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Abstract—This paper presents a novel structure preserving 
oversampling (SPO) technique for classifying imbalanced time 
series data. SPO generates synthetic minority samples based on 
multivariate Gaussian distribution by estimating the 
covariance structure of the minority class and regularizing the 
unreliable eigen spectrum. By preserving the main covariance 
structure and intelligently creating protective variances in the 
trivial eigen feature dimensions, the synthetic samples expand 
effectively into the void area in the data space without being 
too closely tied with existing minority-class samples. Extensive 
experiments based on several public time series datasets 
demonstrate that our proposed SPO in conjunction with 
support vector machines can achieve better performances than 
existing oversampling methods and state-of-the-art methods in 
time series classification. 

Keywords- Oversampling, learning, imbalance, time series, 
SVM, structure preserving, eigen regularization 

I.  INTRODUCTION 
Data imbalance is a key source of degraded learning 

performance [1, 2] since existing learning algorithms often 
assume a balanced class distribution, as illustrated by the 
synthetic data in Fig. 1(a). In many real-world applications, 
the practical learning data can be highly imbalanced as in 
Fig. 1(b). This imbalance often causes that the learning be 
biased towards the majority class. However, the minority 
class often represents the interest to be accurately classified. 
Existing solutions address the imbalance issue at the data 
level [3-8], at the algorithm level [9], or at a combination of 
both levels [10-13]. The data-level methods re-establish the 
balance through resampling, e.g. oversampling of the 
minority class, undersampling of the majority class, or both. 
The algorithm-level methods incorporate or manipulate 
learning parameters such as dataspace weighting [9, 10, 12], 
class-dependant cost matrix, and receiver operating 
characteristics (ROC) threshold [14], into the existing 
learning paradigms to enforce sufficient emphasis on the 
minority class. Although several recent algorithm-level 
methods reviewed in [2] achieved good results on some 
imbalanced datasets, data-level methods are advantageous of 
addressing the imbalance issue at the most fundamental level 
and they can serve as a common preprocessing step for 
different machine learning algorithms. 

Many real-world learning applications in a wide range of 
domains, such as finance, aerospace, entertainment, network 

security, and medicine, involve time series data [15-19]. As 
defined in [17], a time series instance is an ordered set of 
real-valued variables that are sampled or extracted on a 
continuous signal, which can be either in the time or spatial 
domain. Due to its sequential nature, variables that are close 
in a time series are often highly correlated. One of the best-
known learning methods for time series classification is the 
one nearest neighbor (1NN) classifier with dynamic time 
warping (DTW) [15]. The distance between two samples, 
known as warping distance, is computed by searching for the 
optimal mapping path to align the two time series sequences. 
The classification of a test sample is then based on the top-
one nearest training neighbor. 

Imbalanced time series classification is difficult because 
of its high data dimensionality and inter-variable correlation. 
Though oversampling is effective for re-balancing the 
classes, as far as we know, it has not been sufficiently 
explored for imbalanced time series classification due to the 
complexity of the problem. Note that the recent booming 
classification [25] for skewed stream data focuses on solving 
the issues related with evolving stream, such as concept drift, 
and the stream data do not necessarily need to be time series 
data [17]. To achieve the oversampling in general, two 
existing approaches can be adopted. The first approach 
interpolates between selected positive samples and their 

Figure 1. Comparison of the balanced class population in (a) and the
practical imbalanced distribution in (b) in 2D feature space. 

(a) 

(b) 
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random positive nearest neighbors for generating the 
synthetic samples. Well-known oversampling methods that 
adopt this approach are SMOTE [3], Borderline-SMOTE [6] 
and ADASYN [7]. A recent extension [19] to SMOTE 
addressed a special scenario that imbalanced data are in the 
format of pairwise distance matrix. The second oversampling 
approach is to generate the features of the synthetic samples 
individually. A representative method is DataBoost [12], 
which generates each feature based on Gaussian distribution 
within an empirical range [min, max]. The two approaches 
have been shown to work fairly well for various imbalanced 
non-time series classification datasets. However, we opine 
they may not be adequate for oversampling largely 
imbalanced time series datasets. As we have mentioned 
earlier, the adjacent variables in the time series are usually 
not independent but highly correlated. The random data 
variances introduced by both conventional oversampling 
approaches will weaken or even destroy the inherent 
correlation structures in the original time series data, 
resulting in non-representative synthetic training samples 
with excessive noise that confound the learning. 

As such, we propose a novel structure preserving 
oversampling (SPO) method for a binary time series 
classification task. Our SPO method is designed to preserve 
the covariance structure in the training time series data by 
operating in the corresponding eigen spectrum in two 
subspaces, a reliable subspace and a unreliable subspace, as 
follows: 1) The synthetic samples are generated by 
estimating and maintaining the main covariance structure in 
the reliable eigen subspace; 2) A regularization procedure is 
further employed to infer and fix the unreliable eigen 
spectrum. This helps create some buffer variances of the 
synthetic data in the trivial eigen subspace to improve the 
generalization performance on the unseen data. To the best 
of our knowledge, this is the first oversampling method that 
preserves the covariance structure in imbalanced learning. In 
conjunction with Support Vector Machines (SVM), we show 
that SPO outperforms other oversampling methods and our 
classification results are better than several state-of-the-art 
methods for time series classification. 

II. THE PROPOSED SPO FRAMEWORK 
Given the positive and the negative learning datasets 

P={x11, x12,…, x1|P|} and N={x01, x02,…,  x0|N|}, where 
|P|� |N|, xij

1n��� and n denotes the time series length or 
dimension, our algorithm first computes the covariance 
matrices of the positive and negative classes using 
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corresponding mean feature vectors. We then perform eigen 
decomposition on WP using 

T
P�D V W V 																										���	

where V=[v1,…,vj,…,vn] is the eigenvector matrix and D is a 
diagonal matrix with the corresponding eigenvalues d1 
�…�dj�…�dn in descending order. The eigenvectors in V 
are statistically uncorrelated satisfying 0T

i P j �v W v  for i � j. 
Note that WP is a symmetric positive semi-definite matrix. In 
other words, 0jd �  must be satisfied for 1 j n   and jd  
represents the projection variance on the jth eigenvector for 
the positive training data. Suppose we have a large number 
of positive samples, all the eigenvalues {dj} shall be greater 
than zero and from Eqn (2), we can derive 

� � � �1 2 1 2T T
n P P
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where 1 2
1 1[ , , , , ]j j n nd d d�� �F VD v v v� � is a 

scaled transformation so that the transformed feature vectors 
1{ , 1 | |}T

j j P F x of the positive samples have a covariance 

of an identity matrix .n n
n

��I � Note that the transformation 
F actually turns an arbitrary full-rank covariance matrix into 
a simple and well-known covariance structure. We can 
exploit this one-to-one mapping to simplify our goal of 
oversampling. That is, we can generate the new samples 
based on a simple identity-matrix covariance structure and 
then map them into the targeted covariance structure using 
the inverse transformation of F.  

In practice, the number of positive samples (|P|) can be 
significantly less than the time series dimension (n). In this 
case, the estimated covariance structure is likely to be over-
adapted to the small set of positive data and cannot be fully 
trusted. As can be observed in Fig. 2, the large eigenvalues 
are often good approximations to the projected variances of 
the test spectrum, but the remaining portion of very small 
eigenvalues exhibit a large gap to the projected test 
variances. Here, the test spectrum is computed by projecting 
a set of test positive samples onto each of eigenvectors {vj} 
and then computing its corresponding projection variance. 
Given that the inverse of an eigenvalue is commonly used as 
a multiplicative term in feature scaling, the unreliable portion 
of the eigen spectrum is a major source of learning instability 
and poor generalization in discriminant feature extraction 
[21, 22] and machine learning. 

Unreliable Reliable 

Figure 2. Comparison of estimated minority-class spectrum, projected
test variance spectrum and the regularized spectrum for Yoga dataset. 
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In order to generate random synthetic samples that not 
only maintain the major covariance structure of positive 
training dataset but also generalize well on the test dataset 
(so as to ensure accurate classification results subsequently), 
we introduce a regularization step to fix the covariance eigen 
spectrum {dj} of the positive dataset. We divide the eigen 
spectrum into two regions, namely, the reliable and the 
unreliable subspace, and then perform regularization on the 
unreliable spectrum. We perform a c-fold cross validation to 
determine the division point between the two subspaces 
(marked as M in Fig. 2). We randomly divide the positive 
data into c equal partitions. One partition is reserved for 
testing and the remaining c-1 partitions are used for 
computing the eigen vectors and the eigen spectrum. The 
testing partition is then projected onto these eigen vectors to 
measure the test variance spectrum. We repeat this c times to 
use each partition as a test partition once. By averaging the c 
eigen spectrums and the c testing spectrums, a good M is 
located where the average test spectrum departs from the 
average eigen spectrum. In this work, as we can have only 
about a dozen positive samples in the evaluation 
experiments, we chose a small c=2 to avoid tiny partitions.  

With M determined, we compute the regularized eigen 
spectrum using  
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where function ( ) ( )T j j� �� �  is a smooth eigen 
spectrum model suggested in [21] to regularize the unstable 
eigen spectrum. We use 1(1)T d� and ( ) MT M d�  to ensure 
the smooth transition and compatibility of the two spectrum 
regions, and determine the model parameters as follows:    
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The term T
j j N je � Wv v  represents the projected variance of 

the negative-class samples on the jth positive-class eigen 
vector vj. For the unreliable spectrum region, the model 

( )T j  generally provides a smooth regularized spectrum that 
is greater than the original spectrum dj and below the 
spectrum of ej. In some cases, the regularized eigen values 
provided by this model may exceed ej. Since ej is computed 
on a large pool of negative-class samples and thus represents 
a reliable estimation, Eq (4) sets ˆ

j jd e�  in such cases to 

ensure ˆ for ,j jd e j M � which minimizes the risk of over 
regularization. 

With the regularized positive dataset’s covariance 
structure, we then generate a total of | | | |N P�  synthetic 
positive samples (to balance the population of positive and 
negative classes) based on multivariate Gaussian distribution 
(MGD). MGD is chosen here since it is the most natural 
distribution, and also that summation of a large number of 
independent distributions obeys the Gaussian distribution 

[22]. Suppose 1 1̂
ˆ ˆˆ [ , , , , ].j j n nd d d�F v v v� �  Let 

us assume that � �1
ˆ ,� �Fz b x the transformed version of the 

synthetic positive sample b to be generated, follows two 
separate MGDs of ( , )M M0 IN  and ( , )n M n M� �0 IN  to cater 
for the reliable and the unreliable eigen spectrum regions, 
respectively. We generate the two portions z1 and z2 
separately, where z1 is randomly generated from the MGD of  

( , )M M0 IN and z2 from ( , ).n M n M� �0 IN  Here, 0M denotes a 
vector of M zeros. The two portions z1 and z2 are 
concatenated to form z. The synthetic sample is then  

1 2
1

ˆ T� D Vb z + x 	 									���	

where D̂  is the diagonal matrix of regularized eigen values 
1̂

ˆ{ , , }.nd d� We also apply a distance constraint to determine 
whether b is an outlier as follows:  First, we find 0 ,k N�x  the 
nearest negative sample to b, i.e. 0arg min ( , ).j

j
k f� b x  Here 

f (�) denotes a distance function. As mentioned earlier, as 
1NN-DTW has been shown to be one of the best performers 
for time series classification [15], we would like to use the 
DTW distance as f(�) ideally. However, because of its high 
computational load, we use the simple Euclidean distance, 
which is also known a suitable distance metric for time series 
classification [17, 18], as our f (�) in this work. To eliminate 
potential outliers, we require that 

� �� � � � � �� �1 0 0 1 0min , , max ,j k k i kj i
f f f� �x x b x x x 			���	

be satisfied in order to include b as one positive synthetic 
sample. Otherwise, b is discarded. The condition in (7) 
ensures that the nearest negative neighbor of b in the training 
data space has at least one closer positive training sample 
than b, and also that b is not located too far away from the 
existing training population. 

The above oversampling process is repeated until 
| | | |N P�  synthetic positive samples are generated. The 
synthetic set is then included with the existing samples to 
form a balanced training set.  

With the balanced dataset, we choose SVM to learn our 
classifier for the following reasons: 1) SVM is known to 
generalize well to unseen data as it minimizes the structural 
risk instead of the empirical risk [23]; 2) The formulation of 
SVM allows users to choose different non-linear feature 
mapping to a high dimensional space so that a good linear 
separation hyper-plane can be found. Kernel tricks can be 
employed in this process with acceptable computational 
load; 3) In our preliminary classification test on balanced 
time series data, we find that the overall classification 
accuracy of SVM is comparable to 1NN-DTW, the state-of-
the-art time series classification method, if we choose the 
optimal SVM parameters with radial basis function (RBF) 
kernel. Our SVM learning follows with what have been 
suggested in [24] to include the procedures like feature 
scaling and grid searching for finding the best parameters. 
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III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Visual Comparison 
Based on the example in Fig. 1(b), we visually compare 

the oversampling effect of our proposed SPO with five 
existing methods in Fig. 3 in two-dimensional feature space. 
For each method, we oversample the set of 50 positive 
samples nine times to have a total of 500 positive samples.  

Among all five existing oversampling methods, the 
synthetic samples generated from DataBoost [12] fills the 
void areas within the territory of positive samples most 
competently. However, the synthetic sample distribution 
appears square-like and looks likely to expand into the 
territory of the negative class. On the other extreme, the 
synthetic samples generated by the repeating method overlap 
exactly with the current positive samples with no additional 
data variances being created. The synthetic samples 
generated by the other three nearest-neighbor interpolation 
methods formed dense clusters with small data variances 
near the existing samples. Among them, SMOTE creates 
relatively even synthetic distribution since every existing 
positive sample is selected for generating roughly the same 
number of new samples. Borderline-SMOTE creates a 
synthetic sample distribution where only a small set of 
existing positive samples, whose neighborhood contains 
more negative samples than the positive samples, are heavily 
emphasized. ADASYN strikes a balance between SMOTE 

and Borderline-SMOTE by adaptively emphasizing more on 
the samples that are closer to the classification border. 

As we can see, the synthetic samples created by our 
proposed SPO shared the most similar covariance shape with 
the existing limited positive samples. Similar to DataBoost 
oversampling, our synthetic sample distribution is not closely 
tied with the existing positive samples and it fills the void 
internal spaces within the positive class territory. It also 
sensibly expands towards the void areas in the vicinity of 
positive class territory, which are currently not occupied by 
the abundant negative samples. At the same time, our 
distance constraint in Eqn (7) ensures that the SPO’s 
synthetic positive distribution does not reach into the 
negative class territory.  

B. Comparison for Imbalanced Time Series Classification 
As tabulated in Table I, we constructed five imbalanced 

datasets from the public UCR time series repository [16]. S-
Leaf here refers to the “Swedish Leaf” dataset. One can refer 
to [16, 17] for description of these datasets. These datasets 
were selected for containing relatively large numbers of 
samples to facilitate simulating scenarios of high class 
imbalance. Out of the five selected datasets, Adiac, S-Leaf 
and FaceAll originally contained 37, 15 and 14 classes, 
respectively. We converted them into two-class datasets by 
selecting one class as the positive class, i.e. Class 2 for Adiac 
(Class 2 is selected as it contains more samples needed than 
Class 1), Class 1 for S-Leaf, Class 1 for FaceAll, and using 
the remaining classes to form the negative class. For each 
set, the training and test data are apportioned randomly and 
all available samples are included either in the training or in 
the test set. The random apportion is repeated five times for 
each dataset so that we can report the more reliable average 
testing performances in the following section. As shown in 
Table I, we choose round numbers for the positive training 
samples and at the same time, they do not exceed 50% of the 
total available positive samples. For each training set, the 

 

Figure 3. Visual comparison the proposed SPO with other oversampling techniques. Default parameters are chosen for other oversampling methods 

TABLE I.    IMBALANCED TIME SERIES DATASETS 

Datasets 
Training Test Time 

series 
length #Pos #Neg IM-Ratio #Pos #Neg 

Adiac 10 350 35 13 408 176 
S-Leaf 30 500 17 45 550 128 
Wafer 50 3000 60 712 3402 152 

FaceAll 40 400 10 72 1738 131 
Yoga 50 300 6 1480 1470 426 
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number of positive samples is kept no more than 50 to 
simulate the scenario of rare positive instances. We 
maintained high imbalance ratios (IM-ratios), i.e. the number 
of negative samples divided by the number of positive 
samples, in the datasets, with the highest being 60 for the 
Wafer dataset and the lowest being 6 for the Yoga dataset. 
Note that for all datasets, the number of positive samples is 
significantly smaller than the time series length (dimension 
of the time series). In particular, for Adiac, the feature 
dimension is about 18 times of the number of positive 
samples. This sparsity of data with respect to the high 
dimensions in time series classification is another key 
challenge.  

To evaluate our SPO for oversampling, we used six 
oversampling methods (five different existing methods and 
our SPO method) to balance the classes in the training 
dataset separately, and then trained an SVM classifier for 
each resulting balanced dataset. The classifiers’ performance 
is evaluated using F-Value and G-Mean [2] in Table II. The 
results show that our SPO achieved average F-Value and G-
Mean of 0.88 and 0.91, respectively, which are better than all 
five existing oversampling methods. We found that our good 
result is largely attributed by excellent recall scores, 
compared with comparable precisions and true negative 
rates. The high recall rates indicate that much of the test 
positive samples can be classified with a good accuracy 
when using our SPO to supplement the emaciated positive 
training datasets. In comparison, we also found that the 
repeating oversampling achieved the largest precision score 
at the expense of the poorest recall value. This is due to the 
tendency that a smaller set of positive predictions at a high 
accuracy rate were made by the SVM when the repeating 
oversampling is used (i.e. with overfitting).  

C. Comparison of Different Learning Frameworks 
Finally, we compared our proposed learning framework 

with two recently developed imbalanced learning methods, 
EasyEnsemble [8] and BalanceCascade [8], as well as with 
two other well-known state-of-the-art methods, 1NN-DTW 
[15] and 1NN [17, 18], for time series classification. Like 
our SPO, EasyEnsemble and BalanceCascade also address 
the data imbalance issue at the data level. However,  

EasyEnsemble and BalanceCascade adopted the approach of 
undersampling the negative class to balance the training 
datasets. In both methods, a good number of balanced sets 
are constructed to learn multiple decision-tree weak 
classifiers. These classifiers are systematically integrated by 
AdaBoost into a strong ensemble classifier. The key 
difference between EasyEnsemble and BalanceCascade is 
that BalanceCascade periodically removes a pre-computed 
percentage of relatively easier negative samples from the 
negative training set before the random undersampling takes 
place. This procedure is to enforce more hard negative 
samples being included in the balanced training set. 1NN-
DTW and 1NN do not explicitly address the data imbalance. 
As mentioned earlier, 1NN-DTW has been shown to be 
highly competent for classifying balanced time series data 
[15].  1NN classifier with a simple Euclidean distance metric 
has also been suggested for semi-supervised time series 
classification [17, 18] involving utilizing unlabelled training 
samples to improve the learning outcomes.  

Table III shows the comparison of our SPO cum SVM 
with these other learning methods in terms of F-Value and 
G-Mean. Except for the FaceAll and Yoga datasets that SPO 
was the second best, SPO achieved the best results 
consistently for the remaining three datasets. On average, the 
F-Value of SPO is 9% higher than the second best 1NN 
method and its G-Mean is 4% higher than the second best 
BalanceCascade method. Amongst the existing methods, we 
noticed that 1NN-DTW gave the best results for the FaceAll 
and Yoga datasets.  However, its performance is much worse 
than 1NN for S-Leaf and Wafer datasets. To circumvent this 
instability issue, we have tried to define a warping window 
and vary its size from 1 to 11 as suggested in [15]. However, 
we did not obtain better results than what we reported in 
Table IV. 1NN gave more consistent performance and better 
average F-Value and G-Mean than 1NN-DTW. 
BalanceCascade provided significantly better average F-
Value and G-Mean than its counterpart EasyEnsemble. This 
is in agreement with the discussion in [8] that 
BalanceCascade is more suitable for highly imbalance data 
than EasyEnsemble. 

Currently, the number of synthetic samples to be 
generated by our SPO is dependent on size of the negative 
class. The oversampling procedure may not be practical 
when the negative training class is extremely large, e.g. with 
millions of samples. In such a situation, we can reduce the 
negative class to a manageable yet representative size 
through undersampling, which is similar to other methods [3, 
4]. Our proposed method can then be applied to the modified 
training set in a smaller scale. Using our most populous time 
series dataset, Wafer, our current MATLAB SPO 
implementation takes an average of 4.0�10-2 second to create 
a synthetic sample about 150 dimensions on an ordinary 
computer with Intel 2.53-GHz CPU. This small time 
requirement suggests that our proposed algorithm can be 
used for many practical time series classifications. 

IV. CONCLUSION 
In this paper, we have proposed a novel structure 

preserving oversampling method for the challenging learning 

TABLE II.   COMPARISON FOR DIFFERENT OVERSAMPLING METHODS 

Eval. 
metric Dataset Oversampling Method 

REP SMO BoS ADA DB SPO 

F-
Value 

Adiac .375 .783 .783 .783 .136 .963 
S-Leaf .716 .764 .764 .759 .796 .796 
Wafer .962 .968 .968 .967 .977 .982 

FaceAll .935 .935 .935 .935 .890 .936 
Yoga .710 .729 .721 .727 .689 .702 

Average .740 .836 .834 .834 .698 .876 

G-
Mean 

Adiac .480 .831 .831 .831 .748 .999 
S-Leaf .800 .861 .861 .849 .898 .898 
Wafer .965 .969 .970 .970 .980 .984 

FaceAll .950 .950 .950 .950 .948 .957 
Yoga .741 .756 .750 .755 .724 .735 

Average .787 .874 .872 .871 .859 .914 
   The acronyms are:  REP: repeating;     SMO: SMOTE;     BoS: Borderline SMOTE;  

   ADA: ADASYN;     DB: DataBoost oversampling 
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problem of imbalanced time series classification. In the 
current work, SPO addresses the imbalanced learning issue 
by oversampling the minority class. The synthetic samples 
are generated in eigen decomposed subspace and based on 
regularized eigen spectrum. This allows the resulting sample 
data to preserve the major covariance structure of the 
original minority-class samples and at the same time, to 
intelligently incorporate some protective variances in the 
trivial eigen dimensions. As a result, our synthetic samples 
are not tied closely with the existing samples. They fill up 
the gaps in between the minority-class samples and sensibly 
expand into the vicinity of minority-class territory without 
introducing outliers.  

Based on five public sets of highly imbalanced UCR time 
series data, our SPO with SVM achieved good average F-
Value and G-Mean of 0.88 and 0.91, respectively. It 
outperformed an array of existing oversampling methods as 
well as state-of-the-art learning methods for time series data. 
The results are particularly significant given that many real-
world data mining applications are afflicted with data 
imbalance and involve time series data, but there have been 
few if any work on imbalanced time series learning. Our 
results with SPO showed that by taking into careful 
consideration the specific issues related to time series data, 
such as covariance structure preservation, the oversampling 
approach can be employed to effectively address the 
challenging problem of data imbalance in time series 
classification. 
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TABLE III. COMPARISON OF SEVERAL CONVENTIONAL METHODS 

Eval. 
metric Dataset 

Learning methods 

Easy  Bal. 1NN 1NN 
DTW SPO 

F-Value 

Adiac .534 .348 .800 .917 .963 
S-Leaf .521 .578 .716 .429 .796 
Wafer .795 .954 .949 .857 .982 

FaceAll .741 .625 .802 .959 .936 
Yoga .356 .689 .652 .710 .702 

Average .589 .639 .784 .766 .876 

G-Mean 

Adiac .782 .897 .875 .920 .999 
S-Leaf .712 .898 .798 .572 .898 
Wafer .817 .970 .953 .870 .984 

FaceAll .792 .918 .983 .985 .957 
Yoga .464 .688 .695 .741 .735 

Average .713 .874 .860 .810 .914 
The acronyms are:  Easy: EasyEnsemble;     Bal: BalanceCascade;    1NN: One nearest 
neighbor classifier using Euclidean distance;    1NN DTW: One nearest neighbor 
classifier using dynamic time warping distance;     SPO: Proposed structural preserving 
oversampling with support vector machine classifier  

1013


