Secondly, we further conduct experiments to compare our model
with two graph-based approaches, namely, Single-TPR and Cite-
TextRank, in terms of the accuracy of top@5, top@10 and top@15
extracted keyphrases. All the results are presented in Table 3. As
the results show, our MIKE gets the best results in terms of all
performance measures, indicating that our method indeed outper-
forms the other two approaches. In addition, the results show that
the Precision and F1-score get smaller and the Recall and MRR
become larger for each of these approaches as the number of ex-
tracted keyphrases increases. �ese changes are in accordance
with the actual accident situation, and prove the correctness of our
experiments.



Table 3: �e Comparison of Approaches at @5, @10, @15 on both WWW and KDD Datasets

Method WWW KDD
Precision Recall F1-score MRR Precision Recall F1-score MRR

MIKE@5 0.1480 0.1505 0.1492 0.3705 0.1401 0.1733 0.1549 0.3383
MIKE@10 0.0907 0.1814 0.1209 0.3785 0.0933 0.2242 0.1318 0.3476
MIKE@15 0.0681 0.2026 0.1019 0.3788 0.0742 0.2633 0.1158 0.3527

CiteTextRank@5 0.1398 0.1433 0.1415 0.3314 0.1288 0.1598 0.1426 0.3154
CiteTextRank@10 0.0871 0.1785 0.1170 0.3417 0.0879 0.2182 0.1254 0.3309
CiteTextRank@15 0.0649 0.1997 0.0980 0.3446 0.0656 0.2441 0.1034 0.3341

Single-TPR@5 0.1310 0.1336 0.1323 0.2962 0.1156 0.1428 0.1278 0.2879
Single-TPR@10 0.0874 0.1751 0.1166 0.3098 0.0849 0.2033 0.1197 0.3070
Single-TPR@15 0.0667 0.1987 0.0999 0.3130 0.0669 0.2366 0.1043 0.3113

Table 4: Sample Predictions for Di�erent Datasets using Di�erent Methods (Author-labeled keyphrases are shown in bold.)

1 Jena: implementing the semantic web recommendations (WWW, 2004; average p=5)
Gold: jena, owl, rdf, rdql, semantic web, so�ware architectures
MIKE: rdf, jena 2©, rdf graph, owl∗ 4©, semantic web 5©

CiteTextRank: rdf, rdf graph, owl∗ 3©, jena 4©, rdf recommend
Single-TPR: rdf graph, rdf recommend, web api, second-gener rdf, rdf toolkit

2 First-order focused crawling (WWW, 2007; average p=5)
Gold: focused crawling, relational subgroup discovery
MIKE: subgroup discovery, relational subgroup, relational subgroup discovery 3©, focus, focused crawling∗ 5©

CiteTextRank: focused web, subgroup discovery, relational subgroup, focused crawling∗ 4©, web crawling
Single-TPR: �rst-order focus, focused crawling∗ 2©, �rst-order focused crawler, focused crawler, focused web

3 Hierarchical model-based clustering of large datasets through fractionation and refractionation (KDD, 2002; average p=4)
Gold: clustering, fractionation, model-based clustering, refractionation
MIKE: clustering, model-based clustering, fractionation 3©, hierarchical clustering
CiteTextRank: clustering, model-based clustering, hierarchical clustering, non-parametric clustering
Single-TPR: clustering, model-based clustering, hierarchical clustering, non-parametric clustering

4 Finding a team of experts in social networks (KDD, 2009; average p=4)
Gold: social networks, team formation
MIKE: team, team formation 2©, team formation problem, social networks 4©

CiteTextRank: problem, formation problem, team, team formation 4©

Single-TPR: problem, formation problem, combinatorial problems, team

In conjunction with the results shown in Table 2, we can clearly
see the advantage of integrating all these di�erent types of informa-
tion into a uni�ed model. Some anecdotal examples are shown in
Table 4. �e predictions obtained by di�erent methods along with
human-picked “gold” keyphrases are listed in this table. As can
be seen, there is a high overlap between the “gold” and predicted
keyword sets by MIKE. Besides, comparing with the Single-TPR and
CiteTextTank, MIKE can improve the �nal ranking score of author-
labeled keyphrases. For example, some extracted keyphrases la-
beled by the underline and circled position number achieve the
high ranking using MIKE, but low ranking using the other two
graph-based approaches. �e number of counter-examples labeled
by the asterisk and circled position number is few (Only two are
“owl” in Sample 1 and “focused crawling” in Sample 2.). �ese ex-
amples can further indicates that the multidimensional information
help to gain be�er performance in keyphrase extraction.

6 CONCLUSIONS
In this study, we presented a graph-based random-walk algorithm
named MIKE for extracting keyphrases from scienti�c research
papers. In particular, we integrated �ve di�erent types of infor-
mation, which have been widely used in the di�erent approaches,
into a uni�ed model to capture the latent mutual in�uences of
all these information on a candidate. �ese information includes
the features of candidate words, prior knowledge (used in super-
vised approaches), structure of word graph, features of links (used
in graph-based approaches), and topical information (used in su-
pervised or graph-based approaches). Besides being capable of
leveraging multidimensional information, MIKE learned the node
and edge weights by our theoretically sound optimization model
instead of assigning empirical weights, which distinguishes it from
the other graph-based approaches (e.g., CiteTextRank). In addition,
MIKE is a �exible parametric model in which we can easily add any



new features of nodes or links to it. Our experimental results have
shown that the proposed algorithm can signi�cantly outperform
the state-of-the-art graph-based approaches on both WWW and
KDD datasets.

In future, we plan to conduct more comprehensive experiments
to investigate the e�ectiveness of other features of candidates and
edges in the word graph, and evaluate MIKE for other types of
documents, e.g., Biology and Chemistry.
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