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Abstract—Given ubiquitous graph data such as the Web and
social networks, proximity search on graphs has been an active
research topic. The task boils down to measuring the proximity
between two nodes on a graph. Although most earlier studies
deal with homogeneous or bipartite graphs only, many real-world
graphs are heterogeneous with objects of various types, giving
rise to different semantic classes of proximity. For instance, on
a social network two users can be close for different reasons,
such as being classmates or family members, which represent
two distinct classes of proximity. Thus, it becomes inadequate to
only measure a “generic” form of proximity as previous works
have focused on. In this paper, we identify metagraphs as a novel
and effective means to characterize the common structures for a
desired class of proximity. Subsequently, we propose a family of
metagraph-based proximity, and employ a supervised technique
to automatically learn the right form of proximity within its
family to suit the desired class. As it is expensive to match
(i.e., find the instances of) a metagraph, we propose the novel
approaches of dual-stage training and symmetry-based matching
to speed up. Finally, our experiments reveal that our approach
is significantly more accurate and efficient. For accuracy, we
outperform the baselines by 11% and 16% in NDCG and MAP,
respectively. For efficiency, dual-stage training reduces the overall
matching cost by 83%, and symmetry-based matching further
decreases the cost of individual metagraphs by 52%.

I. INTRODUCTION

The proliferation of the Web and social media has availed
an increasingly rich collection of data objects. These objects
can be organized into a graph G = (V,E), where the nodes
V model the objects and the edges E model their interactions.
These graphs are often heterogeneous, containing different
types of objects. Consider the graph in Fig. 1(a) based on a
toy social network, which interconnects various users and their
attributes. Note that we treat each user and attribute value as
a node, and each node is further associated with a type like
user, school or other attribute names. We call this graph
typed object graph, to be formally defined in Sect. II.

One important problem on graphs is proximity search.
Given a query node q ∈ V , how do we measure the proximity
of other nodes to q, so that we can return the nodes closest
to q? However, most earlier studies, including Personalized
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(b) Various semantic classes of proximity

Query Semantic class Result (with explanation)
Kate close friends Alice (same employer and hobby), Jay (same address)
Kate classmates Jay (same school and major)
Bob family Alice (same surname and address)
Bob classmates Tom (same school and major)

Fig. 1. Example graph and semantic proximity search.

PageRank [1] and SimRank [2], fail to capitalize on the rich se-
mantics embedded in a heterogeneous graph. Specifically, with
various types of interconnected objects, there exist different
semantic classes of proximity arising from different underlying
reasons, as illustrated in Fig. 1(b). For the same query node
(e.g., Bob), there could be multiple classes of proximity
with different result nodes (e.g., Alice as family and Tom as
classmate). Thus, it falls short to only measure a “generic”
form of proximity without differentiating the various semantic
classes. Such differentiation enables endless possibilities, as
the two scenarios below envision.

• Circle-based friend suggestion. On a social network (e.g.,
Fig. 1), suggesting friends by circles greatly enhances user
experience. For instance, who share the same passion as I do
for Lakers? Who were my classmates? Each case is a circle
or semantic class, and we can differentiate them based on
user attributes such as hobby and school.

• Context-aware citation search. Consider a citation graph
connecting papers, authors, journals and keywords. Auto-
matically filtering papers by contexts can improve produc-
tivity. For instance, given a paper as the query, which cita-
tions addressed the same core problem? Which are simply
background citations? Each case is a context or semantic
class, and we can tell them apart based on paper attributes
such as keywords and journal.
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Fig. 2. Possible toy structures for each class of proximity.

We call the task of searching for a desired semantic
class of proximity w.r.t. a query node as semantic proximity
search. It is a new problem in the sense that previous studies
on proximity search [2], [1], [3], [4], [5] neither intend to
explicitly differentiate the semantic classes, nor can effectively
accomplish so. Beyond proximity search, the closest problems
to ours are social circle learning [6] and relationship profiling
[7] on graphs. In terms of semantic proximity, their circles
or relationships are also semantic-oriented, but they only find
latent clusters in an unsupervised way, and thus do not target
specific classes of interest. In terms of search, they need
lengthy optimization to obtain a global configuration, and thus
cannot process ad-hoc queries in real time.

While the ultimate goal is to handle arbitrary semantic
classes, as a start, we only consider symmetric classes in this
paper. That is, for any pair of nodes x and y, the proximity of
x to y is always the same as the proximity of y to x.

A. Insights and Challenges

To differentiate various semantic classes, it comes to us a
natural question: what kinds of representation or structure can
characterize a class. Ideally, we require one that is not only
universal in capturing different semantics, but also efficient to
process online for enabling real-time search.

We hinge on the novel insight that different semantic
classes can often be characterized by different tell-tale com-
mon “structures.” For instance, in Fig. 1, the proximity be-
tween Kate and Jay (classmate) can be attributed to their
common school and major, as illustrated by the structure
(M1) in Fig. 2(a). Likewise, Fig. 2(b) and (c) showcase some
possible structures which can characterize, to different extents,
close friend (M2 and M3) and family (M4), respectively. We
name such common structures metagraphs (to be formally
defined in Sect. II), as they abstract objects into types. That
is, each node in a metagraph (denoted by a rounded rectangle)
describes the type of an object, rather than an object itself. In-
tuitively, two nodes “sharing” more characteristic metagraphs
of a class are more likely to satisfy that class of proximity.
Apart from capturing the semantic classes, metagraphs also
enable online proximity search. By computing and indexing
metagraphs offline, we can efficiently support any query on-
the-fly by looking up the precomputed metagraphs.

Note that a less general concept known as metapath has
been proposed [4], which only considers common path struc-
tures between two nodes. In fact, metagraph M3 in Fig. 2(b)
is also a metapath, which only captures the common address
between two users. In contrast, metagraphs can jointly model
multiple common attributes. Consider two metapaths user–
employer–user and user–hobby–user. Each of them can-
not characterize the proximity of close friends on their own.

However, by taking them jointly we obtain metagraph M2,
which can better characterize close friends. In other words,
each metagraph is a nonlinear combination of metapaths, and
is thus more expressive. Given the increased complexity of
metagraphs compared to metapaths, it is also more challenging
to utilize and process metagraphs, as we discuss next.

Proximity learning. First, the characteristic metagraphs for an
arbitrary class of proximity are often unknown. While domain
experts can lend some guidance on certain special classes, it
is impractical to rely on human wisdom alone. Furthermore, a
class may be characterized by multiple metagraphs to varying
extents. For instance, close friends could be colleagues with
the same hobby or simply roommates, corresponding to M2

and M3 in Fig. 2(b), respectively. One may also say that M2

is more likely to indicate close friends than M3.

To better generalize to different graphs and semantic
classes, we propose a supervised approach that automatically
identifies the characteristic metagraphs (e.g., M2 and M3)
based on some example query and answer nodes (e.g., Kate as
query, Alice and Jay as answers). In practice, we learn a weight
for each metagraph to quantify how well it can characterize the
desired class. These weights can be applied to answer future
queries for the same class of proximity.

To realize proximity learning, a further challenge arises
from the enormous number of metagraphs especially on a large
graph [8], [9]. As a result, processing the numerous metagraphs
becomes prohibitively expensive especially on a large graph,
let alone learning based on these metagraphs.

Fortunately, we observe that not all metagraphs are useful
for a given class of proximity. That is, many metagraphs do
not characterize and are thus irrelevant to the desired class
(e.g., M2–M4 are not very useful for classmates). Therefore,
it is inefficient to spend time and computing resources on these
irrelevant metagraphs. We propose a novel paradigm of dual-
stage training, which allows us to identify a small number of
candidate metagraphs that are the most promising. As a result,
we can discard all the other metagraphs and save a significant
amount of time.

Metagraph matching. Second, it is necessary to compute the
instances of each metagraph in order to know what metagraphs
are “shared” by any two given nodes. (Instances and related
concepts will be defined in Sect. II.) However, computing the
instances of a metagraph (also called matching a metagraph) is
highly costly. It is equivalent to solving the NP-hard subgraph
matching problem [10], [11]. Furthermore, the number of
instances of a metagraph on an input graph does not follow the
property of downward closure, which excludes the techniques
for frequent subgraph mining [12], [8], [9].

To compute the instances of a metagraph more efficiently,
we propose a novel subgraph matching algorithm that exploits
the symmetry of metagraphs. We observe that many useful
metagraphs are symmetric, such as M1–M4 in Fig. 2. (We will
further explain in Sect. II.) However, existing methods spend
a large amount of redundant computation on symmetric sub-
structures within a metagraph. Thus, we propose a symmetry-
based matching algorithm which re-uses “symmetric” compu-
tation. As a result, we can avoid redundancy and substantially
improve the efficiency of metagraph matching.



TABLE I. FREQUENTLY USED NOTATIONS.

Notation Description
G = (V,E) an object graph
M = (VM , EM ) a metagraph of G
M the set of metagraphs on G
T the set of object types
τ , τM type mapping for graph and metagraph, resp.
I(M) the set of instances of M on G
mx, mxy metagraph vector for node x and node pair x, y, resp.
Ω the set of training examples
w characteristic weight vector
K0,K the set of seed and candidate metagraphs, resp.

B. Contributions

Hinged on the above insights, we adopt a supervised ap-
proach to realize semantic proximity search with metagraphs.
To summarize, we make the following contributions.

• Problem. We identify a new problem of semantic proximity
search, and propose the novel concept of metagraphs to
represent different semantic classes. (Sect. II)

• Learning model. We first propose a family of metagraph-
based proximity, which can quantify different semantic
classes. We further develop a supervised model to learn
the characteristic metagraphs to obtain the right “form” of
proximity within the family. Lastly, we introduce a novel
paradigm of dual-stage training to avoid handling the vast
majority of unpromising metagraphs. (Sect. III)

• Matching algorithm. We devise an efficient symmetry-based
metagraph matching algorithm, which exploits the symmetry
of metagraphs to avoid redundant computation. (Sect. IV)

• Experiments. Our experiments on two real-world graphs
showcase the superiority of our approach. For accuracy, we
significantly outperform the baselines by 11% in NDCG
and 16% in MAP. For efficiency, dual-stage training can
reduce the overall cost of handling metagraphs by 83%, and
symmetry-based matching can shorten the matching time for
individual metagraphs by 52%. (Sect. V)

II. PRELIMINARIES AND OVERALL FRAMEWORK

Towards semantic proximity search, we first present some
preliminaries, and then outline the overall framework.

A. Preliminaries

We formalize the notions of object graph and metagraph, as
well as the task of semantic proximity search. Major notations
are summarized in Table I.

Typed object graph. An object graph can be represented as
G = (V,E), where V denotes the set of objects and E denotes
the set of edges between objects. While we only focus on
undirected edges, it is straightforward to generalize to directed
edges. Given objects of heterogeneous types T , there is a type
mapping function for objects, τ : V → T . On the toy graph in
Fig. 1(a), we would have T = {user, school, hobby, . . .},
and for instance, τ(“Alice”) = user, τ(“123 Green St”) =
address. Furthermore, a graph S = (VS , ES) is a subgraph
of G iff VS ⊆ V and ES ⊆ E.

Metagraph. There are many distinct objects of the same type,
e.g., both “123 Green St” and “456 White St” are addresses.

In order to identify and summarize common structures on the
object graph, it becomes necessary to consider a type-level
description, which we call metagraph. Formally, a metagraph
can be represented as M = (VM , EM ), where VM is the set of
nodes to denote the types, and EM is the set of edges between
VM . That is, ∀v ∈ VM , we have τM (v) ∈ T where τM is a
type mapping function for metagraphs. Note that a node on
the object graph has both an intrinsic value (e.g., “Alice” or
“Company X”) and a type, whereas the value of a node on the
metagraph is immaterial and only the type matters.

Metagraphs can capture various interactions between nodes
on the graph. One common and useful interaction between two
nodes is the co-owning of one or more attribute values, which
can be modeled by symmetric metagraphs like M1–M4 in
Fig. 2. More generally, symmetric metagraphs can also capture
two nodes converging to some common ground indirectly, as in
user–hobby–user–hobby–user where each of the two users
(left and right) has a hobby common to the same third user
(middle). To address symmetric semantic classes, it is adequate
to just consider symmetric metagraphs, as defined below.

DEFINITION 1 (METAGRAPH SYMMETRY). Consider a meta-
graph M = (VM , EM ). M is a symmetric metagraph if there
exists a non-empty set Ψ containing pairs of distinct nodes
in VM , such that the edge set EM remains unchanged even
if, for each pair (u, u′) ∈ Ψ, we exchange u and u′ in all
edges incident to u or u′. We also say that such u and u′ are
symmetric to each other in M . �

In order to know whether two nodes “share” a characteristic
metagraph for the desired class of proximity, it is crucial to
identify subgraphs on G that are instances of any metagraph
M . Informally, a subgraph S is an instance of M if they
have the same structure and their nodes have matching types.
For instance, in Fig. 1, the subgraphs “Alice”–“123 Green
St”–“Bob” and “Kate”–“456 White St”–“Jay” can both match
metagraph M3 in Fig. 2, and thus they are the instances of
M3. We present a formal definition below.

DEFINITION 2 (INSTANCE OF METAGRAPH). Assume a sub-
graph S = (VS , ES) and metagraph M = (VM , EM ). S is an
instance of M if there exists a bijection between the node sets
of S and M , φ : VS → VM , such that

• ∀v ∈ VS , we have τ(v) = τM (φ(v)), and

• ∀v, u ∈ VS , we have 〈v, u〉 ∈ ES iff 〈φ(v), φ(u)〉 ∈ EM . �

Subsequently, we can quantify how two nodes x and y
“share” any given metagraph, i.e., how x and y co-occur
in the instances of the metagraph. On graph G, let M =
{M1,M2, . . . ,M|M|} be a set of metagraphs, and I(Mi) be
the set of instances of Mi ∈ M. The co-occurrences of x
and y can be captured by a column vector mxy with |M|
elements. Its i-th element, mxy[i], is the number of instances
of Mi containing both x and y such that φ(x) and φ(y) are
symmetric to each other in Mi, since we address symmetric
semantic classes here. Likewise, let mx[i] be the number of
instances of Mi containing x such that φ(x) is symmetric to
some node in Mi. That is,

mxy[i] , |{S ∈ I(Mi) | ContainsSym(S, x, y)}|, (1)

mx[i] , |{S ∈ I(Mi) | ∃y 6=xContainsSym(S, x, y)}|, (2)
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where ContainsSym(S, x, y) is a predicate for S containing
x and y with φ(x) and φ(y) symmetric to each other in the
corresponding metagraph. We call mxy and mx metagraph
vectors, which form the basis of our proximity measure. More
generally, we can further transform these vectors, such as
applying logarithm to the counts.

Semantic proximity search. On a graph G = (V,E), given
a query node q ∈ V and a desired class of proximity, the task
is to produce a ranking over V in descending proximity to q
w.r.t. the given class. As we adopt a supervised approach, the
desired class of proximity can be substituted by a set of training
examples Ω, which will be elaborated later. Thus, the task of
semantic proximity search boils down to the core problem of
defining and learning a family of proximity measures that can
abstract arbitrary classes of proximity.

B. Overall Framework

To summarize our approach, we present the overall frame-
work in Fig. 3. It consists of online and offline phases, for two
reasons. First, we can mine the set of metagraphs and compute
their instances independently of proximity search, which only
has to be done once to cater to any class of proximity or query
node. Second, we only need to learn the optimal model once
for each class of proximity, in order to answer any query for
the same class. We describe the two phases below.

Offline phase. It consists of three main subproblems.

1) Initially, given a graph G and a type mapping func-
tion τ , we enumerate the set of metagraphs M. There is
abundant literature [8], [9] on this subproblem, and its time
cost is insignificant compared to that of the entire offline
phase. Therefore, we simply apply an existing state-of-the-art
approach GRAMI [9].

2) For each metagraph Mi ∈ M from the output of
subproblem 1, we compute the set of instances I(Mi), so that
we can further derive the metagraph vectors. We also call the
process of computing the instances I(Mi) as matching meta-
graph Mi. We study this subproblem of efficient metagraph
matching in Sect. IV. (We can further index the instances,
which is to precompute the metagraph vectors based on Eq. 1–
2. The metagraph vectors are part of the input to the learning
subproblem as well as online query processing.)

3) Lastly, given the metagraph vectors and a set of training
examples for the desired class of proximity, we need to learn

the optimal proximity model w∗. We address this subproblem
of learning with metagraphs in Sect. III. In particular, we
need to develop a family of metagraph-based proximity π to
accommodate arbitrary classes, a supervised method to learn
the best form of π within the family from the training examples
Ω, as well as a dual-stage training approach to reduce the
number of metagraphs needed.

Online phase. In the online phase, given a query node q ∈
V , the precomputed metagraph vectors, as well as an optimal
model w∗ for the desired class, we can compute the proximity
π between q and other nodes v ∈ V . Subsequently, we rank
the nodes in V in descending order of π.

III. LEARNING PROXIMITY WITH METAGRAPHS

In this section, we propose to learn the optimal proximity
based on metagraphs. We start with defining a family of prox-
imity measures which can flexibly cater to different semantic
classes. Next, given some training examples of the desired
class, we develop a supervised approach to choose the optimal
model within the proximity family. Lastly, we propose a novel
paradigm of dual-stage training, which does not require us to
compute the instances of all metagraphs.

A. Metagraph-based Proximity

Given a class with certain characteristic metagraphs, a good
proximity measure must account for two aspects. First, if
x and y share many characteristic metagraphs, x and y are
more likely to satisfy the desired class. Second, if x (or y)
indiscriminately occurs with many metagraphs, x and y may
simply appear by chance to share many characteristic meta-
graphs. Incorporating both aspects, we propose a metagraph-
based proximity measure π as follows.

DEFINITION 3 (MGP). The metagraph-based proximity (ab-
breviated as MGP) between any two nodes x and y is

π(x, y;w) ,
2 mxy ·w

mx ·w + my ·w
, (3)

for some non-negative column vector w of |M| elements. �

MGP entails a family of proximity measures with param-
eter w. We interpret w as a characteristic weight vector of
the metagraphs, which can be varied to cater to different
classes of proximity. Consider the toy example in Fig. 2 with
M = {M1, . . . ,M4}. A good w could be (0.9, 0, 0, 0)T for
classmate, (0, 0.6, 0.4, 0)T for close friends, and (0, 0, 0, 0.8)T

for family. Thus, within the family of proximity, the optimal
model for a class is completely specified by its optimal weight
vector w∗, which we aim to learn automatically.

Interestingly, MGP satisfies a few desirable properties, as
summarized in Theorem 1. Among them, symmetry, self-
maximum and scale-invariance can be easily derived from
Eq. 3. Partial transitivity implies that if one node x is close to
both y and z, y and z tends to be close to each other too. This
is a common phenomenon on social networks, where friends
of friends are more likely to be friends than a random person.
We omit its proof due to space constraint.

THEOREM 1 (PROPERTIES OF MGP). Given any three nodes
x, y, z and weights w, MGP satisfies the following properties.



• Symmetry. π(x, y;w) = π(y, x;w).

• Self-maximum. π(x, y;w) ∈ [0, 1] and π(x, x;w) = 1.

• Scale-invariance. π(x, y;w) = π(x, y; cw) for any c > 0.

• Partial transitivity. There exists some δ > 0, such that for
any ε ∈ [0, 0.5], if π(x, y;w) ≥ 1+2εδ

1+δ and π(x, z;w) ≥
1+2εδ
1+δ , then π(y, z;w) ≥ 2ε. �

B. Supervised Learning

For a desired class of proximity, we assume some training
examples Ω as supervision. Just as pairwise learning to rank
[13], each example is a triplet (q, x, y) such that node x is
ranked before node y w.r.t. query node q. That is, x’s proximity
to q should be greater than y’s. These examples for social
networks can often be gathered by user studies [6], [7]. Some
platforms like Facebook and Google+ also allow users to label
the classes of their connections directly.

Objective function. Given the training examples Ω, we can
find the optimal weights w∗ by maximizing the log-likelihood.
Intuitively, it becomes more likely to observe an example
(q, x, y) when x’s proximity to q is increasingly larger than y’s.
In other words, the probability of the example, P (q, x, y;w),
tends to increase with the difference in x and y’s proximity to
q, π(q, x;w) − π(q, y;w). In particular, we define the prob-
ability in Eq. 4. We adopt the sigmoid function to transform
the difference in proximity into a probability value, which is
a common practice [13]. Note that µ ∈ (0,∞) is a scaling
variable to control the shape of the distribution.

P (q, x, y;w) ,
1

1 + e−µ(π(q,x;w)−π(q,y;w))
(4)

Subsequently, we aim to maximize the following log-
likelihood function L given all the examples, to ultimately find
the optimal weights w∗ = arg maxw L(w; Ω).

L(w; Ω) =
∑

(q,x,y)∈Ω logP (q, x, y;w) (5)

Optimization. We employ the standard gradient ascent algo-
rithm to maximize L. First, the gradient of L is denoted as

∇L =
(

∂L
∂w[1] ,

∂L
∂w[2] , . . . ,

∂L
∂w[|M|]

)T
.

Then, starting from some initial random weights w(0), the
iterative updating in Eq. 6 is applied for k ∈ {0, 1, . . .} until
convergence. That is, the optimal weights w∗ is given by
w(k+1) for some large enough k. Note that γ ∈ (0,∞) is
a parameter to control the learning rate of gradient ascent.

w(k+1) = w(k) + γ∇L
(
w(k)

)
(6)

Thus, the optimization boils down to solving the gradient
∇L or the partial derivatives for i ∈ {1, . . . , |M|},

∂L
∂w[i] =

∑
Ω

{
µ(1−P (q, x, y;w))

(
∂π(q,x;w)
∂w[i] −

∂π(q,y;w)
∂w[i]

)}
,

where ∂π(v,u;w)
∂w[i] =2(mv·w+mu·w)mvu[i]−2(mvu·w)(mv [i]+mu[i])

(mv·w+mu·w)2 .

Due to the scale-invariance property (Theorem 1), the
absolute weights w[i] do not matter, and only their relative
ratios are important. Thus, to make the weights easier to
interpret, we can further constrain them to fall in [0, 1].
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Fig. 4. Sparsity of optimal characteristic weights.

C. Dual-Stage Training

As illustrated in Sect. I, there exist a huge number of
metagraphs M even with just a few types of object. While
it is already non-trivial to compute the instances of a single
metagraph (which will be addressed in Sect. IV), it becomes
prohibitive to compute the instances of all metagraphs, i.e.,
I(Mi),∀Mi ∈ M. To reduce the overall matching time,
we propose a novel paradigm of dual-stage training. Unlike
previous cost-aware learning paradigms [14], [15], [16], [17]
which only aim to reduce feature extraction cost during online
testing, our goal is to reduce feature extraction (i.e., metagraph
matching) cost for offline training. As we will see in the exper-
iments, metagraph matching dominates the entire offline phase,
whereas online testing can be extremely fast if metagraphs are
pre-matched offline.

As the key insight, while there are many metagraphs in
M, the vast majority of them are irrelevant. Only a small
number of metagraphs among M can characterize the desired
class of proximity. As illustrated in our toy example (Fig. 1–
2), each class of proximity only has one or two characteristic
metagraphs, among many other metagraphs. In other words,
we expect that the optimal characteristic weight vector w∗ is
sparse, with many zero or nearly zero entries. Consider the two
real-world datasets used in our experiments, namely LinkedIn
with proximity classes of college and coworker and Facebook
with classes of family and classmate (details in Sect. V).
We can indeed verify that the optimal w∗ for each class of
proximity is sparse, as shown in Fig. 4 where the individual
weights w[i],∀i ∈ {1, . . . , |M|} are ranked in descending
order. As it turns out, the distribution of the optimal weights is
long-tailed, with only a small proportion of high weights (e.g.,
above 0.9), and an overwhelming majority of insignificant
weights (e.g., below 0.1).

Although these irrelevant metagraphs in the right tails con-
tribute little to the desired class of proximity, computing their
instances requires immense time and computing power. Thus,
it is ideal to discard the irrelevant metagraphs, and only focus
on a small subset of candidate metagraphs, K ⊂ M, which
show promise to characterize the desired class. Subsequently,
we only match the candidates and compute the proximity based
on the instances of these candidates.

Seed metagraphs. However, without computing the instances
of any metagraph, there is no clue at all to locate the promising
candidates. Thus, it is infeasible to select all candidates K
from M in one go. Instead, we first identify a small number
of seed metagraphs K0 as the initial candidates and compute
their instances I(M),∀M ∈ K0, which can lead us to more



candidates. The seeds must meet the following criteria.

• Easy identification. We can easily recognize the seeds with-
out computing any instance (or it defeats the purpose).

• Fast matching. The seeds can be matched very fast. That is,
|K0| � |M| and I(M),∀M ∈ K0 are fast to compute.

• Candidate heuristic. The seeds and their instances must
enable some heuristic for selecting more candidates without
computing any further instance.

To select the seeds, we observe that metapaths (i.e., meta-
graphs that are paths such as M3 in Fig. 2) are less complex
than general metagraphs. As a result, there are far fewer
metapaths than metagraphs. Matching a metapath also tends to
be much faster due to the simpler structure. Our experiments
indeed show that only 2–3% metagraphs are metapaths, and
matching a metapath can be 2–5 times faster than matching a
non-path metagraph. Thus, if we choose all the metapaths as
the seeds, the first two criteria are immediately met.

Candidate heuristic. For the third criteria, we need to develop
a heuristic using the seeds in order to identify additional
metagraphs from M \ K0, without computing any further
instance. Again, we can only rely on the structural information
of the metagraphs. Can we infer the function of a metagraph
from its structure? To answer the question, we first explain the
structure and function of a metagraph, as follows.

On the one hand, the structure of a metagraph refers to
its physical representation. Two metagraphs are structurally
similar if they share some common representation. One such
representation is their maximum common subgraph (MCS)
[18]. The larger MCS shared by two metagraphs, the more
structurally similar they are. Letting Mi and Mj be two
metagraphs with MCS M , their structural similarity can be
defined as SS(Mi,Mj) = (|VM |+|EM |)2

(|VMi
|+|EMi

|)×(|VMj
|+|EMj

|) .

On the other hand, the function of a metagraph refers to
the role it plays in the proximity measure. Two metagraphs
are functionally similar if they can characterize the same class
of proximity. Assuming optimal characteristic weights w∗,
functional similarity of two metagraphs is reflected in their
weights—the smaller difference between their weights, the
more functionally similar they are. Thus, we define functional
similarity as FS(Mi,Mj) = 1− |w∗[i]−w∗[j]|.

Intuitively, metagraphs that are structurally similar tend
to be functionally similar too. Given the seeds K0 and their
instances I(Mi),∀Mi ∈ K0, we can learn the “function” of
the seeds, i.e., their corresponding weights w0. Supposing that
a metagraph Mj ∈ M \ K0 is structurally similar to a seed
Mi ∈ K0, Mj and Mi will also be functionally similar. That
is, if Mi can characterize the desired class (i.e., w0[i] is large),
Mj is also likely to characterize the same class (i.e., Mj is a
promising candidate). Thus, we select candidates with largest
candidate heuristic score H , which maximizes their structural
similarity to any seed metagraph with a large weight:

H(Mj) , max
Mi∈K0

{w0[i] · SS(Mi,Mj)} . (7)

Note that selecting metagraphs which are structurally similar to
the seeds would potentially limit the diversity of candidates.
Nonetheless, it is not an issue in our case, as there exist a

Algorithm 1: Dual-Stage Training
Input: graph G; set of metagraphs M; number of candidates |K|

(such that |K| � |M|); training examples Ω
Output: optimal weights w∗

// seed stage
1 K0 ← {M ∈M|M is a path}
2 I0 ← {I(M)|M ∈ K0}
3 w0 ← Train(Ω,K0, I0)

// candidate stage
4 R← Order M \ K0 by candidate heuristic H using K0 and w0

5 K ← Top |K| metagraphs in R
6 I ← {I(M)|M ∈ K}
7 w∗ ← Train(Ω,K0 ∪ K, I0 ∪ I)
8 return w∗.

diverse range of candidates (non-path metagraphs) similar to
each seed (metapath), and even the most similar candidates are
still quite different from the seeds.

Dual-stage approach. We outline the above heuristic in Alg. 1,
which consists of two stages in training. In the seed stage, we
compute the instances of the seeds K0 (i.e., metapaths), and
train their weights w0. In the candidate stage, based on K0

and w0, we further identify candidates K using the candidate
heuristic, and train a new weight vector w∗ for K0 ∪ K.

More generally, we can extend this approach to a multi-
stage process, such that the candidates K are identified not
all in one stage, but progressively in multiple stages. In each
stage, we identify a small batch of candidates Ki, treating K0

and previously identified candidates K1, . . . ,Ki−1 as the new
seeds. Essentially, we gradually add more candidates, and stop
once the training accuracy becomes acceptable.

IV. EFFICIENT METAGRAPH MATCHING

In this section, we address the subproblem of metagraph
matching, which dominates the offline phase in time cost. That
is, for any metagraph M of graph G = (V,E), we develop an
efficient algorithm to compute I(M). We first summarize ex-
isting matching algorithms and highlight their drawbacks that
render them inefficient to process the symmetric metagraphs.
To address these drawbacks, we present a new algorithm to
reduce the redundant computation.

A. Subgraph Matching Revisited

Consider a metagraph M = (VM , EM ) on a graph G =
(V,E). To compute the instances of M on G, there are a
number of existing approaches [19], [20], [21], [22] based on
the backtracking method, summarized as follows.

Given an ordering of nodes in VM , let ui ∈ VM be the
i-th node in the ordering where 1 ≤ i ≤ |VM |. Denote Dk

as the set of k nodes in V that match {u1, u2, . . . , uk}, and
C(uk+1|Dk) as the set of nodes each of which can match uk+1

given the existing matching Dk.

Initially, we have D0 = ∅. The backtracking method first
identifies the set C(u1|D0) of nodes in V such that the type
of each node v ∈ C(u1|D0) equals the type of the first node
u1 in VM , i.e., τ(v) = τM (u1). For each node v ∈ C(u1|D0),
we match v to u1, i.e., D1 = {v}. Given D1, we further
identify the set C(u2|D1) for u2 such that each node v′ ∈
C(u2|D1) can match u2 and the graph induced on D1 ∪ {v′}



(a) Metagraph M5. (b) Simplified metagraph M+
5 .
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Fig. 5. A metagraph M5 and its simplified metagraph M+
5 .

is an instance of the metagraph induced on u1 and u2 (Def. 2).
In other words, v′ 6= v, τ(v′) = τM (u2), and 〈u2, u1〉 ∈
VM if and only if 〈v′, v〉 ∈ V . If C(u2|D1) is empty, we
stop searching further and immediately backtrack to another
node in C(u1|D0). Otherwise, C(u2|D1) is not empty, and
for each node in v′ ∈ C(u2|D1) we have D2 = D1 ∪ {v′},
from which we can recursively compute D3, D4, . . . , D|VM |.
We then report the subgraph induced by D|VM | as an instance
of M on G, and backtrack to compute other instances.

B. Metagraph Symmetry

All of the above approaches focus on matching general
metagraphs. As discussed in Sect. II, useful interactions be-
tween nodes are often be captured by symmetric metagraphs
(see Def. 1). In practice, among all metagraphs with two
user nodes (suppose we are measuring the proximity between
user nodes), symmetric metagraphs also form a significant
portion. Thus, we devise a matching algorithm specifically
catered to symmetric metagraphs. While we only consider
symmetric metagraphs in this paper, we can still fall back
to existing matching algorithms for asymmetric metagraphs
whenever needed.

For example, consider the metagraph M5 in Fig. 5. M5 is
symmetric, since there exists a set {(u1, u5), (u2, u6)}, such
that if we exchange u1 and u5 (resp. u2 and u6) in all
edges incident to u1 or u5 (resp. u2 or u6), the set of edges
in M5 remains unchanged. Due to such symmetry, previous
approaches [19], [20], [21], [22] could incur a large amount
of redundant computation. To illustrate, consider M5 and a
matching order u1, u2, . . . , u6. After matching u1, u2, . . . , u4,
previous approaches need to compute the matchings C(u5|D4)
and C(u6|D5) from scratch, even though u5 (resp. u6) is
symmetric to u1 (resp. u2). Take u6 as an example, they have
to examine every node in V if its type is the same as u6, and
if it appropriately connects to the graph induced by D5. Since
u2 is symmetric to u6, potentially we do not need to examine
every node in V , but rather only those matched by u2.

C. Symmetry-based Approach

To leverage the symmetry of metagraphs, we propose a
novel approach to compute the matchings of a node u from its
symmetric node u′ in M . For example, in Fig. 5, the instances
of u5 and u6 can be computed from the instances of u1 and
u2, since u5 (resp. u6) is symmetric to u1 (resp. u2). However,
we cannot treat each pair of symmetric nodes independently.
For example, in Fig. 5, the matchings of u2 cannot be re-used
by u6 without considering u1 and u5 in conjunction, since u2

is adjacent to u1 but not u5 (which u6 is adjacent to).

Algorithm 2: Compute Instances of Metagraph
Input: a graph G; a metagraph M
Output: the set I(M) of instances of M

1 decompose M into a set B of components based on symmetry
2 simplify M as M+ using B
3 compute a matching order o for components of M+

4 I(M)← MatchingByComponent(G, M , o, 1, ∅)
5 return I(M).

To cope with the above issue, we decompose the node
set VM into disjoint connected components, so that each
component can be handled independently. In particular, if a
node u is not symmetric to any other node on M , u forms a
singleton component S, i.e., S = {u}. Otherwise, we partition
the symmetric nodes into several connected components, such
that for each component S, we have (i) each node u ∈ S has
the same number of symmetric nodes on M , (ii) each node
u ∈ S is not symmetric to any other node u′ ∈ S, and (iii) S
is the largest such set. For example, we can decompose M5 in
Fig. 5 into 4 components, namely S1 = {u4}, S2 = {u1, u2},
S3 = {u3} and S4 = {u5, u6}. We say that a component S is
symmetric to another component S′, if for each node u in S,
there exists a node u′ in S′ such that u is symmetric to u′ on
M . For instance, the components S2 and S4 described above
are symmetric to each other.

The above decomposition ensures that each component is
independently symmetric to some other component. Thus, if
a component S is matched prior to its symmetric component
S′, we can save the cost of computation for S′ by re-using the
instances of S. Alg. 2 outlines our proposed approach by uti-
lizing symmetric components. We still follow the backtracking
framework, but instead of trying one node at time, we match
one component at a time. Thus, we first need to decompose a
metagraph M into several components. Next, we simplify M
into a smaller graph M+, to avoid redundant computation on
symmetric components. Finally, we design an ordering over the
components in M+, and match each component in that order
using the backtracking method. In what follows, we elaborate
on each step.

Metagraph decomposition. To decompose M into compo-
nents, we first construct a component for each node u which
is not symmetric to any node in M , and remove u from M .
Then, in the residual graph M ′, we construct the symmetric
components. In particular, we process the nodes in M ′ iter-
atively. In each iteration, we randomly choose a node u and
construct a component S initially containing only u, as well as
a component S′ for each u′ that is symmetric to u. Then, we
iteratively add more nodes into S (resp. each S′) such that the
rules of components specified earlier are not violated. When
no more nodes can be added into S, we remove S from M ′

and continue to construct components in the residual graph
M ′′ until M ′′ is empty. Note that symmetric nodes can be
identified by GRAMI [9] in the mining phase.

Simplifying metagraph. Now we simplify the metagraph by
representing it with its components. Specifically, we replace
the nodes in M by the components containing them, and add
an edge between components S and S′ if there exists nodes
u ∈ S and u′ ∈ S′ such that u and u′ are adjacent to each
other on M . To further simplify, among each set of symmetric



Algorithm 3: MatchingByComponent
Input: a graph G; a metagraph M ; a matching order o; the index of

matching component k; the set D of matched nodes;
Output: the set I′(M) of instances with D

1 if |D| = |VM | then
2 return the instance induced by D.
3 end
4 S ← k-th component in the matching order o
5 B ← the set including S and its symmetric components, if any
6 compute the set C(B|D)
7 I′(M)← ∅
8 for each S′ ∈ B do
9 D′ ← the merge of D and the matching of S′ from C(B|D)

10 I∗ ← MatchingByComponent(G, M , o, k + 1, D′)
11 add I∗ into I′(M)
12 end
13 return I′(M).

components, we only retain one of them and remove the rest.
Denote M+ as the resulting simplified metagraph. In Fig. 5,
M5 is converted into M+

5 with three components S1–S3, where
S2 (retained) is symmetric to S4 = {u5, u6} (removed).

Matching order. To reduce the search space, the matching
order of nodes is important. Previous approaches [19], [23]
select the next node to match from M such that the number of
intermediate instances (of subgraphs of M ) can be minimized.
For instance, starting from a metagraph M (1) containing only
one edge 〈u1, u2〉 (suppose it is a subgraph of M ), we can
extend M (1) by adding an edge 〈u2, u3〉 from M , resulting in
a larger intermediate metagraph M (2). We can thus estimate
the number of instances of M (2) as f(M (2)) = |I(M (1))| ·
|I(〈u2,u3〉)|
|I(u2)| . In general, M (i+1) can be obtained by adding an

edge 〈u, u′〉 from M to M (i), and the number of its instances
can be estimated as f(M (i+1)) = f(M (i)) · |I(〈u,u′〉)|

|I(u)| . Thus,
in each step, we pick the next node to minimize the number
of estimated instances of the intermediate metagraph. We can
utilize the above approach to order the components of M+:
when a node of a component S is chosen, we select S as the
next component to match.

Matching simplified metagraphs. The matching algorithm for
a simplified metagraph follows the backtracking framework, as
outlined in Alg. 3. Compared with the traditional methods that
match a node at a time, our approach matches one component
at a time. Given the set D of already matched nodes, the
matchings of a component S are the matchings of its con-
stituent nodes, denoted as C(S|D). In particular, we can save
significant computation when S is a symmetric component.
Let B be the set containing S and the symmetric components
of S. Subsequently, we can compute the matchings for all
components in B, denoted by C(B|D), based on C(S|D). That
is, we do not need to compute C(S′|D) for any S′ 6= S and
S′ ∈ B. We simply choose |B| number of distinct matchings
from C(S|D). For each choice of |B| matchings, we inspect
whether the connectivity between components satisfies Def. 2.
If so, we add the choice to C(B|D).

V. EXPERIMENTS

We conduct extensive experiments to demonstrate three
goals. First, our supervised approach using metagraphs can
effectively model different classes of proximity. Second,

TABLE II. DESCRIPTION OF DATASETS.

#Nodes #Edges #Types #Metagraphs #Queries
LinkedIn 65 925 220 812 4 164 172 (college), 173 (coworker)
Facebook 5 025 100 356 10 954 340 (family), 904 (classmate)

our dual-stage training can greatly reduce overall metagraph
matching time with negligible impact on accuracy. Third, our
symmetry-based matching algorithm is efficient.

A. Experimental Setup

Graphs. We conducted extensive experiments on two real-
world datasets collected by previous studies, namely LinkedIn
[7] and Facebook [6]. Both datasets contain objects of var-
ious types. In particular, LinkedIn included the types of
user, employer, location and college. Facebook in-
cluded user, major, degree, school, hometown, surname,
location, employer, work-location, work-project and
others. Note that we ignored the other types on Facebook due
to their sparsity or uselessness. We organized them into two
heterogeneous graphs, as summarized in Table II.

Metagraphs. We applied GRAMI [9] on each graph to mine
the set of metagraphs, and only retained symmetric ones. As
our ground truth (see next) is designed for the proximity
between users, each metagraph must contain at least two user
nodes and at least one node of another type. We stress that our
framework itself is capable of modeling the proximity between
any two nodes, not necessarily between users only. Finally, to
reduce the number of metagraphs, we restricted them to have
at most 5 nodes, which are found to be adequate in expressing
various interactions between users. The resulting number of
metagraphs on each graph is shown in Table II.

Ground truth. On LinkedIn, the relationships between two
users are already labeled. We tested two classes: 1) college
friend, including those labeled “college”; 2) coworker, includ-
ing those labeled “coworker”, “colleague” or “excolleague.”
On Facebook, given no explicit labels, we generated ground
truth using some rules to mimic natural classes of proximity.
Specifically, we considered two classes: 1) family, where two
users must share the same surname and the same location
or hometown; 2) classmate, where two users must share the
same school and the same degree or major. To make the
rules more realistic, we dictated a 5% chance to assign a
random class label.

Training and testing. On each graph, a user q is used as a
query node if there exists at least another user v such that q and
v belong to the desired class. The number of query nodes for
each graph and class is shown in Table II. We randomly split
the queries into two subsets: 20% for training and the rest for
testing. We repeated such splitting for 10 times, and averaged
the performance over these 10 splits. In each split, based on
the training queries, we further generated training examples
(q, x, y) such that q and x belong to the desired class while
q and y do not. For testing, we constructed an ideal ranking
for each test query and class, such that other user nodes with
the desired class label w.r.t. the query node are ranked higher
than those with a different or unknown label. Subsequently,
we could compare the ranking generated by some proximity
algorithm against the ideal ranking. In particular, we adopted
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Fig. 6. Accuracy comparison of MGP and baselines (NDCG).

(a) College

10 100 1000
0.1

0.2

0.3

0.4

# Training examples |Ω|

M
A

P
on

te
st

qu
er

ie
s

(b) Coworker

10 100 1000
0.1

0.2

0.3

0.4

# Training examples |Ω|

M
A

P
on

te
st

qu
er

ie
s

(c) Family

10 100 1000
0.2

0.4

0.6

0.8

# Training examples |Ω|

M
A

P
on

te
st

qu
er

ie
s

(d) Classmate

10 100 1000
0.2

0.4

0.6

0.8

# Training examples |Ω|

M
A

P
on

te
st

qu
er

ie
s

MGP
MPP
MGP-U
MGP-B
SRW

Fig. 7. Accuracy comparison of MGP and baselines (MAP).

NDCG and MAP [13] to evaluate the quality of the algorithmic
rankings at top 10 nodes.

Environment. The matching algorithm (Sect. IV) and learning
model (Sect. III) were implemented in C++ and Java, respec-
tively. Time-sensitive experiments were run on a machine with
3.7GHz CPU and 64GB RAM, using only one thread.

B. Accuracy of Metagraph-based Proximity

We first study the accuracy of our approach without
employing dual-stage training. Specifically, we compare the
following algorithms.

• MGP: Metagraph-based proximity with our supervised ap-
proach (Sect. III-B). To compute the probability of a training
example (Eq. 4), we set σ = 5 which was shown to be
generally robust in our experiments. For gradient ascent,
we used an initial learning rate of γ = 10, and gradually
reduced it by 5% every 100 iterations. Convergence was
deemed to happen once the log-likelihood changed less
than 0.001% from the previous iteration. Lastly, as gradient
ascent can stuck at local maxima, we repeated with 5
different random initializations and picked the best one.

• MPP: Metapath-based proximity with our supervised ap-
proach. We adapted the metapaths employed in an earlier
work [4] to also use our supervised approach, by restricting
the set of metagraphs to paths only. The earlier work
only relied on manually selected metapaths to measure the
proximity between two nodes.

• MGP-U: Metagraph-based proximity with uniform weights.
That is, we did not differentiate the importance of meta-
graphs to any class of proximity.

• MGP-B: Metagraph-based proximity with the “single best”
metagraph. Specifically, we found out the best performing
metagraph on training data, and used this single best one to
evaluate the test queries.

• SRW: Supervised random walks. We adopted a state-of-
the-art random walk approach [5], which is a supervised
variant of personalized PageRank [1]. The general principle
is to assign different strengths to different edges, so that
the transition matrix is biased to make certain nodes more
likely to be visited in accordance with the training data.
Specifically, for each edge, we used the types of its nodes
to generate its features, and learnt feature weights in a super-
vised manner. As edge strength is a function of the features
and their weights, different edges can end up with different
strengths. In our experiments, we varied the parameters of
SRW and chose their respective optimal values.

For each algorithm except MGP-U, we varied the number
of training examples from 10 to 1000, as they all rely on the
training data to learn their models. For MGP-U, it simply uses
a uniform weighting independent of the training data.

We report the NDCG and MAP of the rankings produced
by these algorithms in Fig. 6 and 7, respectively. On the one
hand, MGP is consistently better than all other algorithms. In
particular, using 1000 training examples and averaging across
all four classes, MGP significantly outperforms the second
best algorithm by 11% in NDCG and 16% in MAP. On the
other hand, as the number of training examples grows, we can
observe a steady increase in the performance of MGP as well.
However, in some other supervised approaches, the accuracy
either only improves when the number of training examples
increases from 10 to 100 (e.g., MPP), or does not improve at
all (e.g., SRW).
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Fig. 8. Impact of dual-stage training (special values of |K|: 0 if only use seed metagraphs; “all” if use all metagraphs).

The results imply that our metagraph-based representation
can effectively model the learning task, whereas other repre-
sentations adopted by MPP and SRW are inadequate. In fact,
it has been established [1] that the personalized PageRank
score (which is the underlying model of SRW) of a node v
w.r.t. query node q is equivalent to a linear combination of path
probabilities over all paths starting from q and ending with v.
That is, both MPP and SRW are linear combinations of path
representations, whereas MGP’s metagraph representation can
capture nonlinear aggregations over paths.

C. Impact of Dual-Stage Training

To highlight the need of reducing the cost of metagraph
matching, in Table III we report the time spent by different
subproblems, without employing dual-stage training to reduce
matching time for now. The results reveal that metagraph
matching is the most expensive subproblem, surpassing the
other subproblems by at least one order of magnitude and
dominating the entire offline phase. Thus, it bolsters our design
choice in Sect. II that we focus on improving the efficiency of
metagraph matching over mining.

In particular, in this subsection, we study the impact of
dual-stage training, which aims to reduce the overall match-
ing time by only considering a small subset of candidate
metagraphs. At the same time, accuracy can be adversely
affected since some promising metagraphs may be mistakenly
left out. Ideally, dual-stage training should achieve significant
time reduction, and simultaneously, result in minimal loss of
accuracy, as we will demonstrate in the following.

Treating the accuracy (NDCG and MAP) of using only
seed metagraphs K0 as 0%, and that of using all metagraphs
M as 100%, we compute the relative percentage increase in
accuracy when we vary the number of candidates |K|. (As a
remark, in practice, to set the optimal |K|, we can start from
a small |K| first and gradually increase it until the accuracy
is satisfactory, as discussed in Sect. III-C.) Likewise, treating
the time cost of matching only seed metagraphs as 0% and
that of matching all metagraphs as 100%, we also compute
the relative percentage increase in the time cost.

TABLE III. TIME COSTS WITHOUT DUAL-STAGE TRAINING (SEC).

Offline phase Online phase
Mining Matching Training Testing

(GRAMI) (our algorithm) w/ 1000 ex. per query

LinkedIn 247.6 9 870.3 11.6 8.2× 10−5

Facebook 213.2 10 021.6 142.8 2.8× 10−4

We present the outcomes in Fig. 8. As we increase the
number of candidates, naturally we can expect an increase
in both accuracy and time. However, the rate of increase in
accuracy is much faster than time. In particular, using only 50
and 150 candidates on LinkedIn and Facebook, respectively,
the increase in accuracy is approaching 100% (i.e., as good as
using all metagraphs). Meanwhile, the time cost is far from
reaching 100% (i.e., requiring much less time than using all
metagraphs). Comparing with the absolute accuracy metrics of
MGP (which uses all metagraphs) shown in Fig. 6 and 7, we
sacrifice both NDCG and MAP by only 1% on average. In
contrast, comparing with the absolute time of matching all
metagraphs shown in Table III, we can on average reduce
the overall matching time by a massive 83%. Note that the
time reduction on Facebook is more significant than that on
LinkedIn, since the former has much more metagraphs due to
more types of objects (Table II). In summary, our dual-stage
training can significantly reduce overall matching time with
only a minuscule impact on accuracy.

Next, we validate in two ways that the proposed candidate
heuristic can identify promising candidates.

First, as the basis of our candidate heuristic (Sect. III),
structural similarity implies functional similarity. Using super-
vised learning on all metagraphs without dual-stage training,
we can learn the optimal weight for each metagraph. Subse-
quently, we can compute structural and functional similarities
for each pair of metagraphs, and plot them in Fig. 9. Our
datasets indeed reveal a general correlation between the two
kinds of similarities, supporting the very foundation of our
proposed candidate heuristic.

Second, the candidate heuristic score H (Eq. 7) can induce
a meaningful order on the promise (or usefulness) of the meta-
graphs. We compare our candidate heuristic (CH) with reverse
candidate heuristic (RCH). RCH simply reverses the order
induced by CH. If the order by CH is meaningful, we expect
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Fig. 9. Correlation of structural and functional similarities.
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RCH to give worse accuracy than CH, since least promising
metagraphs are chosen as candidates. This expectation can be
verified by Fig. 10, which clearly shows that CH can identify
better candidates than RCH.

D. Efficiency of Metagraph Matching

While dual-stage training can already reduce the overall
matching time significantly, we further examine the efficiency
of our matching algorithm for individual metagraphs. In par-
ticular, we compare our symmetry-based algorithm, denoted
by SymISO, with three state-of-the-art baselines: BoostISO
[22], TurboISO [21] and QuickSI [19]. All these baselines
build upon the backtracking framework (Sect. IV-A), but do
not utilize graph symmetry to avoid redundant computation.
We obtained the codes of BoostISO and TurboISO from their
respective authors, and used the implementation of QuickSI in
the benchmark paper [20]. Lastly, to illustrate the importance
of node matching orders in SymISO, we also compare to a
weaker scheme of SymISO using a random matching order,
dubbed as SymISO-R.

We illustrate the average running time per metagraph for
all the algorithms in Fig. 11, where the size of metagraphs
(number of nodes) varies between 3 and 5. Observe that
SymISO consistently outperforms the best baseline (Boost-
ISO), by 52% on average. When the number of nodes in
a metagraph increases, the performance margin of SymISO
becomes larger, since more redundant computation can be
avoided due to larger symmetric components. Furthermore,
SymISO is about 45% faster than SymISO-R, which indicates
the usefulness of our matching order.

VI. RELATED WORK

Meta-structures. While the less general concept of metapath
has been proposed [4], metagraphs are more expressive and
effective than metapaths in capturing interactions between
nodes, as explained in Sect. I. Given the increased complexity
and variety of metagraphs, we cannot handle metagraphs in the
same way as metapaths. First, the metapath-based PathSim [4]
relies on manually selecting the useful metapaths. It becomes
difficult given the much larger number of metagraphs and
arbitrary classes of proximity. Thus, we propose a supervised
learning approach. While another work [24] also employs
learning for metapaths, it is only designed for a different task
of clustering. Second, metagraphs are much more difficult to
match than metapaths. Thus, we develop dual-stage training
and symmetry-based matching to improve efficiency.

Proximity search. Most earlier research [2], [1], [25], [3],
[4] only measures a “generic” form of proximity on graphs.
Different roles or senses of proximity have also emerged,
such as hub and authority [26], probabilistic precision and
recall [27], [28], as well as importance and specificity [29],
[30]. However, these roles or senses are only formed due
to specific patterns in the link structures (i.e., non-semantic),
whereas our classes of proximity aim to capture different
kinds of semantic proximity between nodes. Although there
exist semantic-oriented studies on graphs, such as social circle
learning [6] and relationship profiling [7], they do not support
online query processing and thus cannot be easily adapted for
proximity search.

There also exist several random walk approaches [31], [32],
[5], which learn from example ranking preferences [13] to
bias transition probabilities between nodes of different types
or features. However, these studies do not recognize various
semantic classes of proximity, and only intend to learn a
generic measure best suited to the given graph. Although they
can be adapted to learn for the desired class of proximity,
their way of adjusting the transition probabilities is indirect
towards differentiating the classes. Furthermore, random walks
fundamentally reduce to a linear aggregation of individual
path probabilities [1], and paths lack the expressiveness of
metagraphs. Not surprisingly, the state-of-the-art method [5]
turns out to be ineffective in our experiments.

Feature cost in training. We believe that reducing feature
extraction cost for training has not been studied. To learn a
desired class of proximity, our dual-stage training approach
only tries to match a subset of metagraphs in training. (A



metagraph is analogous to a feature in traditional settings.)
In contrast, existing studies [14], [15], [16], [17] focus on
minimizing feature extraction cost for testing. That is, there
is a budget constraint on the total cost of feature extraction
for testing examples. If a testing example is easier, fewer
features are needed for classification; otherwise, more features
are needed. To realize such cost savings in testing, a training
process to examine all features are required, which is exactly
what we aim to avoid. In our setting, reducing feature cost
for training is made possible because each metagraph has
structural information, which enables us to infer its function
even without knowing its instances.

Subgraph matching. A plethora of techniques [10], [19], [20],
[21], [22] have been proposed for subgraph matching, which
follow the backtracking framework as discussed in Section IV.
Their major issue is the extremely huge search space on a
large graph. To prune the search space, Shang et al. [19] have
proposed a special ordering of nodes for matching instead
of just a random ordering. Subsequently, Han et al. [21] and
Ren et al. [22] have introduced more improvements to further
reduce and reuse redundant computation. However, they do
not account for graph symmetry, and are thus inefficient for
symmetric metagraphs. Moreover, significant research has been
devoted to mining frequent subgraphs among a large set of
input graphs, based on the property of downward closure [12],
[8], [9], [33]. However, our problem is to compute the instances
of a metagraph on a single input graph, which does not obey
downward closure.

VII. CONCLUSION

In this paper, we proposed and addressed the problem
of semantic proximity search on graphs. In particular, we
observed multiple semantic classes of proximity on a het-
erogeneous graph. To differentiate various semantic classes,
we identified and employed metagraphs to characterize any
arbitrary semantic class, and automatically learnt the charac-
teristic metagraphs in a supervised manner. While metagraph-
based proximity is effective in modeling different classes of
proximity, we also improved its efficiency in two ways. First,
we developed a dual-stage training approach to only consider
a small subset of promising metagraphs. Second, we also
devised a symmetry-based matching algorithm to speed up the
matching of individual metagraphs. Empirical results on two
real-world graphs demonstrated that our proposed approach is
not only accurate but also efficient.
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