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Abstract

Conventional location recommendation models
rely on users’ visit history, geographical influ-
ence, temporal influence, etc., to infer users’
preferences for locations. However, systemat-
ically modeling a location’s context (i.e., the
set of locations visited before or after this loca-
tion) is relatively unexplored. In this paper, by
leveraging the Skip-gram model, we learn the
latent representation for a location to capture
the influence of its context. A pair-wise ranking
loss that considers the confidences of observed
user preferences for locations is then proposed
to learn users’ latent representations for person-
alized top-N location recommendations. More-
over, we also extend our model by taking into
account temporal influence. Stochastic gradi-
ent descent based optimization algorithms are
developed to fit the models. We conduct com-
prehensive experiments over four real datasets.
Experimental results demonstrate that our ap-
proach significantly outperforms the state-of-
the-art location recommendation methods.

1 Introduction

The majority of location recommendation models are
built on top of collaborative filtering techniques by fo-
cusing on different aspects such as geographical influ-
ence [Ye et al., 2011; Cheng et al., 2012; Liu et al., 2013a],
temporal influence [Gao et al., 2013; Yuan et al., 2013;
2014], and semantic influence [Liu and Xiong, 2013;
Hu and Ester, 2013; Liu et al., 2013b]. Although explic-
itly modeling such influences indeed evidently improves
the quality of location recommendations, most existing
models directly predict a user’s preference for a location
without deeply investigating the context of the location,
which is defined as the set of locations that are imme-
diately visited before or after the location. Failing to
handle this issue makes the recommendations not only
inaccurate, but also less interpretable.

Existing models that consider the “relationship” of
consecutively visited locations mainly rely on Markov

chain (i.e., only latest location is considered when mod-
eling the location sequence) [Cheng and King, 2013;
Chen et al., 2011]. However, in reality, a user’s visit
at a location may be influenced or reflected by not only
a set of her previously visited locations, but also the lo-
cations visited by her after the target location. In this
paper, we endeavor to explore the context of locations to
better understand users’ visit behaviors. To this end, we
learn the latent representations of locations by leveraging
the Skip-gram model [Tomas Mikolov and Dean, 2013;
Mikolov et al., 2013; Tomas Mikolov and Zweig, 2013],
which has been widely applied to various Natural Lan-
guage Processing (NLP) tasks.

The main reason for choosing the Skip-gram model is
that traditional recommendation approaches (e.g., col-
laborative filtering) cannot capture the context of a lo-
cation. However, if we treat a user’s consecutively visited
locations as a trajectory that reflects her visit patterns,
this is analogous to that she writes a sentence to express
her semantic meanings. Thus, it is possible to leverage
NLP methods to model users’ mobility patterns. More-
over, compared to other NLP methods like topic model-
ing, Skip-gram model is capable of accurately modeling
the context (i.e., surrounding words) of the target word.

To be specific, our approach first sorts each user’s vis-
its in chronological order. We treat each location as a
word and each user’s visited locations as a sentence, so
that we have a document, represented as a collection of
sentences, denotes all users’ visited locations. The col-
lection of all unique locations serve as the location vo-
cabulary. Then, we apply the Skip-gram model to learn
the latent presentation of each word (i.e., each location).
Essentially, the latent representations of locations are
learned by incorporating the influence of each location’s
context (i.e., a set of locations that were visited imme-
diately before or after the location). Since the visited
locations of each user are organized in the order of vis-
iting time, the geographical influence between locations
has been implicitly encoded. Note that although the
locations visited after the target location are unknown
when making recommendations in practice, such infor-
mation is still utilized in training the Skip-gram model
to learn high quality latent representations of locations.

By leveraging the latent representations of locations,



we can easily find similar locations to make recommen-
dations heuristically. However, such representations are
learned from all users’ visit history (i.e., global pattern),
thus suffering from lack of personalization. To support
personalized recommendations, we exploit latent factor
model to learn the latent representation of each user to
predict her personalized preferences for locations. A la-
tent factor vector is assigned to every user, where the
users are forced to share the same latent space with lo-
cations. In the literature, the Weighted Approximately
Ranked Pairwise (WARP) loss [Weston et al., 2010] is
one of the most effective loss functions developed to learn
latent factor models for top-N recommendation tasks.
Practically, a user may visit a location multiple times,
thus the count of visit is an important factor to measure
users’ preferences. To capture this factor, we propose
the C-WARP loss, which introduces the confidence of
preference (measured by visit count) for learning users’
latent representations. The experimental results also in-
dicate that the location recommendation accuracy can
be improved by the proposed C-WARP loss.

In order to enable temporal-aware location recommen-
dations, we propose a time-aware extension based on
the C-WARP loss. Specifically, when measuring a user’s
time-aware preference for a location, besides the user’s
direct preference for the location, we also consider the
user’s preference for the time frame of visiting, as well
as the correlation between the corresponding location
and time frame. A latent factor vector is assigned to
each time frame, which shares the same latent space with
users and locations. We develop Stochastic Gradient De-
scent (SGD) optimization procedures to fit the models.
In this paper, although the context of locations is mod-
eled, we only focus on one-step location recommenda-
tions, sequential location recommendation task [Cheng
and King, 2013] is treated as the immediate future work.

2 Related Work

In [Ye et al., 2011],the geographical influence was cap-
tured by assuming that users’ geographical movements
follow power-law distribution. A fused framework was
proposed to incorporate users’ preferences, geographical
and social influences into one recommendation process.
Cheng et al. investigated users’ multi-center check-in
behaviors and proposed a Multi-center Gaussian Model
(MGM) [Cheng et al., 2012]. A matrix factorization
model was used to combine users’ preferences, social in-
fluence, and geographical influence for recommendation.
In [Liu et al., 2013a], a geographical probabilistic factor
analysis framework was proposed to model geographical
influence. Users’ preferences were modeled by treating
the check-in count data as users’ implicit feedback.

Recent research started exploring the temporal influ-
ence on location recommendations. Yuan et al. proposed
a time-aware model to recommend locations at a speci-
fied time in a day [Yuan et al., 2013]. A user-based col-
laborative filtering model was used to incorporate tem-
poral information. On top of matrix factorization, Gao

et al. proposed a novel location recommendation model
by modeling the consecutiveness and non-uniformness of
users’ daily check-in preferences [Gao et al., 2013].

Another line of research was to leverage the semantic
information such as location categories, tags, tips, and
reviews [Kurashima et al., 2013; Liu and Xiong, 2013;
Hu and Ester, 2013]. In [Liu and Xiong, 2013], Liu and
Xiong proposed a topic and location aware recommen-
dation model. Latent Dirichlet Allocation (LDA) was
applied to infer users’ interest topics by mining textual
contents that were associated with locations. A Topic
and Location-aware Probabilistic Matrix Factorization
(TL-PMF) model was developed for location recommen-
dations by matching the user interests to the location
topics. Yang et al. proposed a hybrid user location pref-
erence model by combining the preferences inferred from
users’ check-in behaviors and textual contents (e.g., tips)
using sentiment analysis techniques [Yang et al., 2013].

Modelling the context of locations for location recom-
mendations was relatively less explored, and the existing
solutions mainly relied on Markov models. In [Mathew
et al., 2012], users’ check-in histories were clustered, and
for each cluster, a Hidden Markov Model (HMM) was
built, treating location characteristics as unobservable
parameters. In [Sang et al., 2012], the authors pro-
posed a probabilistic approach to model a sequence of
locations and the location categories, based on which,
the system was able to recommend consecutive activities
and locations on the move. The transition probability
from one location to another was derived via a Markov
chain, considering the context and historical visit be-
haviors. Similar methods included [Zhang et al., 2014;
Cheng and King, 2013; Chen et al., 2011; Gambs et al.,
2012], which employed different variants of Markov mod-
els.

3 Our Approach
This section elaborates our context-aware location rec-
ommendation model. In Section 3.1, we learn latent rep-
resentations of locations using the Skip-gram model. In
Section 3.2, by minimizing the C-WARP loss, a person-
alized top-N recommendation method is presented. A
time-aware extension is introduced in Section 3.3.

3.1 Learning Location Representations
We denote the set of users by U = {u1, u2, ...} and the
set of locations by L = {l1, l2, ...}. For each user u,
her historical visit records (in chronological order) is de-
noted by Cu = {c1, c2, ...}, where ci =< li, ti > is the ith

visit of u, consisting of location li and the correspond-
ing temporal information ti. Note that li contains the
descriptive information such as longitude and latitude.
Moreover, we build a location corpus as the input of the
Skip-gram model. Here, each location corresponds to a
word, and accordingly, for each user, her visited loca-
tions correspond to a sentence. By aggregating all users’
historical visits, a location corpus is constructed.

For every location l ∈ Lu, we find its context C(l),
which is defined as the locations that are visited before



Figure 1: An example of the context window of a user’s
ith visited location (coffee shop). The window includes
4 locations visited before and after the ith location.

or after l within a predefined window size (see Fig. 1 as
an example). The objective of the Skip-gram model is
to maximize the following location corpus probability:

arg max
∏
l∈L

[
∏

lc∈C(l)

p(lc|l)], (1)

where p(lc|l) is estimated using the softmax function:

p(lc|l) =
exp(v>c vl)∑

x∈L exp(v>x vl)
, where vl ∈ RD×1 and vc ∈

RD×1 are the latent representations of the target location
l and the corresponding context location lc, respectively.
D is the dimensionality of the latent space.

Typically, the size of L is very large, thus directly
optimizing Eq. (1) is usually infeasible. In this work, we
adopt negative sampling [Mikolov et al., 2013] to improve
the optimization efficiency. For each location l ∈ L, we
sample a set of K locations that do not appear in l’s
context window. Then, the loss function (i.e., negative
log) is defined as:

Ln = −
∑
l∈L

(
∑

lc∈C(l)

(log σ(v>c vl) +

K∑
k=1

log σ(−v>k vl))),

(2)
where σ(·) is the sigmoid function. The K negative loca-
tions are sampled following the noise distribution Pn(l),
which could be the unigram distribution raised to the
3/4rd power [Mikolov et al., 2013]. It is worth noting
that each location l has two latent representation vec-
tors, one represents l as the target location, and the
other represents l as the context location. Backprop-
agation algorithm is applied to fit the Skip-gram model.

3.2 Personalized Recommendation Model

In Section 3.1, the latent representations of locations
are learned by identifying the context patterns from the
global perspective, thus ignoring the personalization of
individual users. To handle this issue, we propose a per-
sonalized preference learning model for personalized top-
N location recommendations.

With the observed user-location interactions, we use
ru,l to denote the times that a user u has visited a loca-
tion l. Intuitively, as the visit count grows, we are more
confident that user u likes location l. Based on such con-
fidence, we infer users’ personalized preference rankings
of locations, i.e., for a given user u, the location l should
be ranked higher than the location l′ if ru,l > ru,l′ . Note

that ru,l = 0 does not explicitly indicate u is not inter-
ested in l. It can also be caused by that u does not know
l.

To devise a personalized preference learning model for
top-N location recommendations, we adopt the WARP
loss [Weston et al., 2010], a pairwise ranking loss, to learn
users’ latent representations. By using the precision at N
measure, the WARP loss weighs the pair-wise violations
depending on the positions of locations in the ranking
list. For each user u, we construct her visited location
set and un-visited location set, denoted by C+u and C−u
respectively. The WARP loss is defined as:

Lwarp =
∑
u∈U

∑
l∈C+u

L[rank(ϕ̂u,l)], (3)

where rank(ϕ̂u,l) is the rank of a visited location l ∈ C+u
in u’s personalized ranking list of locations. rank(ϕ̂u,l)
can be estimated by

∑
l′∈C−u I(ϕ̂u,l′ ≥ ϕ̂u,l), where I(.) is

the indicator function. In order to optimize the WARP
loss, we replace the discrete indicator function by the
continuous margin function: max(0, 1−ϕ̂u,l+ϕ̂u,l′). L(·)
transforms the rank into a loss. The implementation of
L(r) used in this paper is L(r) =

∑r
i=1

1
i . Note that

ϕ̂u,l indicates a user u’s preference for a location l, pre-
dicted by our factorization model: ϕ̂u,l = u>u vl, where
uu ∈ RD×1 is the latent vector of u, and vl is the latent
vector of l derived by the Skip-gram model in Section
3.1. In order to reconcile with the Skip-gram model, the
dimensionality of users’ latent representations is consis-
tent with that of locations’ latent representations.

Given huge number of locations, for most users, the
un-visited locations are much more than the visited ones.
In order to efficiently approximate the rank function,
for each user u, given a visited location l, an un-visited
location l′ is randomly sampled, until the one that vi-
olates the margin function. rank(ϕ̂u,l) is approximated

by b |C
−
u |−1
M c, where M is the number of sampling trials,

|·| is the cardinality of a set, and b.c is the floor function.
In order to better capture users’ preferences for lo-

cations, we propose the C-WARP loss that extends the
WARP loss to consider users’ visit frequency for recom-
mendation. Specifically, we add a weight θl,l′ to each
pair of positive and negative locations (l, l′). The weight
is defined as: θl,l′ = 1 + α · (ru,l − ru,l′), where α con-
trols the increase of the difference. Intuitively, the larger
the difference, the more seriously this pair of locations
violate the margin function, and hence larger weight is
added to this location pair’s contribution to the total
loss. By considering location pair weight, the loss func-
tion is re-defined as:

Lc−warp =
∑
u∈U

∑
l∈C+u

L[
∑

l′∈C−u ∪{C+u \l}

max(0, θl,l′ · (1− ϕ̂u,l

+ϕ̂u,l′))] + λ
∑
u∈U

‖uu‖2,

(4)
where the first term is the proposed C-WARP loss, the
second term is used as regularization for avoiding over-



fitting, and λ controls the extent of regularization. By
introducing location pair weight, during the sampling, it
is not necessary to confine the negative locations to un-
visited locations, the visited locations with lower visit
frequency can also be sampled as negative cases.

The SGD optimization method is used to learn the
latent factors of users. Specifically, we iterate through
each user’s visited locations and sample a negative loca-
tion to update the user latent factors. The gradient of
Lc−warp with respect to the kth latent factor of u is as:

∂Lc−warp

∂uu,k
= L(b |L| − 2

M
c)θl,l′(vl′,k− vl,k) + 2λuu,k. (5)

The latent factor is updated as: uu,k ← uu,k−η ∂Lc−warp

∂uu,k
,

where η is the learning rate.
Once users’ latent representations have been learned,

we compute a user u’s preference for a target location
l as the inner product of the latent factor vectors uu

and vl. The location recommendations are generated by
sorting the candidate locations in descending order of the
predicted scores and choosing N top-ranked locations.

3.3 Time-aware Extension
Intuitively, users’ visit behaviors strongly correlate with
time. For instance, users typically visit pubs after work-
ing hours and visit shopping malls during weekends. It is
thus essential to take into account temporal information
to improve the location recommendation accuracy. In
this section, on top of the personalized location recom-
mendation model presented in Section 3.2, we propose a
time-aware extension.

We consider two types of temporal information, i.e.,
hour-of-the-day and day-of-the-week. Given 24 hours
per day, and 7 days per week, we have 168 time frames,
denoted by T. We assign a latent representation vec-
tor wt ∈ RD×1 to each time frame t ∈ T. Note that
the dimensionality of wt is consistent with that of users
and locations. Then, a user u’s temporal preference
for a location l at the time frame t is formulated as:
ϕ̂u,l,t = u>u vl + u>uwt + v>l wt. That is, a user’s prefer-
ence for a location, her preference for the time of visit,
as well as the correlation between the location and the
time frame, are jointly modeled to produce the user’s
time-aware location preference. Accordingly, we modify
the loss function by incorporating temporal information:

Lt
c−warp =

∑
u∈U

∑
l∈C+u

L[
∑

l′∈{C+u \l}

max(0, θl,l′ · (1− ϕ̂u,l,t

+ϕ̂u,l′,t′))] + λ(
∑
u∈U

‖uu‖2 +
∑
t∈T

‖wt‖2).

(6)
SGD is used to fit the time-aware model. The gradients
of Lt

c−warp with respect to user u’s kth latent factor, time

frame t’s kth latent factor, and time frame t′’s kth latent
factor are computed as follows:

∂Lt
c−warp

∂uu,k
= L(b |C

+
u | − 2

M
c)θl,l′(vl′,k + wt′,k − vl,k

−wt,k) + 2λuu,k,

(7)

∂Lt
c−warp

∂wt,k
= L(b |C

+
u | − 2

M
c)θl,l′(−uu,k − vl,k) + 2λwt,k,

(8)
∂Lt

c−warp

∂wt′,k
= L(b |C

+
u | − 2

M
c)θl,l′(uu,k + v′l,k) + 2λwt′,k.

(9)

3.4 Discussion

Our personalized location recommendation model is con-
structed on top of several building blocks in a pipeline
way. First of all, the latent representations of locations
are learned through the Skip-gram model. The distri-
butional hypothesis [Harris, 1954; Mikolov et al., 2013]
shows that the locations in similar context have similar
semantic meanings. This intuitively captures the rela-
tionships of users’ visited locations. Secondly, our model
goes beyond the global patterns learned by the Skip-
gram model and realizes personalized recommendations
by capturing individual users’ local patterns. This is
achieved by learning the latent representations of users
using the proposed C-WARP loss, which refines users’
preferences by capturing the visit frequency. Regard-
ing the complexity of the proposed models, the Skip-
gram model can be efficiently parallelized to cater to
huge datasets, e.g., word2vec1. On the other hand, the
complexity of optimizing the C-WARP loss can be han-
dled by using the truncated sampling scheme [Lim and
Lanckriet, 2014] in the negative location sampling pro-
cess.

4 Evaluation

4.1 Experimental Settings

Data
The evaluation is conducted over real-world location-
based social network data [Liu et al., 2014] collected from
Gowalla 2. The data contains users’ check-in informa-
tion, including geographical coordinates, time stamps,
etc. generated before June 1, 2011 in 4 US cities: Austin,
Los Angeles, Chicago, and Houston. Table 1 summa-
rizes the statistics of the data, where Nu, Nl, and Nc

denote the number of users, locations, and check-ins re-
spectively. Moreover, the category information of each
observed location has also been collected. Locations in
Gowalla are classified into 7 main categories: commu-
nity, entertainment, food, nightlife, outdoors, shopping,
and travel. In each main category, the locations are fur-
ther classified into several subcategories.

Baselines
We refer to our basic model that relies on the Skip-
gram model and C-WARP loss as SG-CWARP, and
the time-aware extension as SG-CWARP-T. We com-
pare our models to the state-of-the-art methods, sum-
marized as follows: (1) WRMF [Hu et al., 2008]. This
is the weighted regularized matrix factorization model

1https://code.google.com/p/word2vec/
2http://www.yongliu.org/datasets.



Table 1: The statistics of experimental data.
Nu Nl Nc

Austin 24,070 51,118 1,935,677
Chicago 13,845 37,050 486,558
Houston 11,138 29,383 512,977
Los Angeles 21,633 75,301 1,296,953

designed to handle implicit feedback data (i.e., visit a
location or not) for top-N recommendation. (2) WARP-
MF [Weston et al., 2010]. This is a pairwise ranking
method that utilizes matrix factorization to minimize the
basic WARP loss. The latent factors of users and loca-
tions are learned by randomly sampling the positive and
negative location pairs. (3) PTMF [Liu et al., 2013b].
This approach consists of two stages. At the first stage,
users’ preference transitions (represented by categories
of the checked-in locations) are predicted by a basic ma-
trix factorization model, and at the second stage, users’
preferences for locations in the corresponding categories
(predicted by the first stage) are inferred by another ma-
trix factorization model. Location recommendations are
provided based on the category-aware preference predic-
tion. (4) Markov [Gambs et al., 2012]. This approach
applies mobility Markov chain, where each state corre-
sponds to a frequently visited location. A user’s next
movement is predicted based on her past mobility be-
haviors over specific temporal period and the locations
she recently visited.

For time-aware location recommendations, the follow-
ing 2 baselines are used: (1) TempMF [Gao et al., 2013].
This model studies the temporal influence from the as-
pects of non-uniformness and consecutiveness. Matrix
factorization is used to integrate the temporal influence
by linearly aggregating users’ preferences in different
hours. (2) Tensor. In [Zheng et al., 2010], tensor fac-
torization is used to model the user-location-activity re-
lations. In the experiments, we replace the activity di-
mension with temporal dimension and learn the latent
factors for users, locations, and time frames by factoriz-
ing the tensor for time-aware location recommendations.

For each method, we use the check-in data before
March 28th, 2011 (around 80% of all check-ins) to train
the models, and the rest data is used for testing.

Metrics

In order to measure the quality of top-N recommenda-
tions, we use precision@N, which is the ratio of the suc-
cessfully predicted locations to the top-N recommenda-
tions. Another metric we use is Mean Reciprocal Rank
(MRR), a ranking metric that measures the recommen-
dation accuracy by finding out how far from the top of
the recommendation list the first successfully predicted
location is: MRR = 1

|U|
∑

u∈U
1
Ru
, where Ru is the po-

sition of the first successfully predicted location in the
list for a user u. For time-aware recommendation, time-
specific precision and MRR are calculated, and the av-
eraged results across all time frames are reported. We
use precision@N (t) and MRR(t) to represent time-aware
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Figure 2: Performance with varying context window size
(top-10 recommendations).
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Figure 3: Performance with varying latent factor vector
dimensionality (top-10 recommendations).

recommendation results. Note that for latent factor
models, all experiments are conducted 10 times, and the
averaged results are reported. Student’s t-test has been
carried out to demonstrate that the results are statis-
tically significant (two-tailed, paired t-test, p-values <
0.01).

4.2 Experimental Results

Design Validation
We first study how the context window size impacts the
performance of our approach. The dimensionality of la-
tent factor vectors D is set to 100 for all experiments.
The context window size varies from 1 to 5. From Fig.
2, we observe the general trends are, both precision and
MRR first increase with the increasing context window
size; when arriving at certain threshold, the performance
starts decreasing with larger context window size. Theo-
retically, larger window size means the target location’s
context can be more comprehensively modeled. How-
ever, different from large-scale text corpus where Skip-
gram is typically applied, the location corpus is relatively
sparse, so for our experiments, a small context window
size is able to model locations’ context influence.

Then, we study the influence of the dimensionality of
the latent vectors. For SG-CWARP, the dimensionality
is configured from 50 to 350 with 50 as the increment.
From Fig. 3, we observe that more latent factors lead to
higher precision and MRR. This general trend reflects
that higher dimension of latent vector is capable of more
accurately representing both locations and users. Never-
theless, we also observe both precision and MRR become
stable after a threshold (i.e., around 200). Therefore, an
optimal latent vector dimensionality can be empirically
obtained such that high recommendation quality can be



Table 2: Performance comparison on top-10 location recommendations
Houston Chicago Los Angeles Austin

Precision MRR Precision MRR Precision MRR Precision MRR
WRMF 0.0615 0.1877 0.0621 0.1904 0.0599 0.1815 0.0566 0.1803

WARP-MF 0.0591 0.1752 0.0576 0.1750 0.0539 0.1722 0.0510 0.1764
PTMF 0.0921 0.2421 0.0966 0.2580 0.0889 0.2320 0.0810 0.2264
Markov 0.0791 0.2001 0.0805 0.2080 0.0703 0.1635 0.0668 0.1565

SG-CWARP 0.1306 0.2957 0.1301 0.3073 0.1243 0.3227 0.1070 0.3090

Table 3: Performance comparison on top-10 time-aware location recommendations
Houston Chicago Los Angeles Austin

Precision(t) MRR(t) Precision(t) MRR(t) Precision(t) MRR(t) Precision(t) MRR(t)
TempMF 0.0688 0.1792 0.0712 0.1900 0.0665 0.1733 0.0625 0.1698
Tensor 0.0325 0.0945 0.0359 0.1022 0.0341 0.1008 0.0313 0.0886

SG-CWARP-T 0.0940 0.2069 0.0921 0.2266 0.0870 0.2226 0.0765 0.2197

achieved with reasonable computational overheads. In
the comparison study in the next subsection, we use 200
as the default latent vector dimensionality.

With respect to the effect of visit frequency, we com-
pare SG-CWARP with a variant without using visit fre-
quency (i.e., regular WARP loss is used). We observe
that for different dataset, The C-WARP loss improves
the performances by the percent in the range of [3.58%
, 5.72%], demonstrating the effectiveness of considering
visit frequency for location recommendations.

Comparison

We compare the performances of our models with that of
the 6 corresponding baseline methods. We first focus on
the general location recommendations without consider-
ing temporal influence. By cross-validation, for WRMF,
we set the latent factor vector dimensionality, α, and reg-
ularization parameter to 150, 10, and 0.01 respectively;
for PTMF, category level 2 is considered, latent factor
vector dimensionality, learning rate, and regularization
parameters are set to 5, 0.0001, and 0.01 respectively.
For SG-CWARP, the latent factor vector dimensional-
ity, α, regularization parameters are set to 200, 1, and
0.01 respectively; we also set optimal context window
size for different datasets.

Tab. 2 summarizes the comparison results on four
datasets when top-10 recommendations are provided.
We observe Markov model outperforms both WARP-MF
and WRMF by capturing the sequence of users’ visit
behaviors. However, this approach only uses the latest
location for model learning but ignores the influence of
other previously visited locations. PTMF also models
the sequence of locations by relying on the latest loca-
tion. The main difference is that semantic information
(i.e., categories of locations) is considered to learn prefer-
ence transition, thus improving the performance. In all
cases, SG-CWARP significantly outperforms the 4 base-
line models due to two main designs: (1) the Skip-gram
model is applied to learn location latent representations
to capture the context (before and after the target loca-
tion) of users’ visited locations; (2) On top of the learned
location latent representations, the C-WARP loss that

considers users’ visit frequency is applied with a pairwise
ranking algorithm to learn users’ latent representations
for personalized recommendations.

Next, we compare the performances of time-aware
location recommendation models (see Tab. 3). For
TempMF, we set the latent factor vector dimensional-
ity, learning rate, user-preference parameter, location-
characteristic parameter, and the time regularization pa-
rameter to 10, 0.0001, 2, 2, and 1 respectively. Although
Tensor jointly learns the relationships among users, lo-
cation, and time, it performs worst. This is because
the original user-location matrix is already very sparse,
adding another dimension of time makes the tensor even
sparser, which significantly degrades the accuracy of the
model. By capturing the effect of consecutiveness and
non-uniformness of users’ visit preferences, TempMF ev-
idently outperforms Tensor. To summarize, by mod-
eling pairwise interactions among users, locations, and
time frames, SG-CWARP-T consistently outperforms all
baselines, improving baselines by at least 29.80% and
23.14% in terms of Precision@10(t) and MRR@10(t).

5 Conclusion

In this paper, we decouple the process of jointly learn-
ing latent representations of users and locations into two
separated components: learning location latent repre-
sentations using the Skip-gram model, and learning user
latent representations using C-WARP loss. Such a de-
sign, on the one hand, incorporates the context of lo-
cations; On the other hand, users’ preferences are cap-
tured for personalized location recommendations. Fur-
thermore, we exploit temporal information by factoriz-
ing the interactions among users, locations, and time
frames. Comprehensive experiments conducted on four
real world datasets demonstrate that the proposed mod-
els significantly outperform the representative methods
in terms of precision and MRR. For future work, be-
sides personalized location recommendations, we intend
to apply the idea to a broader range of applications, such
as user profiling, trajectory modeling, etc., to verify the
effectiveness of Skip-gram model in other scenarios.
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